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Recent molecular dynamigMD) simulations of liquid silica, using the “BKS” modé§Van Beest, Kramer,
and van Santen, Phys. Rev. Lef4, 1955(1990], have demonstrated that the liquid undergoes a dynamical
crossover from super-Arrhenius, or “fragile” behavior, to Arrhenius, or “strong” behavior, as temperasure
decreased. From extensive MD simulations, we show that this fragile-to-strong cro&s8@ercan be con-
nected to changes in the properties of the potential energy landscape, or SRE&;®f the liquid. To achieve
this, we use thermodynamic integration to evaluate the absolute free energy of the liquid over a wide range of
density andT. We use this free energy data, along with the concept of “inherent structures” of the PES, to
evaluate the absolute configurational entr&yf the liquid. We find that the temperature dependence of the
diffusion coefficient and of, are consistent with the prediction of Adam and Gibbs, including in the region
where we observe the FSC to occur. We find that the FSC is related to a change in the properties of the PES
explored by the liquid, specifically an inflection in tiledependence of the average inherent structure energy.
In addition, we find that the higl behavior ofS. suggests that the liquid entropy might approach zero at finite
T, behavior associated with the so-called Kauzmann paradox. However, we find that the change in the PES that
underlies the FSC is associated with a change inTtldependence o that elucidates how the Kauzmann
paradox is avoided in this system. Finally, we also explore the relation of the observed PES changes to the
recently discussed possibility that BKS silica exhibits a liquid-liquid phase transition, a behavior that has been
proposed to underlie the observed polyamorphism of amorphous solid silica.
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[. INTRODUCTION strong crossover{FSC may be a general mechanism under-
lying the emergence of strong behavior, and has since been
Liquid silica is the archetypal “strong liquid,” that is, a studied for a number of systerf]. We note that a crossover
liquid whose viscosityn and other measures of relaxation from a super-Arrhenius to Arrhenius dynamics may be a gen-
follow closely an Arrhenius behavior In~1/T [1,2], where  eral feature of liquids around the so-called mode-coupling
T is the temperature. For most liquids,increases signifi- temperaturd?], as is appearing to emerge in recent numeri-
cantly faster than an Arrhenius law &sapproaches the glass cal studies, thanks to the larger dynamical window made
transition temperaturd, these liquids are referred to as available by current computational pow@-10. However,
“fragile.” the T region where equilibrium simulations can be performed
Strong liquids such as silica are important as glassis still limited, and does not allow for a precise statement of
forming systems. In a strong liquidy varies less rapidly the T dependence below the crossover temperature, as re-
with T near T, compared to a fragile liquid. As a conse- quired to make final contact with models for the glass tran-
guence, a strong liquid can be held in a desired range of sition [11-13.
over a wider range of than a fragile liquid. As every glass- Second, a growing body of computer simulation research
blower knows, this makes silica-based systems easier to méaas established the importance of the potential energy land-
nipulate just abovely than any other commonly available scape or surfacéPES for understanding the dynamics of
liquid. liquids nearTy [9,14-23. The PES refers specifically 14,
The fundamental origins of strong behavior in glass-the instantaneous potential energy hypersurface of the sys-
forming liquids is also a subject of continuing interest. Wetem, expressed as a function of th 8oordinatesg; that
note in particular two recent developments. First, computespecify the positions of th&l atoms of the system; i.elf
simulation work of Horbach and Ko[8] using the “BKS”  =U(0;,0s, ... ,0sn)- The properties and topology of the PES
model of silica[4] has demonstrated that at high the  have been carefully studied in the above cited works, pre-
model liquid exhibits fragile behavior, and then crosses ovedominantly in the case of fragile liquids, resulting in impor-
to a regime of strong behavior upon cooling. The work of Latant insights into the equilibriurf26] and out-of-equilibrium
Nave and coworkers, based on instantaneous normal mod27,28 thermodynamics of supercooled states, and the con-
analysis, has shown that such a crossover is connected tonaction between thermodynamics and transport properties
progressive reduction in the number of diffusive directions in[21,29. However, the relationship of the PES to the dynamic
phase space accessed by the syqt&mSuch a “fragile-to-  properties of strong liquids is less well understood. In this

1539-3755/2004/69)/04150313)/$22.50 69 041503-1 ©2004 The American Physical Society



SAIKA-VOIVOD, SCIORTINO, AND POOLE PHYSICAL REVIEW E69, 041503(2004)

paper, our focus is to clarify this relationship, and in particu- TABLE I. Potential parameters used in this work for bdthys

lar, to determine if the FSC proposed for liquid silica can beand ®;. Also required to specifybgxs are «=2.5 nnt, Ry

connected to properties of the PES. =0.77476 nmR;=1 nm, gs;=2.4e, and go=1.2, wheree is the
Following previous studies of fragile liquids, our ap- charge of an electron.

proach is to apply the “inherent structure” formalism of Still-

inger and Webef15] to molecular dynamicéMD) computer 4~ Si-Si Si-0 0-0
simulation data obtained for the BKS model of liquid silica. standard BKS parameters
In this approach, the PES is partitioned into basins associated
with thepIFc))caI minima of [12—1@. Each minimum corre- Aul(1079) 0 28.845422 22250768
sponds to a particular configuration of atoms and is called afu("M ™) 0 48.7318 27.6
inherent structurglS). We denote byes the average poten- C,.,(10722J nnf) 0 —2.1395327  -2.8038308
tial energy of the I1S’s associated with the basins sampled by dgs: short range parameters
the equilibrium liquid at a givel and volumeV. An IS and ”
its energy can be obtained in computer simulation by carry-fw(lcr ) 0 4.963460 16839685
ing out a local minimization ot/ starting from an equilib- ~ Zus(NM 0 0.1313635  0.1779239
rium liquid configuration. dgks: switching function parameters

As we will describe in detail below, the evaluation ey,
combined with free energy calculations, allows us to@éalcu-DW(l(Tll:J/n"?) ~235.3529 1220161 ~53.16278
late the configurational entropyS, of the system E,.,(107° 3/nnf) -117.7993 61.33742 =26.25876
[9,18,20,21,2% S. determines the number of distinct con- F.,(1079J/nn¥)  -23.83785  12.33446  -5.415203
figurations explored by the system, in this case the basins of ®; parameters

the PES. In a liquid, diffusion is associated with the explo-
ration by the system of different basins of the PES. The wori»(kJ/mMo) 23.0 32.0 23.0
of Adam and GibbgAG) predicts a relationshigin the low  Su(NM 0.33 0.16 0.28
T limit) between the characteristic relaxation time of the sys-
tem andS; [30]. The AG relation has been recently derived | _ ) . ) ) )
in a novel way[12]. Generalizing the AG relation to the lations, including the interaction potential used. Section IlI

diffusion coefficientD, the AG relation can be written as  Provides a detailed description of the techniques we use to
evaluategs, S, and the total free energy of the liquid. Sec-

p( A > tion IV presents the results of these calculations and provides
- ﬁ ,

D
— = up EX 1) a discussion of their implications.

T

where ug andA are presumed to be constant with respect to II. MOLECULAR DYNAMICS SIMULATIONS
T. In the context of liquid silica, an interesting test of the
robustness of the AG relation is possible by checking if Eq.
(1) is obeyed throughout the region in which the FSC occurs
If so, the AG relation then provides a basis for connectin
transport behaviotquantified byD) to the properties of the

PES(quantified byS; andeg).

We carry out MD simulations at constavit Most of our
results are for a system of 444 Si atoms and 888 O atoms. A
few simulations are carried out with a reduced number of
gparticles(333 Si and 666 O atomén order to access longer

physical times scales. Our MD simulation program is based
In a recent lettef31], we showed that liquid BKS silica on theMDcspczsour_ce codg32]. We also rt_aproduce a sub-
behaves in a manner that allo@sto be calculated fronas, set of our results using a code we ha\{g written independently
and thatD ands, are related as predicted by the AG relation.pf mbcspPc2 Note that all molar quantities are reported here

.. o in moles of atoms.
We were thereby able to show that the FSC in liquid silica is Our model of atomic interactions in silica, denoted here as

associated with a change in tiedependence o, i.e., a . : T
: dpks, is based on the BKS potential, modified in two ways.
change in the nature of the PES explored by the system aSFirst, the BKS potential energy for both the Si-O and O-O

decreases. We also found that this observation in turn halrsneractions diverges unphysically to negative infinity at suf-
implications for other behavior observed in BKS silica, in 9 pny y 9 y

particular, the possible occurrence of a liquid-liquid transi—fICIentIy small distances, allowing "fusion” events to oceur

tion, and the behavior of the liquid as related to the so-calle&lurm_g| simulation of highl systems. To prevent thiskes
Kauzmann paradox. consists of the standard BKS potential plus a short range
To reach such conclusions, extensive MD simulations aréerm given by

required over a wide range &f andT, to calculate thermo- o \30 (5 \6
dynamic and transport properties, as well as careful exami- 46ﬂy[<—r’f—v> - (—r’ﬂ) }
nation of the IS properties. In addition, the absolute free . .
energy of the liquid must be evaluated. In the present workwherer;; is the interatomic separation between an atooh
we provide a detailed description of the methods used tepeciesu, and an atonj of speciesv. To choose the param-
obtain the results summarized in RE31], and also provide eterse,, and o, (see Table)l we first identify the value
an expanded analysis and discussion of the results. This worlg =r;; at which the inflection of the standard BKS potential
is organized as follows. In Sec. Il we describe our MD simu-occurs, below which the divergence to negative infinity de-

2
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velops. The parameters are chosen so that the new potentiading ®g¢g differ from those obtained using the standard
increases monoEonicaIIy, and without inflections,rgsde-  BKS potential. We find that the differences are approxi-
creases for; <r;;; and so that the differerzce between the mately independent of along isochores. AT=4000 K and
new and the old potentials is small fof >r;;. Similar ap-  p=2.3072 g/cm, we find that ®gs gives a P value
proaches have been used in other wgi3,34]. 0.25 GPa greater than the standard BKS potential, lrisl

The second modification to the standard BKS potential.5 kJ/mol higher. At the sanieandp=3.8995 g/cm, the
included in ®gyg relates to the treatment of longer range respective differences are 0.9 GPa and 4.4 kJ/mol higher.
interactions. As is common in implementations of the BKSThese are not large differences on the scale of our measure-
potential, we calculate the long range contributions to thements, and the qualitative behavior of the system is, as
Coulombic potential energy using the Ewald summationshown below, consistent with that found in other studies
technique, with the dipole surface term set to Zg&%. The  based on the BKS model.
reciprocal space summation is carried out to a radius of six For the free energy calculation to be described below, we
reciprocal lattice cell widths. In this approach, the real spacelso perform MD simulations using a binary Lennard-Jones
contributions to the BKS potential are usually cut off discon-(LJ) potential, in which two atomic speciéalso labeled “Si”
tinuously at a specified distance, often chosebh /& where  and “O”) occur in the same 1:2 proportion as in $iQhe
L is the length of an edge of the simulation cell. However,LJ pair potential is of the form
we study systems over a wide range of dengityand we 12 6
desire a potential for which the cutoff is independentLof ¢LJ=49W[<§”—V> - (§u_v> } — shift (6)
Also, for accurate determination of inherent structures, we Fij Fij -
wish to remove discontinuities in the potential energy arisin

rom cutffs, and to emove any dependence 1OM IOM9. mine 5o (i 2,0, Thése potenial param-
g ’ eters are given in Table I.

To achieve these goals, instead of discontinuously cutting In order to obtain equilibrium properties we use the fol-

off the real space potential contributions, we introduce Qowing procedure. We equilibrate the liquid using velocit
switching function. At a fixed distancBs=0.77476 nm the 9p - q q ing y

: rescaling for a timer long enough to allow Si atoms to
real space terms of the standard BKS potential are replace p 0.2 f anifi | 0B of
by a fifth degree polynomial that tapers smoothly to zero : (;ﬁehan ag_erage 0 d fnm, z?]ter signi |<;]a_mt re a1>_<rz1at|(_) 0 |
over the rangeR,<r, <R,, whereR.=1 nm. The polyno- an ave disappeared from the system history. The interva

mial coefficients and the value &; are chosen so that the of ve!ocity rescaling varies from 10 to 1900 time steps de-
potential is continuous up to and including second deriva—p(indlng onT. The tlme'step for f"‘” runs is 1 fs,' except fo'r
. _ o . T=7000 K, where the time step is 0.5 fs. Velocity scaling is
tives at bothr; =Rg andr;; =R;; and so that the potential and . X

its first two dJerivatives :':\re monotonic f&,<r;; <R;, and then turned off and the system is evolved in a constant
go to zero agj;—R.. These choices depend”on th’e Ewald(N’V’E) ensemble for af least ¥0(E is the total energy.

parameter that occurs in both the real and reciprocal spaceUSIng this approach, there is no appreciable drifEiduring

contributions to the potential energy. For &ll we choose It_k;)e_ constan(tl_\tl_,V,E) phase, over which we calculate equi-
a=2.5 nm! to ensure sufficient convergence of the potentialI fium guantties.

energy in the reciprocal space summation for the densitiet .For thedlowetstT_ where relaxation II'S slo]:/ve;,t we modnfy
studied. The valu&k.=1 nm where the switching function IS procedure 1o Improve our Ssampling of pnase space. we

reaches zero is chosen to include third Si-Si neighbor inter(-:ondUCt up to five independent runs, with the constant

actions at most densities studied (N,V,E) phase of each run lasting at least Zhe reported

The real space contribution tbgys, denoted here ag, is properties(including T) are averages over both time anq over
therefore a piecewise defined function of the form the independent runs. Thus averages for Ibwtate points
are also calculated over a total ofA4 @vhile at the same time
the danger of an undetected trapping in an out-of-equilibrium
6 state is reduced through comparison of the independent runs.
% 6 U The den§ities of the ispchores_simulated are_givgn in
+ e [(g,ﬂ) _ (M) } 3) Table I, while the state pomts stud|ed. are shown in Fig. '1.
I rij ’ Note that we have studied the isochore at density
2.3566 g/cmin order to compare with previously published
- — _p)Y5 _R) work [3]. The simulations along this isochore are those that
PR <Tij <R = D1 = Re)® + B ~ Re) involve only 999 atoms; all others model 1332 atoms.
+F (1 —R)® (4)

9The pair potential is cut off at;=2.5s,, and N is deter-

a9, erfcar;) & . Cu
¢(rij = RS) = Zt—ru_ + A,uVe Berj + _GL
ij

Ill. CONFIGURATIONAL ENTROPY CALCULATION

#(r;=R) =0, (5 n thi .

n this section we calculat§, from knowledge ofe,g and
where erf¢x) is the complementary error function aeds  the vibrational properties of the basins of the PES. Similar
the permittivity constant. The parameters are given incalculations have been carried out for wdt2@], binary LJ
Table I. mixtures[21], and orthoterphenyjl9].

Note that the above modifications have the consequence We begin by writing the Helmholtz free enerdyof the
that the average potential energyand pressur® obtained liquid along an isochore g4.8]
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TABLE II. Isochore volumes, densities, and simulation box T es
sizes studied in this work. All runs model 1332 particles, except for S(T) =&(To) + ?ﬁdT'- 9
isochore H, where we model 999 particles. The reference volume To

Vo corresponds to isochore |. S(Ty) is the configurational entropy at a referenteT,.

Equation (9) shows that the behavior d&(T) is con-
trolled by e(T). The work of Sastnf21] and otherg§18,24

Label  V(cm*/mol) V (cmP/g) p (g/cn?) L (nm)

5.1359 0.256443 3.8995 2.2479818 has shown that for fragile liquidg,s decreases, and is nega-
5.6423 0.281722 3.5496 23195561 lively curved, asT decreases. In accordance with £8), S
6.1486 0307012 3.2572 2 3869665 for fragile liquids glsq de_c_rea;es, anq is neg_atwely curved, as
T decreases. If liquid silica is fragile at high and then

A

B

C

D 6.6550 0.332292 3.0094 24507704 o\ hoses over to strong behavior at lowemwe expect that on
E 7.1614 0.357577 2.7966 2.5114146 cooling, bothgg and S, will initially behave as in a fragile
F 7.6677 0.382863 2.6119 2.5692635 Jiquid. However, from Eq(1), strong behavior implies that
G 8.1741 0.408147 2.4501 2.6246184 S (and hence) is constant with respect 0. Therefore, if
H 8.4984 0.424340 2.3566 2.4157510 the liquid passes from fragile to strong behavior Tasle-

I 8.6804 0.433426 23072 26777320 Ccreases, the implication is theg(T) will decrease withT at

high T, and then pass through a point of inflection, consistent
with the approach to a constant at |Gw

F=es(T) - TS(as(M) + fupn(T,es(T)). @) To obtainS(To) we write

. . . o S(To) = S(To) = Sin(To), (10
This expression separatds into two contributions: one _ o _
stemming from the fact that the liquid samples different ba-Where STo) is the total liquid entropy and(To) is the
sins of the PES, and one arising from the properties of th&ntropy contribution arising from the vibrational proper-
basins themselvesS, is the entropy contribution resulting ties of basins in the PES. The vibrational part has both a
from basin degeneracy, i.e., it counts the number of basingarmonic and an anharmonic contribution, which we cal-
associated with an inherent structure enezgy18,21]. The  culate separately
vibrational part of the free enerdfy;, arises from the free

energy of the basins. We note that the basin properties Sio(T) = Sharmd 1) + S T), (19
may change witle, e.g., the vibrational density of states where[36]
of a basin associated with logis may differ from that of -3
one with highegs. In equilibrium, F is minimized with R D ho;
respect toes and we obtain am™ \ & 1- I”ﬁ : (12)
aF 0S  afy and
E:O:l—T%+—ﬁg'b. (8 S
S S 1S anh
= | ———=-dT. 13
Sanh fo T 0T ( )

We will provide evidence below that the vibrational proper- _ ) ) o
ties of the basins do not change substantially from one IS thlereSiamis the entropy in the harmonic approximation of

another. In this caséf,,/dgs=0, and we may write the IS’s obtained at a givem. The set{w;} describes the
vibrational density of states of the IS{details below, A
10° ‘ ‘ . 8000 ‘ . . is Planck’s constant over®, R is the gas constant, arid
(@ ®) is Boltzmann’s constank,,, is given by
SISt A EanT) = E(T) = Enared T) ~ 15(T), (19
o« tre 6000 e ® o o o ° o o0 where E,,,m IS the harmonic contribution to the energy,
2 F Lt e e given by Epam=3RT(N-1)/N.
g : * . P * 4 e e v ®ee To obtaineg we select 100 equilibrated liquid configura-
Sy | e ' ot e |© tions over the course of the MD run, perform a conjugate
. L e oo : .; 4000/ ® o ® o o ooe gradient minimization[37] of ¢/, and then average the re-
L e v % e ‘., c o ® o o o o :' sults. As a stopping criterion for the conjugate gradient mini-
107 * :- 1 . o e s g I I: mizations, we specify a relative tolerance of 4 @long line
¢ . i . ! 3 minimizations and a relative tolerance of 1®between line
10° ' 3 , minimizations. In the case of isochore H our runs are the

‘ ‘ . 2000 ‘ . : '
5 8 4 8 o 5 8 A 8 8 longest, and so we average over 1000 configurations.

V (em*mol) V (cm’/mol) .
In order to evaluat&, and S,,, [using Egs(9) and(13),
FIG. 1. State points simulated in tk@ V-D and(b) V-T planes. ~ respectively we first fit average values afs and E,,j, to
All points give results for equilibrated liquids. polynomials inT, and then evaluate the required integrals
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60 i ' ' evaluateS,(T), up to a constant, fromg(T). To complete an
a0 | (@) 231 glem ] 1 evaluation ofS,(T), we need to estimate bot,,(T) and
20 — %ggﬁ ] S(T,) for each isochore to be studied, as described in the
0 ——- 7000K A following two subsections.
-20 1 1 L
400 2000 4000 6000 8000
= sl ® 30 glem’® ] A. Harmonic entropy of inherent structures
g 20 T —— 2500K 1 We define S, of the liquid as the average harmonic
< 10 T 3388& : entropy of IS’'s sampled from the liquid. When a liquid con-
oo figuration is quenched to its corresponding IS, it becomes a
10, 2000 4000 8000 sooo  mechanically stable solid, and is to a first approximation,
60 A : ' harmonic. To calculate the entropy of an IS in the harmonic
a0 [ (0) 390g/om - approximation, we require its vibrational density of states.
20 —— 2500K As each IS is an atomic configuration at a local minimum of
0 T AR ] the PES, we expand the expression forabout the local
20 , , , minimum:
0 2000 4000 6000 8000
T(K) NN Pu
U=es+ > 2 G q;- (15
FIG. 2. Test ofT dependence of basin shape. IS’s from thfee i=1j=1  9GiIq g=0g

and for three isochores, are rapidly heated in order to confine th
sampling to a single basin. Using velocity scalifigjs increased
from O to 7000 K over 100 fs. Each curve is an average over 1

ﬁere, the sefq;} specifies the Bl atomic coordinates, and
dhe notation §=q," denotes that the second derivatives are
runs. The curves for the same isochore are approximately the sam \l/qluated at t_he mlnlmum energy configuration. We then
indicating that the anharmonic contributions to the vibrational en- efine a Hessian matrix

ergy can be assumed, for the present purposes, to be the same for 1 PU

each basin. H. = ——
U Vmm, g g

(16)

analytically. TheE,,, fit is constrained so that &t=0, the R

value of E,,, and its first derivative are zero. This is consis- wheremy; is the mass of the atom associated with coordinate
tent with E,,, being a correction to the harmonic approxima-g;. Since the system is at a minimurd;; has eigenvalues
tion. {h;} all greater than zero, except for three zero eigenvalues
It is important to recognize that the expression$gf,in which account for the three independent translations of the
Eq.(13), and hence the estimation §f via Eqs.(9)14), is  entire system. These three eigenvalues are excluded in cal-
valid only under the assumption that the basin anharmonicity.ylating the harmonic entropy. The appearing in Eq(12)
does not change from basin to basin. To understand thigre defined asv.=Vh. We note that a particular Hessian
consider the expression f&q,in Eq. (14), from whichSun - matrix corresponds to an IS obtained from a liquid con-
is calculated. The terms contributing E),, are evaluated figuration at a certairl. It is this T that we use in Eq.
from equilibrium liquid properties. Yet, an implication of Eq. (12)
(14) is that an IS obtained from a liquid &&.g) 4000 K, '
when heated itself to 4000 K, will give a value Bf,, equal
to that obtained from equilibrium configurations at 4000 K.
However, an IS obtained from a liquid at 3000 K, when

We find, perhaps surprisingly, that the spectrunvpfioes
not change appreciably with along isochores. We plot in
Fig. 3 the quantity

heated to 4000 K will not necessarily yield the valuesgjf, 3N-3
found from equilibrium configurations at 4000 K, because QM= ——2> Inw, (17)
IS’s obtained from differenT may be in basins of different 3N-31i3

shape, and hence different anharmonicity. If the basin shape I .

does change witk, thenS, in Eq. (9) will be influenced by  (© Show that the contribution t§; from changes i) asT,

an additional contribution. Moreover, EGL4) would be in- ~ @nd hencee, is varied is negligible. This quantity is part
valid andE,,, would have to be obtained in a different way, ©f the expression fo§,,«{T). It captures the average qua-
possibly by a careful heating of individual basins obtaineddratic shape of a basin and hence determines any depen-
from the equilibrium liquid at differenT. Such heating ex- dence of§,;mon es. The plot showd) not to vary appre-
periments must be performed with care, as the system mustably with T, and we conclude that there is no
not diffuse out of the basin if accurate results are to be obeontribution toS; from f;,, at least not from the harmonic
tained. portion.

To test if basins associated with differehhave different To confirm this approximation, we show in Fig. 4 the
shapes, we carry out runs in which IS’s from differ@nand  variation of() with es. We find that the change ift can be
V are rapidly heated. We find th&,,, is the same for all as large asA{Q)=0.006 for variations ofes as small as
basins belonging to the same isochore up to Rigrig. 2.  Aes=5 kJ. This gives a contribution toéf,;,/ des, the last

Based on the relations justified above, we can evaluatterm in Eq.(8), of at mostRTA()/Aes=0.04. This supports
E.{T) andS,,(T) from a knowledge o5(T). We can also  our assumption thaif,;,/ des=0.
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. . ‘ ' ' 10™ . ' '
32,300 [-(8) I 3229 [\ (d) 1
I I 10" ]
32205 [ II ]
10 .
32,290 ' ' 10° L |
32210 [ () ‘ I 1 ®B# | 10° T
<
a I I C 0L |
32.205 E:{I I B =
oo | 1
32.200 !
i i 32.19 i 105 L i
32.152 [ (¢) 1
I I 10* 1
32147 gz I . 103 | i
1 1 il 1 1 2 1 1 1 Il
82145000 4000 6000 %214 g 6 7 8 9 10 10° 10’ 10° 10° 10* 10°
T(K) Vv (cm®/mol) V (cm’/mol)
FIG. 3. Q as a function ofT for (a) isochore A,(b) isochore D, FIG. 5. Isotherm of|P®| for the LJ fluid atT=4000 K. The

and (c) isochore 1.(See Table Il for the definition of the isochore ¢gig line is the fit to Eq(23) with M=8. The dashed line is the
labels) Also shown is the standard deviation about the mean valug,rye given by Eq(20). The data are shown on a log-log plot to
based on 100 samples. We note that a differenée af 0.01 yields simplify the comparison of the data to EQ0) at largeV. The cusp

a change in entropy of 0.24 J/mol K. For the purpose of this work,nearv=10 cn®/mol is due to the fact thakfX changes sign.
we therefore considef) to be constant along isochorgsl) Q(T

=4000 K) as a function ofV; this is the value ofQ) used in our . . .
As our starting point we use the analytic result for the

calculations. . . .
entropy of an ideal gas composed of two species of particles,
each with its own masg36]

B. Liquid entropy
. . . V [ 2amgkT\%2| 5
To exploit the AG relation, we require the absolute value Sc=Ngk)In| —| —5— + -

of S, not just changes i§, from one state point to another. Nsi h 2

To evaluateS,(Tp) in Eqg. (10) requiresS(T,), the absolute V [ 2mmokT\3?| 5

entropy of the BKS liquid, which we calculate via thermo- +Nokj In| = h2 2

dynamic integration starting from a system for which the

entropy is known exactly. -k In(27mVNgNo) . (18

For simplicity, we continue to label the two species as “Si”

32301 (2) 3.90 ' and “O.” Note thath is Planck’s constant, and that the
Stirling approximation has been employed in the derivation
32.206 E 1 of this result, i.e., I'N! =N In N=N+In(27N)"/2,
E}E} For the purpose of thermodynamic integration, we ap-
32991 , pro_ximate thi; iQeaI gas with a dilgte pinary LJ system in
322211 . which the stoichiometry of the species is the same as that of
(b) 3.01 Sisggd O in our silica simulations, i.eNg;=444 andNg
C 32206 - EJE ] We equilibrate the LJ system at a referenteT,
Eﬂ E E =4000 K over a range ofV from a referenceV=V,
=8.6804 cri/mol to V=173610 cr/mol. Denoting the ref-
82.201 ' erence state point 4f,,V,) as “‘C,” the entropy of the LJ
32,152 . S )
(©) 2.31 E liquid S ; at C can be written
w %) ! E E 5,025+ 291 "erav. 9
EE T T Vo
32,142 : ]
187 186 185 Se(C)=117.236 J/mol K is calculated from Eq.(18).

From simulations we obtaitJ, ;(C)=-134099+50 J/mol,

FIG. 4. Q as a function ofs for (a) isochore A(b) isochore D,  the potential energy of the LJ system @t P>= Py
and (c) isochore I. The error bars represent the standard deviatior NKT/V is the excess pressure of the LJ system, which we
about the mean value based on 100 samples. evaluate for many at T, (Fig. 5).
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In order to evaluate the integral in E(L9), we seek a
function to fit to ourP}; data that we can integrate analyti-
cally. A natural choice is the virial expansion f&, a
power series in 1V. At sufficiently largeV, the V depen-
dence ofP{; will be well approximated by the leading term
in the virial expansion

b,kTN =3
P~ (0 2
where for our binary system,
loe 4 oo 4
b, = _bSISI+ _bSIO+ _bOO, 21
2 9 2 9 2 9 ( )
and the coefficient®s” are defined by 22 02 0z 05 08 ]
% A
MY — _ 2( Py 5(p,v,0)/KT _
b 47Tf0 re Lydr. (22) FIG. 6. Plot of the integrandl=(Ugks—U, 5, in Eq. (26). The

solid line is a cubic spline fit to the data.
We calculateb, numerically for the LJ system and firt}
=-0.0337 nm. As shown in Fig. 5, we have simulated the From our BKS simulations we find U(C)

LJ fluid to large enoughVv so thatP}} conforms to Eg. =-1802257+100 J/mol, from which we evaluateJ(C)
(20). To integrateP}} over (Vy,»), we fit the data to ~U(C)-U_,(C). Using S(C)=S,(C)+[AU(C)-AF(C)]/T,
bkTNE M a we find for the BKS liquid S(C)=STy,Vy)

=2 > (23)  =75.986+0.177 J/mol K.
\4 n=3 V To obtain values ofs at T, for V different from V,, we

carry out a thermodynamic integration &f along an iso-

and use this form to evaluate the integral in Et9). We 0 ¢ 1h0 BKS liquid, using,

evaluate the integral using three different fits with=6, 7,
and 8 in order to obtain an error estimate for the integral. We B 1 v o
estimate the value of the integral to be —1268+700 J/mol, SV.To)=S(C)+ .I—.[U(V,To) U]+ ), P(V)dV'.
and thus findS ;(C)=84.028+0.175 J/mol K. 0

To obtain S(C) from S ;(C) we perform a generalized (27)
thermodynamic integratiof8], in which a parametek iS  Tg evaluate the above integral, we fifdfor variousV at T,
used to create a continuous path between the LJ syst€n atanq fit the data with a cubic spline. This spline fit is then
and the BKS system &€. To this end, we conduct MD ysed to generate data for a numerical evaluation of the inte-
simulations of a system of particles interacting via a pairgra|. We thus hav&(V, Ty), the absolute entropy of the BKS
potential® such that liquid at all V studied, afTy=4000 K (Fig. 7).

DN) = NP+ (1 =N)D ;. 24
) s+ ( JPu (24 C. Crystalline ground states

When\ =0, the system corresponds to the LJ fluid, and when ; ; ; L
\=1, the system corresponds to the BKS potential. For arbi As discussed in the next section, we also find it useful to

; . o calculate thél=0 crystalline ground state energy(0) of the
trary \, the instantaneous potential energy is given by y 9 GY0)

BKS system, for comparison with the IS energies obtained
Uy = Ngs + (1 = NU, (25)  from the quenched liquid configurations. To this end, we
study three crystalline structures of silica important in the
whereUgks (U, y) is the instantaneous potential energy ofrange under consideration, namely, quartz, coesite, and
the system evaluated using only thigys (P ;) pair po-  stishovite[39-41. We evaluate th&=0 energy curves for
tential. The Helmholtz free energy differendd=Fgyg these crystals as modeled by thgys pair potential. Starting
—F_; between the BKS and LJ systemsGis given by from the previously determined crystal structures, we opti-
L/ ou . mize U(0) of the model system through an iterative proce-
AF(C) :f <_>\> & :f Uska—UpdN.  (26) dure where we alternately minimiz#(0) as a function of the
o \ IN /[y 0 particle coordinates in a simulation cell of fixed geometry,
using a conjugate-gradient procedure; and then optimize the
We evaluate the above integral by simulating the systengell geometry with a simplex methd@7]. During the cell
governed by Eq(24) at several values of and using a cubic  geometry optimization, we constrainto be fixed, but oth-
spline to interpolate between points. The integrand is showerwise allow the shape to change. This is done to remove
in Fig. 6, from which we obtail\F(C)=-1635990+50 J via anisotropic stress within the crystal while preservihddnce
numerical integration. the crystal structure has been optimized for a particdlave

041503-7



SAIKA-VOIVOD, SCIORTINO, AND POOLE

77

PHYSICAL REVIEW E69, 041503(2004)

. 10° : :
@ @
g 1 0%+ ]
[]
£
3
» 75 b R [ 4
@
5 0—03.90 glem®
24 ‘ ) ‘ a 10 O—043.55
5 6 7 8 9 P 00326 3
V (cm/mol) L0301
<+—=12.80
-1.790 vV—261
107 | »>—i>245 .
*—9236
*—*2.31
& % -1.795
a £ 10° :
S 3 0.1 0.2 03 0.4 05
- 2 1000/T (K™)
D -1.800
10° : - :
b 10
-10 ‘ . -1.805 ! . ! © -
6 7 9 5 7 8 9 100 F
V (cm’/mol) V (cm’/mol) 10 L 10° L
FIG. 7. Thermodynamic properties of liquid BKS silica along  __ 10° [
the To=4000 K isothermia) S, (b) P, and(c) U. «é o L o
£ i
. L a 0—03.90 s s
incrementally chang¥ and repeat the optimization. The re- O G355 0 005 04 015
sults for the three crystals are shown in Fig. 8. At fixeédhe 10° Fo—03.26 1000/TS, (mol/J)
y g
thermodynamic ground state may be a single crystal phase, Hgg;
or a coexisting mixture of two crystalline phases. To obtain L | o261
the ground state energy in the case of a mixture, we employ 19 rr—1>245
“ H ” H H o—9236
the “common tangent construction,” as shown in Fig. 8. 231
10'5 L I L
0 0.05 0.1 0.15 0.2

IV. RESULTS AND DISCUSSION

1000/TS, (moliJ)

The calculations described above yield a complete ther- FiG. 9. (a) Isochores oD, the diffusion coefficient of Si atoms.
modynamic description of the BKS model of liquid silica, (b) Test of the AG relation along isochores bf the legend indi-
including the absolute free energy of the model, and the abeatesp in g/cn®. If the data fall on a straight line, the AG relation

solute configurational entropy, over a wide rang&/ef con-

] ! ' Y ' iy
-1.871 1 | Vo ! [
‘ ‘ . 1 L]
l , ' \\ I, l/
1873 |} I Voo ! 7
\ ,’ \ \ H /
1 h \ \ 1 !
-1.875 | | \ N ? 1
— | ! 7
3 \ ,’ \ \~\.,L—/
E -1877 - ! ' ! g
g \ ! ,l
g \ I \ ’
> 1879 \ \ / §
v \ Y
\ AN
-1.881 - \/ > E
Nz
— - = quartz
—-—=- coesite
-1.883 - —— stishovite 7
_1.885 1 1 Il 1
4 5 6 7 8 9
V(cmS/moI)

is satisfied. For comparison, the inset shdws the diffusion co-
efficient of O atoms, along thp=3.01 (triangley p=2.31 g/cni
isochoregstars.

ditions. Combined with dynamical data, in the form of the
diffusion coefficientD, a number of conclusions may be
drawn, as described below. Note in the following thatby
we mean the diffusion coefficient of the Si atoms, evaluated
from the particle mean squared displacement in equilibrium.
For comparison we also show some results for the diffusion
coefficient of the O atom®y. In general, the qualitative
results are independent of the choice of atomic species.

A. Signature of fragile-to-strong crossover in
the potential energy landscape

Our results foD are shown in Figs. (@) and 1@a). These
plots take the form of Arrhenius plots & andD/T, respec-
tively, the latter quantity being preferred in some works as a

FIG. 8. U(V, T=0) for quartz, coesite, and stishovite. Solid lines measure of particle mobility in liquids. As first Obser\{ed in
are common tangent constructions used to find the system grourfdef. [3], the FSC of the BKS model can be seen in our
state energy for specific values df(as indicated by dotted lings

simulations at lowp, which correspond to the value pffor
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FIG. 10. (a) Isochores oD/T. (b) Test of the AG relation along
isochores oD/T; the legend indicates in g/cn. For comparison,
the inset showdDg along thep=3.01 (triangley p=2.31 g/cm
isochoreg(starg. The lines in the main panel are fits of a straight
line to the data, used to obtained the value®\a&nd pg shown in
Fig. 15.

real silica at ambien®; isochores are curved on an Arrhenius
plot at highT, but become straighter at the lowekt The
statistical errors irD can be inferred from the scatter of the
data points.

We compare the behavior 8f andDg in Fig. 11. We find
that the ratio oD/D varies between 1 and 3, but that the
dependence dDg is qualitatively the same as that Df

Our results forgg and S, are shown in Figs. 12—14. Note
that our estimates fd®, have changed somewhat, compared
to the values published in Reff31], due to improved aver-
aging using more data, as well as refinements in our analysi
However, the qualitative results of R¢B1] remain in agree-
ment with those presented here.

Consistent with the predictions made in Sec. I, we find

PHYSICAL REVIEW E 69, 041503(2004
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FIG. 11. (a) Arrhenius plot ofDg (open symbolsandD (filled
symbolg along thep=3.01(circles andp=2.31 g/cnd (diamonds
isochores(b) RatioDo/D as a function of 1T along the isochores
shown in(a).

Reference[21] showed that for a binary Lennard-Jones
mixture at lowT, gg(T)~-1/T. This T dependence ofg,
consistent with a Gaussian distribution of IS energies, has
been observed in other mod€$,24]. Furthermore, the bi-
nary LJ system is a relatively fragile liquid, and in this re-
gard, our results for silica at high are similar to those for
binary LJ(inset, Fig. 12. This is consistent with the fact that

-1.848

-1.853

-1.858

e (MJ/mol)

-1.863

-1.87

-1.868
2000

3000 4000 5000 6000

T (K

7000

<

FIG. 12. gg(T) along isochores. The lines are fits to each isoch-
ore of a fifth order polynomial ifT with no linear term(i.e., zero

that for the lowp isochores, where a FSC is observed, weslope atT=0); these are the polynomial curves we use to estimate

also observe a point of inflection in tAiedependence of both
es and S.. This inflection is what one would expect if the
emergence of strong liquid behavior with decreasings
associated with the approach @f and S; to a constant at
low T.

04150

the integral term in Eq(9). The legend indicateg in g/cn®. The
inset showseg versus 1T for three isochores spanning the density
range. The low density isochore shows a marked departure from the
relationeg~1/T at low T. The symbols used in the inset corre-
spond to the samp as in the main panel.
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FIG. 13. Detail of isochorieeg behavior for threep spanning T®
the range of our calculations. The thick horizontal lines show the
value of theT=0 crystal energies obtained from Fig. 8.
03
at high p the network structure of liquid silica is disrupted,
giving behavior more like that of simpler liquids, such as the
binary LJ system. We also find that tfiedependence o8, 0.25 |
be_comes more like that of a simple, fragile liqukelg. 14) as 3
p increases. g

Note that the fragile-to-strong crossover observed in the_lvo
present model is different from the crossover from normal «
dynamics to slow dynamics. In the latter case, the change ir

dynamics is associated with the onset of the caging effeci .15}
and to the development of a two-step relaxation in the decay

of correlation functions. The fragile-to-strong crossover in

BKS silica takes place when caging is already well devel- _
oped_ 2000

FIG. 14. (a)i) S along isochores; each panel is labeled by the
density in g/crd. Each curve is obtained using H@), by integrat-

In Fig. 13, we compare the behavior gf to the T=0 ing the fitted curves foe,s shown in Fig. 12. Dotted curves are fits
energy of the crystalline state of the system, as found fronto a two-state modgi3,44. (j) 1/S; as a function ofT.
the data in Fig. 8. It is interesting to note how closely
approaches the crystal energy at lppwcompared to the be-
havior at higherp. We do not expecgg, the energy of a
disordered configuration obtained from the liquid Tgtto
ever be less than that of thE=0 crystalline state of the
system. Thel dependence ofg at low p is consistent with  sition, is the so-called “Kauzmann paradox.” At Igwand
behavior that would respect this constraint &s>0. At high T, we find thatS. behaves in similar fashion, decreasing
higher p, 5 does not approach the crystal energy as closelyapidly asT decreases. An extrapolation of the observed high
as it does at lowep. The conditions that might induce an T behavior raises the possibility th& might reach zero at
inflection in gg are therefore not realized in thierange of  finite T. However, the inflection observed in the lower part of
our simulations. our observed range establishes behavior that allows Kauz-

The inflection ineg is associated with an inflection in the mann’s “entropy catastrophe” to be avoided through a purely
T dependence 0%, also found at lowp (Fig. 14). For real  thermodynamic phenomenon.
systems, the third law of thermodynamics requires that the It is therefore tempting to speculate that our observations
lower bound forS, be zero. Although our system is purely may be transferable to other systems to which the Kauzmann
classical, the same constraint applies, because the configuggaradox seems to apply. Ho®%>0 is maintained in deeply
tional entropy we calculate counts the number of basins exsupercooled liquids can perhaps be understood in terms of
plored by the liquid, which is necessarily one or greater. Ashe PES changes observed here. Moreover, the PES change
pointed out by Kauzmann in 194812], the entropy asT  we find in BKS silica is correlated to the fragile-to-strong
decreases of many supercooled liquids initially decreases atdynamical crossover. Hence it is possible that the FSC and

B. Implications for the Kauzmann paradox

sufficiently high rate so as to suggest that the entropy might
reach zero at finitd (the so-called “entropy catastrophe”

That this purely thermodynamic event seems to be pre-
empted by the occurrence of a kinetic event, the glass tran-
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(the avoidance 9ofthe Kauzmann paradox are fundamentally
interrelated phenomena.

However, if the above speculations are confirmed, it is
important to note the differences between silica and other
supercooled liquids. The picture developed above implies
that theT range of the phenomenon by which silica avoids
the Kauzmann paradox is above, and widely separated from,
T, in silica. In other supercooled liquids, the glass transition
may occur atT above, and thus obscure, the PES changes
found here. More work on these possibilities is clearly re-
quired.

We also attempt to fi§.(T) to predictions for a two-state
model, whereS.(T) is characterized by entropy and energy
differences between the two states as well as the number of
degrees of freedom per molecular updt3]. Here we find
good agreement with the two-state model at highe., frag-
ile densities, shown in Figs. @ and 14d), and fairly good
agreement at lower densitifiSig. 14g)], where we have not
probed the FSC. The description breaks down at lower
where we have probed the inflectioneg [Fig. 14h)] [44].

2

1, (107cm’/sK)
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W
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Hence, avoidance of the Kauzmann paradox via the PES F|G. 15. Estimates of the parametéas u, and(b) A, that occur

changes associated with the FSC appears to be a distingtEq. (1). These estimates are based on the straight-line fits to the
mechanism from that presented in the two-state model.  data shown in Fig. 1®).

dependence dD, S, andSin Fig. 16. At lowerT, isotherms

of S andD pass through a maximum at approximately the
In order to draw the conclusions given above, we mussameV. However, asT increases, the correlation of these

also test that the liquid satisfies the AG relationSifdoes maxima fades. This may be due in part because at higher

not control the behavior ob, then we will lack the basis Y estimates 0& worsen, due to the larger role played by

required for making a connection between the behavior o*he anharmonic corrections. At the highé’sthg trend 'is for
the PES and the liquid dynamics. Isochores oD, S, andSto become monotonic functions of

: ; - V. An observation that th¥ dependence of entropy follows
We perform this test by plotting (D) [Fig. 9b)] and . : o
DIT) [Fig. 100) sganst 1TS. The AG relaton s "3 S5 ok be consistentwihrecert wor iy
obeyed by data that follows a straight line on such a plot. W P Y

C. Test of the Adam-Gibbs relation

find that the isochores db/T provide the best agreement KS silica[46]. A difference in the locations of the maximal
with the AG relation. Note also that both high and lgw
isochores, regardless of wheth&r exhibits an inflection,
obey the AG relation. Thus we see that regardless of dynami- 20
cal regime(fragile or strong, and regardless of inflections in

the T dependence 08 or gg, the liquid behaves so as to &
satisfy the AG relation. This observation reinforces the posi-.,‘E 10

15

tive tests of the AG prediction that have been documented irg |

other work(see, e.g., Refg9,20,21,4%).

We note that Arrhenius behavior can also be recovered vie o0
Eq. (1) if 1/S.=const+#T. To explore this possibility, we
plot in Fig. 14j) 1/S; as a function ofl. From the figure we
conclude that we are not in a regime wheré&lis linear in
T.

In Fig. 15 we present estimates of the constangnd u, g
that appear in Eql). These are obtained by fitting straight %
lines to the isochores in Fig. @), omitting the three data =
points at the highest, where deviations from the AG rela-
tion are expected.

(a) T=3500

7
\ (cm’/mol)

(¢) T=5000

6 e
V (em’/mol)

o

D (10° em*/s)

(b) T=4000

[ 7 8
V (em /mol)

8, 8,(J/molK)
D (10 cm®s)

(d) T=6000

6

7
V (cm*mol)

points of D and S, may, however, arise from hitherto uncon-
sidered physical arguments.

8§, 8, (JmolK)

8, 8, (J/molK)

FIG. 16. Isotherms of th& dependence dD (filled circles, S
(squarey andS (triangleg at variousT. For plotting purposes$
has been shifted down so tha{Vy) =S.(Vg). The shifts inS for the
various panels aréa) —66.6042 J/mol K,(b) —=70.6031 J/mol K,
(c) —=77.8919 J/mol K, andd) -84.3673 J/mol K.

D. Entropy and diffusion

In the case of simulated watg¢R0], it was found that
maxima ofS; isotherms occur, within error, at the saves
the maxima in isotherms @. We show our results for thé
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FIG. 17. Comparison ofl and the contributions t€,. The top FIG. 18. Location of the line o€y maxima (asterisks in the

panels(a)—(c) show isochores of) spanning the studied density V-T plane. Also shown are points on the “temperature of maximum
range; also shown are estimates tbof the crystalline state of the density” (TMD) line (triangleg, at which the isobaric expansivity
system in the harmonic approximation, derived from Te0 esti-  changes sign; and the location of maxima in the contributiogf
mate ofU in Fig. 8 and extended to high&rusing a straight line of ~ t0 Cy (squares The diamond indicates where evidence for liquid-
slope R/2. The bottom panelgd)—f) show the contributions to liquid phase separation was found in Ref8]. The regions labeled
Cy. The solid line isCy—(3R/2)(N-1)/N; the dot-dashed line is ! and Il are referred to in the text.
C2™ and the dashed line i6\7. Each curve is obtained by differ-
entiating the function fitted to the data for the corresponding energyin some way to polyamorphism. It is difficult at present to
answer this question decisively, since the region of the pro-
E. Specific heat posed liquid-liquid instability in BKS silica has only been
. o approximately located, and seems to lie iff @ange below
In terms of the various contributions t&=&s+Eann  that at which we can evaluate equilibrium liquid properties
+3RTIN-1)/N, we can write the constant volume specific \jth current computational resources. However, several
heatCy as trends suggest a connection.
Cy= (3_3 = j_T W) (28) First, we find that thel at which the peak oC, occurs
v

decreases with increasing and passes outside of our range
So written, we can separately evaluate the contributions t8f observat|oq at the approximate vv_here "q!“d'.“q“'d

. 1S anh phase separation is proposgdg. 18. This behavior is con-
Cy from &g and Eqqp Which we denoteCy” and C,7, re- sistent with the observe@, peaks being a lingin the V-T
spectively(Fig. 17. At all p, CJ" exhibits a maximum; at lang of high-T, nonsin ul\farpthermod r?amic anomalies that
the lowestp the inflection in theT dependence ofg b gn-, 9 y
means that:{,S also passes through a maximum. Together

becomes singular as the critical region of the liquid-liquid
at low p, the strength of these two contributions becomes

transition is approached.
large enough to give a peak in the total valueQqt This Second, the observed line @f, peaks naturally defines a
peak is therefore a thermal signature approximately de;

“crossover zone” in the behavior of the liquid between a
marcating the crossover from fragile to strong dynamicalh'gh:r.’ high-p region(region | in Fig, 18, W'th'n.Wh'Ch. the
) . . . . liquid is more fragile, the IS energies are relatively high, the
behavior. It would be interesting to explore if such signa-

S ; o tetrahedral network is disrupted, and the properties are in
tures could be observed in highexperiments on silica, or L ; R
general more similar to simpler liquids; and a Idwiow-p
related systemf47].

region (region Il in Fig. 18 within which the liquid is be-

coming strong, the IS energies are droppipgrhaps toward

a lower limit), the tetrahedral network is becoming promi-
Real amorphous solid silica displays “polyamorphism,”nent, and complex thermodynamic behawvierg., negative

the conversion under pressure of a low density form to a higlexpansivity emerges. It is possible that these two regions of

density form, that occurs in some ways as though it were #&ehavior, ag decreases, become progressively more sharply

first-order phase transition. Computer simulations of BKSseparated, perhaps ultimately by a first-order phase transi-

silica have provided evidence that this polyamorphic transition.

tion may correspond to a suly- remnant of a liquid-liquid More research, both through experiments and simulations,

phase transition occurring in the equilibrium liqUidig]. is required to confirm or refute such a picture. However, our
Having found that the same model, BKS silica, exhibits acurrent understanding of the BKS system suggests that three

thermodynamic anomaly, in the form oGy, peak associated distinct phenomena may in fact be interrelatggithe FSC,

with a FSC, it is natural to ask if this phenomenon is relatedii) polyamorphism, andiii ) the landscape behavior that al-

(eIS + Eanh+
\Y

F. Relation to polyamorphism
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