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a-relaxation processes in binary hard-sphere mixtures
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Molecular-dynamics simulations are presented for two correlation functions formed with the partial density
fluctuations of binary hard-sphere mixtures in order to explore the effects of mixing on the evolution of glassy
dynamics upon compressing the liquid into high-density states. Partial-density-fluctuation correlation functions
for the two species are reported. Results for thea-relaxation process are quantified by parameters for the
strength, stretching, and time scale, where the latter varies over almost four orders of magnitude upon com-
pression. The parameters exhibit an appreciable dependence on the wave vector, and this dependence is
different for the correlation function referring to the smaller and that for the larger species. These features are
shown to be in semiquantitative agreement with those calculated within the mode-coupling theory for ideal
liquid-glass transitions.
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I. INTRODUCTION

If one compresses or cools a liquid, there appear s
dynamical processes which are referred to as structura
laxation. These processes are precursors of the liquid-g
transition. The study of these phenomena has been a
active field of research in recent years. Several new exp
mental techniques were introduced to measure the evolu
of structural relaxation spectra within the GHz ban
Molecular-dynamics simulation techniques have been
proved considerably so that correlation functions of liqu
in equilibrium can be obtained for time intervals coveri
five to six orders of magnitude. The wealth of informatio
obtained on glassy dynamics is a challenge for the theor
amorphous condensed matter. However, consensus on
understanding of the slow dynamics in glass-forming liqu
has not yet been achieved@1,2#.

Simple monoatomic liquids crystallize before structu
relaxation dynamics is fully developed. Therefore, studies
the glassy dynamics have to be performed on simple mole
lar systems or suitable mixtures. Recently, for example
four-component mixture was studied by neutron-scatter
spectroscopy. This system transforms to a metallic glas
low temperatures, but it exhibits the same scenario for
evolution of structural relaxation as known for molecules@3#.
The first molecular-dynamics studies of structural relaxat
in an equilibrium liquid were performed for a binary mixtu
of particles interacting by purely repulsive potentials@4–6#.
A binary Lennard-Jones system has been introduced@7#,
whose interaction potentials are similar to the ones propo
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for the description of the glass-forming Ni-P mixture@8#.
This system has been used extensively to analyze all fa
of glassy dynamics in the equilibrium liquid and also for t
quenched nonequilibrium system@9,10#. In the mentioned
previous studies, mixing was merely introduced as a me
of suppressing crystallization. In the present paper, we a
lyze the influence of mixing on the structural relaxation.

In order to identify the effect of mixing on the glass
dynamics, we have performed molecular-dynamics simu
tions for four binary hard-sphere mixtures differing in th
size ratio of the constituents and in the composition. By
creasing the total packing fraction up to 0.605, the evolut
of structural relaxation was detected for a time interval up
five orders of magnitude. As reported earlier@11#, two sce-
narios for mixing effects have been identified. For a mixtu
with a small-size disparity of the constituents, the increase
the mixing percentage of the small particles for a fixed to
packing fraction leads to a slowing down of the long-tim
dynamics. In this case, mixing stabilizes the glass st
However, upon mixing particles with a large-size dispari
the increase of the percentage of the small particles at fi
packing fraction speeds up the structural relaxation. In t
case, mixing stabilizes the liquid. The present paper repor
detailed analysis of the long-time relaxation processes, tr
tionally referred to asa processes, for the two scenario
mentioned.

Glassy dynamics and a liquid-glass transition can also
observed experimentally in colloidal suspensions. In parti
lar, one can prepare glass-forming colloids where the in
action potential is a very good approximation to a ha
©2004 The American Physical Society05-1
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sphere repulsion@12#. Informative light-scattering studies o
structural relaxation for such a hard-sphere suspension
been reported@13#. To suppress crystallization, a narrow di
tribution of particle sizes was chosen. Strictly, such a sys
is a multicomponent mixture. But ignoring the small pol
dispersity, it can be viewed as a one-component system
the same sense, one can consider a colloid studied by H
erson et al. @14# as an approximation for a binary hard
sphere mixture with a size ratio 0.8 between the two gro
of particles and a mixture studied by Williams and v
Megen@15# as one with size ratio 0.6. For the first mixture,
dramatic effect of mixing on the nucleation ratio was o
served, but no effect on the glassy dynamics has been
ported. For the second mixture, it was shown that the t
scale for thea relaxation decreased upon mixing. Our sim
lation results@11# suggest that the cited experiments do n
deal with colloid-specific features. Rather, they exemp
the two scenarios for mixing effects on structural relaxati
Therefore, the present paper provides a detailed list of qu
titative predictions for correlation functions of glassy co
loids, which can be measured by photon-correlation sp
troscopy.

The mode-coupling theory for ideal liquid-glass tran
tions provides a physical explanation for the evolution
structural relaxation in simple systems and allows for a fi
principles evaluation of the density-correlation functio
@16#. The results of this theory for the hard-sphere syst
have been used for a detailed analysis of the light-scatte
data obtained for hard-sphere colloids with a small polyd
persity@17#. The theory has been extended recently to a d
cussion of binary hard-sphere mixtures. In particular,
above-mentioned two mixing scenarios had been obta
@18#. It was possible to describe a major part of the scatter
data for a mixture@15# quantitatively by the theoretical re
sults @19#. These findings provide a motivation to use o
simulation results also for a detailed quantitative test of
mode-coupling theory for thea-relaxation process.

The paper is organized as follows. In Sec. II, the simu
tion details are described, representative results for the
mixtures considered are exhibited, and the mode-coupl
theory formulas for thea-relaxation process are listed. The
in Sec. III, it will be explained how thea-relaxation pro-
cesses are parametrized. The results for the parameter
compared with the corresponding ones obtained from
mode-coupling-theory findings. Section IV presents a co
parison of thea-relaxation master functions for the densit
fluctuation correlation functions of the simulation data w
the corresponding theoretical results. In Sec. V, the findi
are summarized.

II. BASIC CONCEPTS AND RESULTS

A. Specification of the systems

Let N and% denote the total number of particles and t
total number density, respectively, of the binary hard-sph
mixture~HSM! to be studied. Further numbers specifying t
system are the particle diametersda , the particle masse
ma , their thermal velocitiesva , the partial number densitie
%a , and number concentrationsxa5%a /%5Na /N, as well
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as the partial packing fractionswa5(p/6)%ada
3. Here a

5A andB labels the big and small particles, respectively.
the present work, the size ratiod5dB /dA , the total packing
fractionw5wA1wB , and the relative packing fraction of th
smaller species,x5wB /w, will be used as convenient con
trol parameters to characterize the thermodynamic state.

Density fluctuations of speciesa for wave vectorqW are
constructed from the positionsrWk

(a) , k51,...,Na , of particles
of type a: %a(qW )5(k exp@iqW•rWk

(a)#/AN. The partial struc-
ture factorsSab(q)5^%a(qW )* %b(qW )& provide the simplest
statistical information on the equilibrium distribution o
particles—i.e., on the structure. Here^•& denotes canonica
averaging. The structure factors depend on the wave ve
only via q5uqW u. They can be written asSab(q)5xadab
1%xahab(q)xb , with hab(q) denoting the Fourier trans
form of the pair-correlation function. The latter can be e
pressed in terms of the direct correlation functionscab(q)
via the Ornstein-Zernike equationhab(q)5cab(q)
1%(gcag(q)xghgb(q) @20#. The Sab(q), hab(q), and
cab(q) are elements of real symmetric two-by-two matrice
The discussions will be restricted to such stable and m
stable states whereSab(q) andcab(q) are smooth functions
of q and of the control parametersw, d, andx.

The main quantities of interest in this paper are the d
sity correlatorsFab(q,t)5^%a(qW ,t)* %b(qW )&. These corre-
lation functions provide the simplest statistical characteri
tion of the structural dynamics. They are real even functio
of time t, and they form the elements of a symmetric tw
by-two matrix. In principle, the correlators can be measu
as intermediate coherent scattering functions by neutr
scattering experiments for conventional liquids or by photo
correlation spectroscopy for colloidal suspensions. A sh
time expansion yields Fab(q,t)5Sab(q)2(1/2)
3(qvat)2xadab1O(t3) @20#. Within the regime of normal-
liquid states—say,w,0.4—the short-time dynamics varie
on a 30% level upon changes of the control paramet
There are no structural relaxation phenomena apparent in
transient dynamics.

Two mixtures shall be considered in the following. A sy
tem with d50.60 andx50.20, referred to as thed50.60
system, is representative for a mixture with large-size disp
ity. In this case, 54% of the particles are of speciesB. A
system with d50.83 and x50.37, referred to as thed
50.83 system, contains 50% of small particles. It is rep
sentative for a mixture with small-size disparity. These m
tures have been used before, together with systems of sm
percentagesx, in order to demonstrate the evolution of mix
ing anomalies with variations ofx @11#. Since we are not
interested in details of the short-time dynamics, the mas
of the particles are chosen equal—i.e.,vA5vB . The units of
length and time are chosen such thatdA51 and vA5vB
51. With these units, the natural time scale for the mic
scopic motion istmic5dA /vA51.

B. Results from molecular-dynamic simulations

We perform standard molecular-dynamics simulations
binary mixtures ofN51237 andN5700 hard-sphere par
ticles with size ratiosd50.60 andd50.83, respectively. The
5-2
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a-RELAXATION PROCESSES IN BINARY HARD-SPHERE MIXTURES PHYSICAL REVIEW E69, 011505 ~2004!
algorithm follows the usual event-driven scheme for t
simulation of hard-sphere particles@21#, where the trajectory
of the system is propagated from one collision to the n
one. To generate dense enough initial configurations with
particle overlaps, we applied the same procedure as
scribed earlier@22#: Starting from a random distribution o
points, particles were separated, growing their diameter
successive steps until the desired size was reached. From
initial configuration, each simulation proceeds by an equ
bration run, followed by a production run during which p
sitions and velocities are saved for subsequent analysis. I
cases, the equilibration time was larger than the time it ta
for the particles’ average displacement to reach one diam
of the large species,dA . Up to four independent runs pe
state point have been performed to reduce statistical er
Density correlation functionsFab(q,t) and static structure
factorsSab(q) have been calculated by averaging over
independent runs and over 300 different wave vectorsqW of
the same modulusq. The longest simulation run requeste
about 3 weeks; i.e., the largest density studied took abo
months of CPU time on a fast AMD Athlon processor to
completed.

We checked that no crystallization occurred during
production runs by monitoring the time evolution of the pre
sure of the system and by visual inspection of the confi
rations. We also evaluated the wave-vector-resolved struc
factor without angular averaging to make sure that no cr
talline peaks have developed. Other mixture compositi
than the ones presented below have been tried; ford50.83
andx50.276 as well as ford50.60 andx50.10, it was also
possible to study the glassy dynamics in the liquid ph
@11#, despite a stronger tendency to crystallization. A syst
with d50.60 andx50.05 did not stay in the homogeneou
liquid phase long enough for a study of structural relaxati

Figures 1 and 2 exhibit a typical set of structure fact
and the corresponding pair distribution functions. The res
refer to thed50.60 system, and the lines are calculated
ing the Percus-Yevick theory for the HSM@23,24#. Obvi-
ously, this approximation theory accounts for the data rat
well, even though the packing fractionw50.60 considered is
rather large. But there are small systematic deviations of
kind known from the discussion of hard-sphere mixtures
smaller packing fractions@25#. For example, the theory over
estimates the height of the first and second peaks ofSAA(q)
by about 10%. The contact values for the radial distribut
function are 11.6, 6.87, and 8.76 for theAA, BB, and AB
functions, respectively, while the Percus-Yevick theo
yields 8.88, 6.32, and 7.28, respectively. It will be discuss
below that these discrepancies have to be acknowledge
one intends to consider the results of the mode-coup
theory ~MCT! quantitatively. Even though the results
Percus-Yevick theory are well known, a side remark on
qualitative features might be in order. Increasing the s
disparity—i.e., decreasingd below unity—the height of the
first diffraction peak inSAA(q) decreases. Simultaneousl
the wing of the peak atqdA'9 increases. Within MCT, the
first trend stabilizes the liquid state, while the second tre
stabilizes the glass. The first trend dominates at the g
transition for smalld, the second one that for largerd @18#.
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For the radial distribution functions, these trends corresp
to a reduction of the contact values and a decrease of
averaged radius of the first neighbor shell with decreasind.
Moreover, at larger-size disparities, a splitting of the fir
neighbor-shell peak into a double peak is observed, a
evident in Fig. 2.

Figures 3 and 4 exhibit representative examples for
evolution of the glassy dynamics upon compressing thed
50.60 mixture. The wave vectorsqdA55 andqdA510 have
been chosen since they exhibit the characteristic differen
in mixing effects for small and large wave vectors that ha
been discussed before@11,18#. Note that the values of the
partial correlation functions can be quite different; in partic
lar, the small values of theAB correlator atqdA510 are
responsible for the worse signal-to-noise ratio obser
there.

The correlators forw50.40 are close to exponentia
whose characteristic decay time is near the natural time s
tmic51 for the microscopic dynamics. They are typical f
normal-liquid behavior which can be described on a 30

FIG. 1. Partial structure factorsSab(q), a,b5A,B, of a binary
hard-sphere mixture for diameter ratio of the particlesd5dB /dA

50.60, a relative packing ratiox of the smaller species of 20%, an
total packing fractionw50.60. Circles are the molecular-dynamic
simulation results, while solid lines are the results calculated wit
Percus-Yevick theory. Here and in the following figures, the dia
eter of the larger spheres is chosen as the unit of length,dA51.
5-3
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FOFFI et al. PHYSICAL REVIEW E 69, 011505 ~2004!
accuracy level by Enskog’s theory for dense gases@26#. If
the packing fraction increases tow50.45, the time scale fo
the decay of the correlators increases by about 40%, so
for t'5 all correlators have decayed to below the 5% le
of their initial values. Increasingw above 0.45, a new relax
ation pattern evolves for the dynamics outside the trans
regime—say, fort.5. The Fab(q,t)-vs-logt diagrams ex-
hibit a two-step relaxation scenario that has repeatedly b
observed before in simulation studies and experiments. F
the correlators decrease towards some plateau. The cu
become flatter and the plateau lengths increase ifw increases.
Then, the correlators decrease from the plateau to zero.
dynamics fort*tmic is called structural relaxation. Our simu
lations document this process, which is characteristic
glass-forming liquids, for a time interval extending ov
nearly five orders of magnitude.

The second step of the structural relaxation—i.e., the
cay below the mentioned plateau—is conventionally refer
to as thea process. The figures demonstrate that the ti
scale for thea process increases the faster with increasinw
the larger the packing fraction. The decay cannot be
scribed by an exponential function: rather, it is stretched o
wider time intervals. Obviously, the whole structural rela
ation pattern, in particular thea process, shows a subtle d

FIG. 2. Pair distribution functionsgab(r ) corresponding to the
results shown in Fig. 1.
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pendence on the wave vectorq. It is the goal of this paper to
characterize thea process, in particular itsq dependence,
quantitatively.

C. Some mode-coupling-theory equations

Within MCT, the concept of a plateau and of a
a-relaxation process can be defined precisely in the sens
asymptotic laws describing the dynamics near an ideali
liquid-to-glass transition. These laws provide a motivati
for parametrization of the data. In addition, our data shall
used to test quantitatively the results of the theory. In t
section, the required formulas are compiled.

Let us introduce an obvious matrix notation to get t
following equations in a transparent form.S(q), F(q,t),
etc., shall denote two-by-two matrices with elemen
Sab(q), Fab(q,t), etc. The Zwanzig-Mori formalism@20#
can be used to derive the exact equation of motion for
density correlators,

FIG. 3. Molecular-dynamics-simulation results for the dens
correlatorsFab(q,t), a,b5A,B, for thed50.60 mixture for wave
vectorqdA55. The dotted and dashed lines refer to packing rat
w50.40 and 0.45, respectively. The solid lines are correlators
w50.530, 0.550, 0.570, 0.580, 0.590, 0.595, 0.600, and 0.605~from
left to right!. Here and in the following figures, the unit of time
chosen such that the thermal velocity of the particles is unity.
5-4
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I ~q!] t
2F~q,t !1S21~q!F~q,t !

1E
0

t

M ~q,t2t8!] t8F~q,t8!dt850. ~1a!

Here I (q) is a matrix of inertia parameters,I ab(q)
51/(q2va

2xa)dab . The kernelsMab(q,t) are fluctuating-
force correlation functions, and they reflect the complica
many-body interaction effects. The equation of motion ha
be solved with the initial conditionsF(q,t50)5S(q) and
] tF(q,t50)50. The essential step in the theory is the a
plication of Kawasaki’s factorization approximation in ord
to identify the kernel contributionMMCT(q,t), which ex-
presses the coupling of the forces to the density fluctuatio
The remainder of the kernel,M reg(q,t), is assumed to de
scribe the normal-liquid-state dynamics. It is anticipated
vary regularly in the control parameters and to decay on
scale tmic for the transient motion. One getsM (q,t)
5M reg(q,t)1MMCT(q,t), where the mode-coupling kerne
is given by the mode-coupling functionalF,

MMCT~q,t !5F@F~ t !#~q!, ~1b!

which reads

FIG. 4. Analogous results as shown in Fig. 3, but for wa
numberqdA510.
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(

kW
Vaa8a9~qW ,kW ,pW !

3Fa8b8~k!Fa9b9~p!Vbb8b9~qW ,kW ,pW !.

~1c!

In the sum, the abbreviationpW 5qW 2kW is used. The vertices
Vaa8a9(qW ,kW ,pW ) are expressed in terms of the direct corre
tion functions cab(k) and a triple average

^%a(qW )* %b(kW )%g(pW )&. Simplifying the latter by the convo-
lution approximation, one gets

Vaa8a9~qW ,kW ,pW !5~qW •kW /q!caa8~k!daa9

1~qW •pW /q!caa9~p!daa8 . ~1d!

Note that the mode-coupling functional is determined by
equilibrium structure alone. Specifying the structure fact
and a model forM reg(q,t), the preceding equations ar
closed. To proceed towards a numerical solution, one in
duces a grid of equally spaced wave numbers extending
to a cutoffq* . In this paper, we use 140 wave numbers a
qdA* 556.8 for calculations based on the simulated struct
factors. Some results based on the Percus-Yevick approx
tion shall also be shown, and for those we used 200 w
numbers up toqdA* 579.8. We refer to Ref.@18# and the
papers quoted therein for further details.

The MCT equations exhibit bifurcations for the long-tim
limits of the solutions. For packing fractionsw below some
critical valuewc5wc(d,x), one getsF(q,t→`)50. In this
parameter regime, the solutions describe ergodic liquid
namics. Forw>wc, the long-time limits are nondegenera
symmetric positive-definite matricesF(q,t→`)5F(q). For
these states, the solutions describe amorphous solids—
ideal glasses. The long-time limits obey the implicit equ
tions

F~q!5S~q!2@S~q!211F@F#~q!#21. ~2!

These equations are defined by the equilibrium struct
alone; neither the inertia matrixI (q) nor the regular memory
kernelM reg(q,t) enters. The above equation forF(q) can be
solved by a standard iteration procedure@27#.

Let Fc(q) denote the nondegenerate positive-definite m
trix of long-time limits at the transition pointw5wc. For
reasons of continuity,F(q,t) has to be close toFc(q) for a
large time interval ifuw2wcu is small. The correlators are th
closer toFc(q) the smalleruw2wcu, and the time interval of
this close approach extends simultaneously. Thereby the
lution of the plateaus, which were discussed above in c
nection with Figs. 3 and 4, is explained by MCT, and t
Fc(q) are the MCT expressions for the plateaus.

The decay of the correlators from the plateaus to zero
small negativew2wc shall be characterized by some tim
scalet~w!. Obviously, limw→wct(w)5`. Let us consider the
dynamics of the relaxation from the plateau on the time sc
t by writing t5 t̃ t with t̃ fixed but positive. There holds
5-5
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lim
w→wc

F~q, t̃ t!5C~q, t̄ !, ~3!

whereC(q, t̃ ) obeys the equation@28#

C~q, t̄ !5S~q!M̃ ~q, t̃ !S~q!

2S~q!
d

d t̃
E

0

t̃
M̃ ~q, t̃ 2 t̃ 8!C~q, t̃ 8!d t̃8, ~4a!

to be solved with the initial conditionC(q, t̃ 50)5Fc(q).
HereM̃ (q, t̃ ) is determined by the mode-coupling function
for the critical point:

M̃ ~q, t̃ !5Fc@C~ t̃ !#~q!. ~4b!

The numerical solution of the equation forC(q, t̃ ) is done
similar to that for the full equations of motion.

Equation ~3! implies the following conclusion. Given
some t̃ 2 and some error margin,

F~q,t !5C~q,t/t! ~5!

is valid within the margin fort̃ 5t/t. t̃ 2 , providedw2wc

is small enough. This is the superposition principle for t
MCT a process. It describes the correlators in terms o
w-independent master functionC(q, t̃ ) and attributes the
strong w dependence to that of the scalet. Presenting the
correlators as functions oft̃ , the interval for t̃ where they
coincide expands to lower values oft̃ if uw2wcu decreases
The master functionsC(q, t̃ ) depend only on the equilib
rium structure. Neither the inertia parameters inI (q) nor the
regular kernelM reg(q,t) have any influence onC(q, t̃ ).
These quantities enter the time scalet only.

There are complicated but straightforward formulas
evaluate fromFc the so-called von Schweidler exponentb,
0,b,1, a critical amplitudeH(1)(q), which is a positive
definite matrix, and a correction amplitudeH(2)(q) @29#.
These quantities determine the von Schweidler expansio
the master functions,

C~q, t̃ !5Fc~q!2H~1!~q! t̃ b1H~2!~q! t̃ 2b. ~6!

Here terms of ordert̃ 3b have been dropped. Thereby a
equation is obtained for the beginning of thea process.

The MCT equations have been studied before for a bin
HSM using the Percus-Yevick approximation for the stru
ture factors@18#. In the present paper, results will be pr
sented using the structure factorsS(q) obtained from the
simulation work. For the two mixtures we have calculate

wMCT
c 50.548, b50.44 ~d50.60, x50.20!, ~7a!

wMCT
c 50.545, b50.43 ~d50.83, x50.37!. ~7b!

From the simulation data, the critical packing fractionswc

for the liquid-glass transitions of the two mixtures have be
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determined from thea-relaxation times of the density auto
correlation functions~see Sec. III E! yielding values of 0.606
and 0.586, respectively. The errors of 10% and 7%, resp
tively, exhibited by the values noted in Eqs.~7a! and ~7b!,
indicate the uncertainty one should expect for MCT resu
It is worth stressing that if one bases MCT on the Perc
Yevick approximation for the structure factors, one gets,
critical values for the two mixtures, 0.520 and 0.515, resp
tively. Hence the use of a correct instead of approxima
structure factor input to the theory improves the results
the critical points. It is remarkable that the modest errors
the Percus-Yevick theory, which are exhibited in Fig. 1, le
to noteworthy changes in the MCT results for the critic
points.

III. PARAMETRIZATION OF THE a-RELAXATION
PROCESSES

A. Evolution of the a process

The evolution of thea-relaxation scaling law is examine
in Fig. 5. The upper panel is a typical example for the m
jority of correlators obtained in our simulations. For eve
packing fractionw, some time scalet[t(w) can be defined
so that the long-time parts of the correlators coincide if th
are considered as functions oft̃ 5t/t. This coinciding part
provides the master functionsCab(q, t̃ ) for thea process of
the fluctuation considered. Upon increasingw, the t̃ interval
where Eq.~3! holds expands to lower values of the resca
time t̃ . Thus the observed scenario confirms the MCT p
diction. However, our data also exhibit violations of th
above-described scenario, which cannot be understood in
framework of MCT. These occur only for the BB correlato
of the d50.60 mixture for wave vectors around th
structure-factor peak position,qdA'7, and this only for the
two largest packing fractions examined,w50.600 and 0.605.
The lower panel of Fig. 5 shows a representative exam
The following analysis ofC(q, t̃ ) shall therefore be base
on those data sets that do not exhibit the descri
phenomenon—i.e., forw,0.60.

The stretched exponential

fa
K~q, t̄ !5Aa~q!exp$2@ t/ t̃a~q!#ba~q!% ~8!

is an often used empirical function for the description ofa
processes. It was introduced by Kohlrausch for the desc
tion of dielectric relaxation data. The description of th
a-process master function by an amplitude—also called
plateau value—Aa(q), a time scalet̃a(q), and a Kohlrausch
exponentba(q) shall be used here as well. The dashed lin
in Fig. 6 exhibit representative examples for an analysis
the normalized autocorrelation functionsfA(q,t)
5FAA(q,t)/SAA(q). The figures contain rescaled data f
w50.595 and 0.590, in order to identify a major part for t
interval of rescaled timest̃ , for which the superposition prin
ciple is valid. Similarly, Fig. 7 exhibits examples for a fit o
the stretched exponentials to the numerical solutions of
MCT equations. Theq vectors are as close to the ones of F
6 as permitted by the use of discrete wave-vector grids. N
5-6
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that the choice of the overall time scale is irrelevant for
discussion of the master functionsC(q, t̃ ).

Figures 6 and 7 confirm an observation often made ea
er: the fits by Eq.~8! provide a good description of a majo
part of thea process. However, there are also system
deviations between the fit functionfa

K(q, t̃ ) and the master

functionsCaa(q, t̃ ). This holds in a similar manner for th
fits to the data and to the MCT results. The fit contains
avoidable systematic errors, because the fit parameters
pend somewhat on the time interval chosen for the fit o
mization. In our analysis, the fit was done so that the largt̃
part is described best. Thereby the errors of the fit app
solely for the small-t̃ part of the master functions.

Equation~6! suggests another fit formula, which is val
for the small-t̃ part of the master functions. But the smallt̃
part can be identified only to the limited extent to which t
scaling interval can be established. Consequently, also th
using the von Schweidler series contains unavoidable un

FIG. 5. Density autocorrelation functionsFAA(q,t) and
FBB(q,t) of the d5dB /dA50.60 system for wave numberqdA

57.5, presented as functions of the rescaled timet̃ 5t/t. The upper
panel exhibits simulation results for packing fractionsw50.605,
0.60, 0.595, 0.59, 0.58, 0.57, and 0.53, the lower panel fow
50.605, 0.60, 0.595, 0.59, and 0.58~from left to right!. For eachw,
the scaling timet is chosen such that the curves coincide for lar
times.
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tainties. The dotted lines in Fig. 6 exhibit representative
amples for such fits. Fits could be achieved with von S
weidler exponentsb chosen between 0.40 and 0.5
Therefore, the predicted exponents, Eq.~7!, are confirmed
within an uncertainty of60.05. All the results shown are
obtained with the cited theoretical exponents. The remain
fit parameters shall be discussed below.

Note that these results can depend somewhat on the
window chosen for the fit, which is 3.5,t,200 for the fits
discussed here. Similarly, the dotted lines in Fig. 7 exh
the results of Eq.~6! for the MCT results. But here the func
tionsFc(q), H(1)(q), andH(2)(q), as well as the scalet, are
calculated from the MCT equations. In this sense, the do
lines are not fit results. The discrepancies between the do
and solid lines represent the ones between the full solutio
the MCT equations of motion and the specified second-or
asymptotic description of the solution. It is reassuring th

FIG. 6. Normalized large-particle-density autocorrelation fun
tionsfA(q,t)5FAA(q,t)/SAA(q) obtained from the simulations fo
three wave numbersq and packing fractionw50.595 ~left solid
line! for the d50.60 mixture. The right solid lines are the simul
tion results forw50.590, rescaled on the first curve for large tim
t. The dashed and dash-dotted lines are fits to thea process by the
Kohlrausch function, Eq.~8!, and the von Schweidler expansio
Eq. ~6!, with b50.44, respectively. The fit interval for the latter
indicated by the horizontal dotted arrow.
5-7
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the discrepancies between the solid and dotted lines in F
exhibit similar trends as the ones shown in Fig. 7. A qua
tative account of the differences between the results sh
in the two figures is included in the discussions of the f
lowing sections.

B. Plateau values

The circles in Figs. 8 and 9 exhibit the plateau values
the two-step relaxation process,Aa(q), obtained by fitting
Eq. ~8! to the simulation data for the normalized autocor
lation functionsfa(q,t). For qdA,6, the Aa(q) are very
large; they almost reach their upper limit unity forq tending
to zero. This is a typical mixing phenomenon. For on
component systems,A(q)'0.4 is expected for smallq
@28,30#. The widthq1/2 of theAa(q)-vs-q curves, defined by
Aa(q1/2)51/2, is about 7% larger fora5A in Fig. 8 than in
Fig. 9. This means that the large particles are better local
in the mixture with the larger-size disparity. For the smal
B particles, the opposite trend is observed. Similarly, the p
teaus for theA correlators exhibit some small peak near t

FIG. 7. Analogous set of curves as in Fig. 6, but now obtain
for the numerical solutions of the MCT equations. The pack
fractions for the full curves arew50.548 and 0.545. The additiona
dash-dotted lines are the asymptotes given by the first two term
Eq. ~6!.
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position qdA57.5 of the structure-factor peak, while th
B-correlator plateau values exhibit a pronounced minim
there. For thed50.60 mixture,AA(q) exhibits a minimum
near qdA511, which is accompanied by a maximum ne
qdA512. Instead, thed50.83 system has a shoulder fo
AA(q) for 9,q,12. All these details are reproduced sem
quantitatively by the results obtained from the MCT value
which are shown as squares in the figures. There are on
few cases where the plateau values deduced from the
differ by up to 10% from the ones deduced from the MC
results: theB plateaus for thed50.60 system forqdA
'16 or theA plateaus for thed50.83 system forqdA'17,
for example.

The symbols in Figs. 10 and 11 show the results for
plateau valuesf ab(q) obtained from fitting Eq.~6! to the
simulation data, normalized byFab(q,t)/ASaa(q)Sbb(q).
The fit results obtained for thed50.60 mixture for w
50.590 and those forw50.595 differ by about 5%. This
difference thus appears as an inherent uncertainty of the
analysis. No such difference could be identified for thed

d

in

FIG. 8. Circles and squares represent the Kohlrausch amplitu
A(q) determined by fitting Eq.~8! to the simulation data and MCT
solutions, respectively, for the normalized autocorrelation functi
Faa(q,t)/Saa(q) of the big particles,a5A ~top panel!, and the
small particles,a5B ~bottom panel!, of the d50.60 mixture. The
solid and dashed lines show the MCT plateau valuesf aa

c (q)
5Faa

c (q)/Saa(q) calculated with the simulation results for th
structure factor and the Percus-Yevick approximation for
Sab(q), respectively.
5-8
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a-RELAXATION PROCESSES IN BINARY HARD-SPHERE MIXTURES PHYSICAL REVIEW E69, 011505 ~2004!
50.83 mixture. The solid lines in the figures exhibit th
MCT plateau valuesf ab

c (q)5Fab
c (q)/ASaa(q)Sbb(q). For

the diagonal functionsab5AA and ab5BB, these lines
are identical to the solid lines shown in Figs. 8 and 9. Th
lines should help to compare the plateau resultsAa(q) with
the corresponding fit results for thef aa(q). Obviously, all
qualitative features of the plateau fits based on the Ko
rausch function agree with the ones based on the von S
weidler series, both for the fits to the simulation data and
those to the MCT results. The MCT results forf AA

c (q) of the
d50.83 mixture are in perfect agreement with the simulat
data, whilef BB(q) is underestimated systematically by MC
But the difference is only about 5%, except forqdA'14,
where the discrepancy reaches about 10%. The deviation
f AB(q) are of similar size. For the system with larger-si
disparity, the discrepancies between the data and MCT
sults is somewhat larger, but it is not seriously larger than
inherent uncertainty of the fits.

Figure 7 exhibits also the leading term of the von Sc
weidler expansion. In general, accounting for the next-
leading term ofO( t̃ 2b) increases the range of validity of th
von Schweidler expansion dramatically@28#. Indeed, a data
analysis with aq-independent exponentb is possible only if
the O( t̃ 2b) term is included@31#. However, ifw is not close
enough towc, it may happen that theO( t̃ 3b) terms cancel

FIG. 9. Analogous results as in Fig. 8, but for the mixture w
size ratiod50.83.
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O( t̃ 2b) contributions. In such a case, the fit range may shr
upon inclusion of theO( t̃ 2b) terms @32#. This accident is
demonstrated by Fig. 7 forqdA510.2. Such a phenomeno
cannot be foreseen in an unbiased data analysis, which t
necessarily, must lead to errors in the fit amplitudes. T
explains why the sign of the correction amplitude identifi
in the lower panel of Fig. 6 differs from the one shown in t
lower panel of Fig. 7.

An obvious source of errors in the MCT results is due
using incorrect equilibrium-structure information in th
mode-coupling functional. It was mentioned in connecti
with Eq. ~7! that replacing the structure factors by the
Percus-Yevick approximations increases remarkably the
ference between the MCT results for the critical packi
fractions and the results derived from the simulation da
The dashed lines in Figs. 8 and 9 exemplify the same p
nomenon for the plateau values. These are the MCT res
for the f aa

c (q) based on the use of the Percus-Yevick stru
ture factors. This approximation for the equilibrium structu
leads to underestimations of the plateau values by more

FIG. 10. Circles exhibit the plateau valuesf ab(q) for the d
50.60 mixture, obtained by fitting the simulation data for the n
malized correlatorsFab(q)/ASaa(q)Sbb(q) to the von Schweidler
expansion, Eq.~6!; see text.a5A refers to the big particles,a
5B to the small ones. The fit was optimized to the data forw
50.59. The solid lines are the MCT results for the normaliz
plateausf ab

c (q)5Fab
c (q)/ASaa(q)Sbb(q). For a5b, they agree

with the lines shown in Fig. 8. The squares are fit results optimi
for the data forw50.595.
5-9
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10%. Figures 8 and 9 demonstrate that MCT is so sens
to the small deviations betweenSab(q) and the Percus
Yevick results which are exhibited in Fig. 1 that they lead
serious flaws in the quantitative predictions for the dynam

The difference between the MCT results for thef ab
c (q)

based on the Percus-Yevick approximation and those u
Sab(q) as obtained from numerical simulations is of simil
size for both thed50.60 and thed50.83 system. It is not a
specialty of mixtures, as is demonstrated by Fig. 12. Th
the comparison is repeated for the one-component h
sphere system~HSS!. The MCT result for the critical point
based on the Percus-Yevick structure factor iswPY

c 50.516,
and the corresponding plateau valuesf PY

c (q) are shown as a
dashed line. The Verlet-Weis modification of the Perc
Yevick structure factor@33# is an empirical improvement o
S(q), in particular for the contact values. Using this as inp
for the MCT, one gets as the critical pointwVW

c 50.525. The
correspondingf VW

c (q), which are shown as the dash-dott
line, are systematically larger than the ones based on
Percus-Yevick results forS(q). We could obtain simulation
data for the structure factor of the metastable HSS for pa
ing fractions up tow50.54. Beyond this packing fraction
crystallization was always taking place before particles co
diffuse one nearest-neighbor distance, making it imposs
to generate data meeting our equilibration criteria. Extra
lating the smoothlyw-dependentS(q) up to w50.55, we
calculated as the critical pointwHSS

c 50.546 and obtained the

FIG. 11. Analog of Fig. 10, but for thed50.83 system. The fits
are based on the data forw'0.582.
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solid line as the plateau values. It is remarkable that
differences betweenf c(q) and f VW

c (q) for qdA.10 are
larger than those betweenf VW

c (q) and f PY
c (q). Note that we

find, using the simulation results for the structure facto
wc(d50.83),wHSS

c ,wc(d50.60); i.e., the system with
small-size disparity shows a change ofwc upon mixing that
is qualitatively different from the one seen for large-size d
parity. This MCT result is qualitatively the same as predict
originally on the basis of the Percus-Yevick approximati
@18# and is confirmed by our simulations@11#.

C. von Schweidler expansion amplitudes

The amplitudesHab
(1)(q) in Eq. ~6! are the most importan

parameters quantifying the dynamics in a time interval wh
the correlators are close to their plateaus. The upper pan
Fig. 13 exhibits a set of representative results. It compa
the amplitudesha

(1)(q) of the normalized master function
Caa(q, t̃ )/Saa(q) obtained from the analysis of the simula
tion data for thed50.60 mixture with the correspondin
quantities calculated within MCT. For the quantitative com
parison, a scale factorShas to be adjusted since the arbitra
ness of the time scalet implies an arbitrariness in the pre
actort2b of ha

(1)(q)5Haa
(1)(q)/Saa(q). Theha

(1)-vs-q curves
exhibit a subtle structure. WhilehA

(1)(q) has a maximum for
qdA'5.7 followed by a minimum forqdA'7.4—i.e., for a
wave vector near the structure-factor peak position—hB

(1)

3(q) increases monotonically to a maximum forqdA'7.4.
While hA

(1)(q) increases forqdA.7.4 monotonically to a
maximum for qdA'11, hB

(1)(q) exhibits a sharp minimum
for q slightly above 7.4 before it also reaches a maximum
qdA'11. For qdA.11, hB

(1)(q) decreases monotonically
while hA

(1)(q) has a minimum forqdA'12.7 and then exhib-
its a broad maximum. These features are reproduced by
MCT results. The MCT results agree with the data on a 1
level, except for theB amplitudes forqdA near 10, where
there are 20% discrepancies.

FIG. 12. MCT plateau valuesf c(q) for the one-componen
hard-sphere system, calculated with the simulated structure fa
~solid line!, with the Percus-Yevick approximation~dashed line!,
and with the Verlet-Weis expression forS(q) ~dash-dotted line!.
The values forqd,5 based on the simulated structure factor a
unreliable and have been cut off in the figure.
5-10
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The amplitudes ha
(2)(q), which describe correction

to von Schweidler’s law Caa(q, t̃ )/Saa(q)5 f aa
c (q)

2ha
(1)(q) t̃ b, exhibit a zero at some wave vectorqa* . For q

,qa* the amplitudes are negative, and forq.qa* they are
positive. These features and also the valueqB* '6 are repro-
duced by the MCT results. Notably, the MCT results f
qdA<12 still share some qualitative features with the resu
obtained from the fit to the simulation data—e.g., the sh
peak followed by a sharp minimum inhB

(2)(q) at qdA'7 and
the peak inhA

(2)(q) at qdA'11. Otherwise, one notices ser
ous discrepancies between the data and MCT results.
example, MCT predicts a particularly large range of valid
of von Schweidler’s law for density fluctuations of large pa
ticles for a wave vectorqdA'15. But the data analysis i
done best for this case by using a correction amplitude n

FIG. 13. Amplitudesha
(1,2)(q)5Haa

(1,2)(q)/Saa(q) for the von
Schweidler law expansion of the normalized density autocorrela

functionsCaa(q, t̃ )/Saa(q) for the d50.60 mixture. The dots and
circles are the results of fitting Eq.~6! to the simulation data for
a5A ~large! anda5B ~small! particles, respectively. The solid an
dashed lines are the corresponding results calculated from the M
equations. Scale factorsS515 andS2 are used for the comparison
of theha

(1)(q) andha
(2)(q), respectively, to account for the differen

time scalest used in the analysis of the simulation data and of
calculations.
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0.2. The identified discrepancies signalize the limitations
the determination of a correction amplitude for a
asymptotic law from data which cannot be chosen su
ciently close to the singularity.

D. Stretching exponents

The exponentb in Eq. ~8! provides a convenient overa
measure for thea-relaxation stretching. It quantifies in a
averaged manner deviations of thea-relaxation process from
a Debye law,f(t)}exp(2 t̃/t̃). The latter is the universa
result for the dynamics of a variable coupled to a white-no
field. Figure 14 shows that for 2,q,6, the exponent de-
creases considerably with increasingq. There is no differ-
ence between the fluctuations for large and small particle
this wave-vector interval, and the stretching is larger for
system with smaller-size disparity. For the wave vectors n
the structure-factor-peak position,qdA'7, the stretching of

n

T

e

FIG. 14. Stretching exponentsba(q) obtained by fitting the
Kohlrausch function, Eq.~8!, to thea-relaxation master functions
for the density autocorrelation functions of the two mixtures w
size ratiosd of the particles, 0.60 and 0.83. The arrows in the tw
panels mark the von Schweidler exponentsb, Eqs.~7!. The dots and
circles are obtained by fits to the simulation data for the big p
ticles,a5A, and the small ones,a5B, respectively. The solid and
dashed lines are the corresponding results obtained by fits to
solutions of the MCT equations.
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theB fluctuations of thed50.60 mixture is much bigger tha
the one of theA fluctuations:bB'0.5 vsbA'0.75. There is
an indication of the same phenomenon for thed50.83 mix-
ture. For larger wave vectors,bA is somewhat larger thanbB

for the mixture with large-size disparity. For thed50.83
mixture, bA equalsbB for qdA.8 within the noise of the
data.

For qdA,6, the MCT results overestimateba(q) by
about 10%. TheqdA'7 anomaly and also the large-q varia-
tion for thed50.60 mixture are described well by the theo
For the system with small-size disparity, MCT overestima
the qdA'7 anomaly, and there is a slight trend to under
timateba(q) for largeq.

For large wave vectors, the MCTa-process master func
tions approach the Kohlrausch law. In this asymptotic
gime, ba(q)5b @34#. Figure 14 illustrates that this theore
ical result is consistent with the simulation data.

E. a-relaxation time scale

The fit of Eq.~8! to the long-time parts of the correlato
yields the time scalest̃a(q) for the a processes up to a
overall scalet. The results for the fits allow for a compariso
of the scales for the fluctuations of the large particles w
those for the small ones. They also allow us to discuss thq
dependence of the relaxation times. In order to compare
scales from the data with those calculated from MCT, o
has to fit an overall scale factors.

Figure 15 exhibits the results for the two mixtures. F
qdA<6, t̃A(q)5 t̃B(q), and both scales decrease with i
creasing wave vectorq. These features are reproduced
MCT, but the theory overestimates the time scales seriou
For wave vectors near the structure-factor-peak positiont̃A
exhibits a pronounced maximum andt̃B has a sharp mini-
mum. The ratios of the scales are about 5 and 3 for
systems with large- and small-size disparities, respectiv
This feature is reproduced well by MCT. For thed50.60
mixture, t̃A(q) exhibits a maximum forqdA'13, while
t̃B(q) has a shoulder there. ForqdA>15, the relaxation
times decrease with increasingq. The time scales for the
large particles are somewhat larger than those for the s
particles. These features are reproduced qualitatively
MCT, but the theory underestimates the time scales b
factor of 2–3 for wave vectors above the structure-fact
peak position. For thed50.83 mixture, the scalet̃A(q) ex-
hibits a shoulder for 10,q,13 in accordance with MCT
The time t̃B(q) exhibits a minimum forqdA'12, while
MCT shows a kink there. Again, MCT underestimates
t̃a(q) for qdA>10.

Let us consider the variation of thea-relaxation time
scales as functions of the packing fractionw. To this end, we
have determined a time scaleta(q,w) for this process by
arbitrarily choosingfaa„q,t5ta(q,w)…50.1, for those val-
ues ofq where the plateau values are still appreciably lar
than 0.1. Equation~3! formulates the scale coupling of th
MCT results. While the time scales of twoa processes—say
t1 and t2—diverge for vanishing distance parameter«
5(wc2w)/wc, the ratiot1 /t2 is a smooth function of«. For
example, lett1 and t2 refer to thea processes of the cor
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relator fAA(q,t) of the d50.60 system forqdA510 and
qdA55, respectively. If« increases up to about 0.05,t1 /t2
decreases linearly with« by about 4%. The simulation result
behave similarly, as shown in the upper panel of Fig. 16
the packing fraction increases from 0.50 to 0.605,
a-relaxation time scales of the density-fluctuation correlat
increase by more than three orders of magnitude. Still,
three representative ratios shown for the scales vary by
than a factor of 2. Hence the scale-coupling predictions
verified on a 10% level for the three ratios shown in t
upper panel of Fig. 16 by the open symbols. These exam
are representative for density-fluctuation scales with interm
diate and large wave numbers. If one of the wave numb
decreases to small values, the violation of the scale coup
becomes larger, as is demonstrated by the solid symbo
Fig. 16. The diffusivityD is proportional to the inverse of th
a-relaxation scaletD of the mean-squared displacemen
Hence, a (t3D)-vs-w diagram demonstrates the coupling
the scales for the processes described byt and that for the
diffusivity. The lower panel of Fig. 16 shows the results f

FIG. 15. a-relaxation time scalesta(q) obtained by fitting Eq.
~8! to the data~symbols! and MCT results~lines!. The coding is the
same as used in Figs. 13 and 14. A multiplication factors is applied
to the MCT results in order to account for the different time sca
relative to that used for the data.
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thed50.60 system. Heret refers to the scale for the densi
fluctuations of theA particles and theD are the simulation
data for theA-particle diffusivities@11#. The scale coupling
holds for«>0.05. However, approaching the transition po
more closely, contrary to the MCT results, the scale for
diffusivity decouples from that for the density fluctuation
The diffusivity does not decrease with decreasing« as
strongly as 1/t. The results of our simulations for thed
50.83 system behave similarly. The described decouplin
in qualitative agreement with the behavior found earlier
the simulation results of a binary Lennard-Jones system@7#
and for a model for water@35#.

MCT predicts a power-law divergence in the asympto
limit of vanishing « for the common scalet in Eq. ~3!: t
}«2g. The exponentg is determined by the von Schweidle
exponentb @16#. The valueb'0.44 used throughout the pre
ceding discussions impliesg'3.0. Figure 17 demonstrate
this property for the MCT results fortA(q) for three repre-
sentative wave numbersq in the form of a rectification dia-
gram. In agreement with typical results for the simple H
@32#, the asymptotic description holds well for« up to about
0.05, and there appear deviations ifw differs from wc by
more than 5%. Analogous rectification diagrams for t

FIG. 16. Ratio ofa-relaxation timeta(q) ~upper panel! and
product ofa-relaxation times with the large-particle diffusivityD
5DA ~lower panel! for thed50.60 system as functions of the pac
ing fractionw ~see text!. The lines are guides to the eye.
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simulation data are shown in Fig. 18. Linear extrapolatio
of the data to largew for three wave numbersq yield esti-
mates for the critical packing fractions:wc(d50.60)
50.60660.001 andwc(d50.83)50.58560.001. The recti-
fication curves for the diffusivity relaxation times for bot
types of particles are included in the figure asD1/g-vs-w
plots. The data seem to follow the power-law predictions,
lead to slightly different estimates ofwc, also depending on
the speciesa5A,B. For thed50.60 system, we getwDA

c

'0.609 andwDB

c '0.619, while for thed50.83 system,

wDA

c '0.588 andwDB

c '0.590. The decoupling of the diffusiv

ity scales from the ones for the density fluctuations m
tioned above yields this overestimation of the critical pac
ing fractions. Let us emphasize that the described estimat
of wc have been done with the bias of a given exponeng
53.0. An unbiased three-parameter fit of the scale as a fu
tion of w by the formulat5C(wc2w)2g suffers from cor-
relations between the fit parameterswc andg. Indeed, such
fits to the diffusivities of the two species lead to differin

FIG. 17. t21/g with g53 as a function of the packing fractio
w. The t are thea-relaxation times for the large-particle densit
fluctuation correlatorsfAA(q,t) calculated from the MCT equa
tions, defined byfAA(q,t)50.1. The wave numbersq are 10.2
~diamonds!, 7.4 ~squares!, and 5.0~circles!. The dotted lines are the
asymptotic lawst21/g}(wc2w) with wc(d50.60)50.548 and
wc(d50.83)50.545.
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exponentsg @11#, in disagreement with MCT. A similar resu
has also been found in a simulation of a binary Lenna
Jones mixture@7#. Figure 18, however, shows that on th
basis of our simulation data, one can, given the restric
range of validity of the asymptotic law, not distinguish b
tween these differentg values. Note that the largest discre
ancy, either ing or in wc, emerges for theB particles in the
d50.60 system. Unbiased fits lead to larger uncertainties
wc, since a decrease of the fit parameterwc can partly be
compensated by a decrease of the fit parameterg. One could

get the crossing points of theD1/g8-vs-w curves closer to tha
of the t21/g-vs-w curves in Fig. 18 if one were to use som
g8,g. Such formulation of the decoupling phenomenon
suggested by Fig. 16, since the increase inD3t for w in-
creasing above 0.58 can be fitted by (wc2w)x, x5g82g
,0.

A comparison of Figs. 17 and 18 leads to two questio
which we cannot answer. Why is the range of the distance«,
where the power-law asymptote describes thea scales, so
much larger for the simulation results than for the MCT s
lutions? Why do the deviations oft21/g for larger« from the

FIG. 18. t21/g with g53 ~left scale! as function ofw. Thet are
the a-relaxation times for the large-particle correlation functions
wave numberqdA510 ~diamonds!, 7 ~squares!, and 5 ~circles!,
defined byfAA(q,t)50.1. The upper and lower triangles areD1/g

~right scale! for the diffusivities of the small and big particles, re
spectively. The dashed lines are linear interpolations of the data
largew.
01150
-

d

r

s

,

-

small-« asymptote have a different sign for the simulati
results than for the MCT solutions?

IV. a-PROCESS SHAPE FUNCTIONS

The preceding parametrization of the correlation functio
shows that there is no universal master function for
a-relaxation processes. For example, the stretching of
density-fluctuation autocorrelation functions for the lar
particles generally differs from the one for the small pa
ticles, and it depends on the wave vector of the fluctuatio
It is a challenge for a microscopic theory to describe
a-process shape functions for different probing variabl
Figures 19 and 20 present our simulation results for the
mixtures under consideration for four representative wa
vectors in comparison with the MCT curves. All results a
rescaled by the plateau values and by the time scales
cussed in Sec. III. The data are shown for two packing fr
tions in order to document the asymptotic regime of valid
of the superposition principle. The MCT master function
complemented by a curve for some smallwc2w, in order to
indicate the effect of preasymptotic corrections to t
a-process asymptote.

Figure 19 shows that, typically, the decay of the corre
tors of thed50.60 system from 90% to 5% of their respe
tive plateau values is stretched on a time interval of ab
three decades. With two exceptions, this decay is descr
well by the MCT master functions for thea process. The first
exception is theAA correlator for qdA57.5 for rescaled
times t'43103. Here the data decay less rapidly as t
exponential long-time tail obtained by MCT. The second e
ception concerns theBB correlator for qdA510 and qdA
512.5. Here the data fall on the master functions only
such long times, where the correlator is below 70% of
plateau value. But the MCT results for (w2wc)/wc'
20.015, which are added in rescaled presentation as s
lines in Fig. 19, exhibit the same phenomenon. The rea
for this is the large size of the critical amplitudehB

(1)(q) for
these wave vectors; cf. Fig. 13. They cause particularly la
preasymptotic corrections to thea-scaling law near the pla
teau. Thus the specified exceptions are not a defect of M
but a confirmation of a subtlety of that theory.

The test of thea-process shape functions ford50.83,
Fig. 20, exhibits a series of problems. Deviations of the d
from exponential decay for the very long rescaled timet
'53105 occur forqdA55 andqdA57.5 for all three corr-
elators. TheAB correlator forqdA512.5 shows more stretch
ing than the MCT solutions. Furthermore, theBB correlators
for qdA510 andqdA512.5 miss the plateau. However, th
latter is an obvious mistake of the data analysis, which co
be eliminated by correcting the plateau value. We did
carry out this correction in order to emphasize that 5% err
in the determination of the plateau values are almost
avoidable in an unbiased data analysis. The reduction of
scaling regime for theBB correlator forqdA510 and 12.5
occurs for thed50.83 system as discussed above for thed
50.60 system, and it can be explained in the same man

The most severe problem exhibited by Fig. 20 is the f
lowing. Even for«'0.02, in the simulation, several correla
tors stay within a 5% interval around the plateau for tim

t

or
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intervals as large as 2.5 decades or more. This holds, e.g
the AA correlator for qdA57.5, for the BB correlator for
qdA55, and for theAB correlator forqdA57.5 and 10. The
solid lines show that this feature cannot be explained
MCT. Even if the distance parameter«5(wc2w)/wc is as
small as 1022, the calculated correlators cross their platea
much steeper than exhibited by the simulation data.

V. CONCLUSIONS

Molecular-dynamics simulations have been presented
two dense binary mixtures of hard spheres. One mixt
deals with a size ratiod50.60 for the two-particle specie
and the other withd50.83. The first system is representati
of the situation where mixing stabilizes the liquid state a

FIG. 19. a master functionsf̃ab(q,t)5fab(q,t)/ f ab(q) for
the d50.60 mixture (a5A refers to large particles,a5B to small
ones!. The circles and triangles represent the simulation data
w50.595 and 0.59, respectively, scaled as in Fig. 5. The solid l
are MCT results for the master functionCab(q,t)/Fab

c (q) and a
solution for a distance«5(w2wc)/wc'20.015 from the critical
point. Time has been rescaled for all curves in order to match tha
time scale of the simulation data atqdA55, ab5AA. The results
refer to wave vectorsqdA55, 7.5, 10, and 12.5~from top to bot-
tom!, where the curves for differentq have been shifted vertically
by 0.3 for enhanced clarity.
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the other of the one where mixing stabilizes the glass@11#.
The data demonstrate the evolution of a two-step relaxa
scenario with increasing packing fractionw, Figs. 3 and 4,
which is similar to the one detected previously for other s
tems. In this paper, a comprehensive analysis of the sec
relaxation step, usually referred to as thea process, is pre-
sented. It deals with the decay of the correlators from so
plateau to zero. The process was identified as that part o
correlators exhibiting the superposition principle predict
originally by mode-coupling theory, Fig. 5. This pattern
exhibited by all our simulation data except for the correlat
for the small particles of thed50.60 system for wave num
bers near the structure-factor-peak position and this for
two largest densitiesw50.600 and 0.605, Fig. 5. This viola
tion of the superposition principle might indicate that MC
ignores relaxation processes which become important c
to the liquid-glass transition point in this mixture. A poss
bility that we cannot exclude, however, is precursors of cr
tallization or phase separation.

The simulation data for thea process have been fitted b
Kohlrausch functions and by the von Schweidler expansi
Eqs. ~8! and ~6!, respectively. These fits provide two es
mates of the plateau values. Usually, these estimates agre

r
s

FIG. 20. As in Fig. 19, but ford50.83 andw'0.582~circles!
andw'0.575~triangles!. The solid lines are the theoretical mast
curve and a curve with«'20.01.
5-15
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a 5% accuracy level, Fig. 6. Analyzing the MCT results w
Kohlrausch functions, one gets plateaus which agree with
correct values within 5%, Fig. 7. This means that both m
tioned fit procedures yield reliable estimations for the p
teaus, within the indicated uncertainty level. These plat
values exhibit a remarkable structure as functions of
wave numberq. There are qualitative differences in th
structure of the plateau functions referring to theA particles
and theB particles. And there are quantitative differenc
between the results for the two mixtures. All these results
described quantitatively by the MCT results except for so
rare cases, where data and theory differ by up to 10%, F
8–11.

MCT requires the structure factors as input for the eq
tions of motion. The MCT results reported in this paper a
based on the simulation results for the studied systems,
1. Replacing these structure factors by their Percus-Yev
approximation results, MCT still reproduces all qualitati
features of the mentioned plateau functions. However,
systematically underestimates the data. The error of the M
results caused by the specified erroneous structure info
tion can be as large as 20%, Figs. 8 and 9. These finding
not deal with mixture-specific effects. They apply also f
the simple hard-sphere system, Fig. 12.

The stretching of thea processes is parametrized by t
Kohlrausch exponentsba(q), and the relative time scale
are quantified by the scalesta(q). These quantities vary
with wave vector and they depend on the indexa for the
species,a5A,B. MCT reproduces theba(q) reasonably,
but there occur discrepancies up to 20%. The trends for
ta(q) are reproduced by the theory, but there occur la
quantitative errors, Figs. 14 and 15.

Writing the von Schweidler expansion, Eq.~6!, for the
diagonal correlators in the formCaa(q, t̃ )5Faa

c (q)$1

2@ha
(1)(q)/Faa

c (q)# t̃ b1@ha
(2)(q)/Faa

c (q)# t̃ 2b%, one notices
that ha

(1)(q) defines a relative time scalet̃a(q)
5@ha

(1)(q)/Faa
c (q)#21/b while ha

(2)(q) specifies the shape
The amplitudesha

(1)(q) are reproduced reasonably by MC
but there occur errors up to 20%. MCT describes the tren
the q and species dependence of the correction amplitu
ha

(2)(q), but there are large discrepancies between data
theory, Fig. 13.

The contradicting conclusions concerning the descript
of the a-process parameters arrived at in the preceding
paragraphs indicate that the described problems are one
the fitting procedures. Indeed, Figs. 19 and 20 show
MCT describes thea-process master functions well.

Qualitative discrepancies between MCT and simulat
data concern the ratio of the time scalest(q) for the
a-relaxation processes for the density fluctuations of in
mediate wave numbersq and the time scaletD determining
the strong variation of the particle diffusivityD, D}1/tD . If
the packing fraction of thed50.60 system increases from
0.51 to 0.605, logt(q) increases by 3.5, but logtD increases
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only by 3.0. The ratiot(q)/tD}t(q)D is practically con-
stant if w increases from 0.51 to 0.58; i.e., there is perfe
scale coupling within this density interval. But increasingw
further, the ratio increases by up to a factor of 4, Fig. 1
MCT overestimates the trend to particle localization near
glass transition point. This overestimation oftD seems to be
the reason why the calculated relaxation timest(q) exceed
the data for smallq, as is demonstrated in Fig. 15 forqdA
<5. The longest time scale forq→0 is that for the collective
diffusion process: tcoll(q)}1/@q2Dcoll(q)#. The coupling
of this mode to the density fluctuations causes the diverge
of t(q) for q→0. One should expect that an underestimat
of the tagged-particle diffusivityD implies the same mistake
for the collective diffusivity Dcoll. This explains why the
decoupling oft(q) and t(q8) increases ifq8 decreases to
small values, as shown by the solid symbols in Fig. 16.

The increase of the time scalest(q) with increasing pack-
ing fraction is described well by the asymptotic power la
for the MCT results, Fig. 18. However, the mentioned sc
decoupling implies that extrapolation to zero of th
(1/tD)1/g-vs-w graphs leads to an estimation of the critic
packing fractionwc, which exceeds the value obtained fro
the @1/t(q)#1/g-vs-w extrapolation by 0.6%@11#.

Finally, a feature of our simulation data should be emp
sized which concerns the time regime where the correla
cross their plateaus. It deals with times larger than the o
describing the short-time transient, but preceding the reg
of validity of thea-relaxation scaling law. Within MCT, this
regime is described for large densities by theb-relaxation
scaling laws. In this respect, the MCT results for the ha
sphere mixtures behave as the ones for the simple h
sphere system@18#. Figure 20 shows, however, that the co
relators for thed50.83 system are close to the plateaus
time intervals exceeding the ones for corresponding M
results by more than an order of magnitude. Hence,
b-relaxation theory cannot account for the simulation d
dealing with the plateau crossing. In that respect our simu
tion data for the hard-sphere mixture are also qualitativ
different from the ones measured for quasibidisperse h
sphere colloids@15# and from the simulation data for th
binary Lennard-Jones mixture@9#.
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