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Is There a Reentrant Glass in Binary Mixtures?
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By employing computer simulations for a model binary mixture, we show that a reentrant glass
transition upon adding a second component occurs only if the ratio � of the short-time mobilities
between the glass-forming component and the additive is sufficiently small. For � � 1, there is no
reentrant glass, even if the size asymmetry between the two components is large, in accordance with the
two-component mode-coupling theory. For � � 1, on the other hand, the reentrant glass is observed
and reproduced only by an effective one-component mode-coupling theory.
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constituent components plays a crucial role in determin- describe the model and the simulation techniques, and
The ability to manipulate the rheological behavior of
physical systems by the addition of suitable smaller com-
ponents is a task of high technological interest. At the
same time, the glassification and melting of dynamically
arrested states present the theorists with a challenging
problem. Recent experiments [1,2] have revealed that the
addition of nonadsorbing polymers to sterically stabilized
colloidal dispersions induces a new glass transition sce-
nario. Upon adding polymers to the pure colloidal glass,
the dynamics of the colloids is first speeding up, until the
glass is molten and a fluid state is reached. By further
increasing the polymer concentration, the fluid vitrifies
again and a reentrant glass transition materializes. This
new kinetically arrested phase is called ‘‘attractive’’ glass
(in contrast to the ordinary ‘‘repulsive’’ or hard-sphere-
like colloidal glass), since it is generated by effective
depletion attractions between the colloids, mediated by
the polymers. The occurrence of an attractive glass seems
to be generic for any system with a short-ranged attrac-
tion and was recently also found for colloids in a solvent
of varying quality [3] and in micelle-polymer mixtures
[4,5]. The reentrant scenario of the attractive glass had
been predicted by mode-coupling theory of the colloids
by treating only the colloids explicitly, and assuming
that they interact via an effective, polymer-mediated
depletion interaction [6–8]. It has also been observed in
computer simulations of particles interacting via a short-
ranged attraction [9,10], provided that its range is small
enough with respect to the core size. Nevertheless, a
general understanding about the circumstances under
which additives affect the glass transition is still lacking.
A similar situation occurs for asymmetric molecular
mixtures, such as molten salts [11], but just on a different
(microscopic) length scale.

In this Letter, we study systematically the question of
whether and how the dynamical properties of the addi-
tives influence the occurrence of the glass transition, in
the framework of a simple binary model mixture. We
show thereby that the relative short-time mobility of the
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ing the occurrence of vitrification of a fluid or melting of a
glass. Our central result is that a reentrant glass scenario
requires not only a large size asymmetry but also that the
short-time mobility of the added component be much
higher than that of the glass-forming species. In the
case of a very high additive mobility as compared to the
mobility of the glass-forming component, one can think
in terms of the adiabatic approximation: Then, for an
instantaneous configuration of the glass-forming compo-
nent, the additives are equilibrated, establishing thereby
the static effective interaction potential between the for-
mer [12]. It is precisely in this limit that the concept of a
static, effective, one-component description with a deple-
tion attraction is expected to be applicable also in the
dynamical sense. On the other hand, if the short-time
mobilities of the two species are comparable, the deple-
tion potential still exactly determines the partial static
structure of the larger component [13], but not its dy-
namical behavior. It is therefore interesting to examine
whether the lack of validity of the depletion picture in the
dynamical sense has an influence on the glass transition
scenario, which is a genuinely kinetic arrest.

From its basic formulation, the two-component mode-
coupling theory (MCT) for the ideal glass transition [14]
asserts that the latter depends only on the static partial
structure factors of the mixture and, hence, it is indepen-
dent on the individual short-time mobilities [15]. This
assertion holds both for Brownian dynamics (relevant
for colloid/polymer mixtures) and for Newtonian short-
time dynamics (relevant for molecular glass formers).
Our computer simulation studies reveal, however, that
the scenario and the location of the glass transition in
the mixture depends crucially on the ratio � between the
short-time mobilities of the glass-forming component
and of the additive. We also show that MCT correctly
predicts the glassification scenarios for the two extreme
limits: If � � 1, the two-component MCT yields no re-
entrance, while for � � 1 the effective one-component
MCT predicts the occurrence of a reentrant glass. We first
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FIG. 1 (color online). Diffusion coefficients for (a) the col-
loidal particles and (b) the polymers in function of the ratio of
the short-time mobilities �, at the state point 
c � 0:49, 
p �
0:0024 and for three different q values, normalized with D0 ������������������������
kBT�

2
c=mc

p
. The horizontal line in (a) indicates the value of

Dc when 
p � 0. Legends in (b) apply to both panels.
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then compare the simulation results to two-component
and one-component MCT. Finally, estimates for the cross-
over towards adiabaticity and experimental consequences
are presented.

Our results are obtained for the Asakura-Oosawa (AO)
binary model [16,17], which is a simple prototype for a
colloid-polymer mixture, where the glass-forming par-
ticles (‘‘colloids’’) are hard spheres of diameter �c and the
additives (‘‘polymers’’) do not interact with each other but
only feel the colloids as hard spheres with an interaction
radius ��c � �p�=2, where �p denotes the diameter of
gyration of the polymer coils. The motivation to study
such an asymmetric nonadditive mixture is twofold: First,
the static structure and the equilibrium phase behavior
are known, facilitating to a great extent the understand-
ing of the dynamical behavior. Second, the AO mixture is
a minimal model for depletion and fluid-fluid phase sepa-
ration in mixtures, containing the basic physical mecha-
nisms driving the occurrence of both repulsive and
attractive glasses. Since there is no energy scale in the
interactions, the thermal energy kBT scales out and is
irrelevant. The remaining parameters for the AO model
are the size asymmetry q � �p=�c, and the partial col-
loid and polymer packing fractions 
c � ��c�

3
c=6 and


p � ��p�
3
p=6, where �c, �p are the partial number

densities of colloids and polymers, respectively.
We carried out extensive molecular dynamics (MD)

simulations of the AO mixture, introducing the two
masses mc and mp for the colloids and the polymers.
The latter determines the ratio of short-time mobilities
(or thermal velocities) � between polymers and colloids
as � �

���������������
mp=mc

q
. MD simulations were performed using

an event-driven algorithm [18]. The relative numbers of
particles and the volume of the simulation box were
chosen in order to achieve equilibrium conditions for all
studied values of q, �, and 
p, within reasonable com-
puter time [19]. Thus, we fixed the number of colloidal
particles to Nc � 500 for q � 0:15 and q � 0:50, and to
Nc � 40 for q � 0:04 [20]. Partial mean squared dis-
placements were used to determine, via the Einstein
relation, the self-diffusion coefficients Dc and Dp of the
colloids and polymers, respectively [21]. Units of mass,
length, and energy are chosen as mc, �c and kBT.

Results for Dc as a function of � are shown in Fig. 1(a)
for different q at a fixed state point. The diffusive motion
of the colloids significantly depends on the short-time
mobilities ratio and on q. For sufficiently small �, the
added polymer accelerates the dynamics if q is small and
slows it down if q is large. This behavior is in agreement
with previous studies of the dependence on the range of
the effective attraction of the colloidal glass transition
[8,22]. However, by increasing �, the picture completely
changes. The added polymer always slows down the dy-
namics of the colloids, irrespective of the attractive
range. This is clear evidence that, although the statics is
identical along each curve at fixed q, the dynamics is
significantly affected by the relative mobilities.
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Data for Dp, at the same state point and varying q and
�, are shown in Fig. 1(b). For small q, Dp / ��1, which
pertains to the motion of an ideal gas inside the disor-
dered medium formed by the colloids. For large q, the
polymers are caged by the colloids. This causes a signifi-
cant reduction of Dp for fixed � and a much weaker
dependence of this quantity on �.

In order to obtain a broader picture of the dynamical
behavior of the system on the entire �
c; 
p� plane, we
estimate the isodiffusivity lines from the MD simulations.
These can be considered as precursors of the incipient
glass transition line and provide an estimate of the shape
of the latter [23]. Results for the isodiffusivity lines for
q � 0:15 are shown in Fig. 2 and for q � 0:50 in Fig. 3. In
each figure, results for two very different mass ratios,
corresponding to � � 1 and � � 0:01, are shown. For
q � 0:15, two different kinds of behavior result: For � �
0:01, a clear reentrance is observed, while for � � 1, the
addition of polymers always slows down the dynamics.
For a smaller size asymmetry, q � 0:50, there is always
polymer-induced vitrification and no reentrance, but the
impact of added polymer on the glass formation, embod-
ied in the slope of the isodiffusivity curves on the
�
c; 
p� plane, depends strongly on �. For small mobility
ratios, the isodiffusivity curves are almost vertical, point-
ing to an insensitivity of the diffusion coefficient on the
amount of added polymer. For larger �, addition of poly-
mer considerably slows down the dynamics.

In order to provide a criterion for the applicability of
MCT to different regimes of mobility ratios, we calcu-
lated the location of the ideal glass transition within
the framework of this theory. We solved the implicit
225703-2
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FIG. 2 (color online). Isodiffusivity lines �D=D0 � 0:03� on
the �
c; 
p� plane for � � 0:01 and � � 1, accompanied by
ideal glass transition lines from effective one-component and
two-component MCT. The results refer to q � 0:15.
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equations for the matrix of partial nonergodicity parame-
ters F�q�,

F �q� � S�q� � fS�1�q� �F 
F�q��g�1; (1)

where S�q� is the matrix of partial static structure factors,
and F 
F�q�� is the long-time limit memory kernel within
MCT approximation [14]. More specifically, it is a qua-
dratic functional of F�q�, coupling all different wave
vectors, by means of coupling coefficients that depend
only on partial static structure factors and partial con-
centrations of the system. A glass transition occurs when,
upon changing the control parameters, the solution of
Eq. (1) jumps from zero (ergodic state) to a finite value
(glassy state). Note that, within MCT, inertia parameters
drop out; hence, the location of the ideal glass line is
independent of �. Equation (1) holds also for the one-
component case, where S�q� and F�q� are 1 1 matrices.

The partial structure factors Sij�k� with i; j � c; p,
needed as input for the two-component and one-
component MCT, were obtained from the recently devel-
oped fundamental measure density functional theory
[24]. This theory yields analytical expressions for Sij�k�,
which compare well with simulation data. For the effec-
tive one-component MCT, S�q� � Scc�q�.
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FIG. 3 (color online). Same as Fig. 2 but for q � 0:50.
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Results from both effective one- and two-component
MCT are shown in Figs. 2 and 3 for q � 0:15 and q �
0:50, respectively. In the first case, the two-component
MCT predicts a vitrification of the fluid upon addition of
polymers, while the effective one-component MCT pre-
dicts a reentrant scenario. In the second case, both
the two-component and the effective one-component
MCT predict a vitrification of the fluid upon addition of
polymers. In this last case, the slope of the ideal glass
line is almost vertical for the one-component calculation.
The comparison between isodiffusivity lines and MCT
calculations allows us to conclude that the MD results for
small � are properly captured by the effective one-
component MCT, while the MD results for large � are
captured by the full two-component MCT calculation.
Results in Fig. 3 are consistent with MCT calculations
for binary hard-sphere mixtures for q � 0:50 (see Fig. 1
in [25]).

The ratio � needed to reach the adiabatic limit regime
in which an effective one-component description applies
dynamically can be estimated as follows. During the
time necessary for a colloidal particle to move along a
distance �p, there has to be a sufficiently large number of
collisions, exceeding at least some typical threshold
value N0 � 100. This is necessary in order to provide
enough statistics to feel the effective interaction dynami-
cally [26]. The resulting adiabaticity condition reads
� & 12
p=�q2N0�.

For the two chosen cases, � � 0:01 and � � 1 in
Figs. 2 and 3, we realize that, for a typical 
p, the above
criterion is fulfilled in the former but not in the latter case.
This in turn explains why the effective depletion poten-
tial is dynamically meaningful for the case � � 0:01, so
that the effective one-component MCT is applicable. On
the other hand, for � � 1 adiabaticity is not achieved and
both the colloids and polymers are cage formers, so that
the two-component MCT has to be employed in the study
of the vitrification transition.

The same scaling arguments can be also carried out for
short-time Brownian dynamics, for which � � D�0�

c =D�0�
p ,

with D�0�
c and D�0�

p denoting the short-time diffusion co-
efficients of the colloids and the polymers, respectively, in
their common solvent. In a mixture of uncharged colloids
and polymers, these coefficients scale with the inverse
radii of the particles, according to Stokes’ expression;
hence, they are coupled to q via D�0�

c =D�0�
p � q. Then

the critical asymmetry q below which adiabaticity holds
is given by qc � �12
p=N0�

1=3, which is close to 0.1 for
typical values of 
p and N0. On the other hand, in
mixtures of charged suspensions, the physical hard core
diameters ��0�

c and ��0�
p are different and independent

from the effective interaction diameters that enter in the
q ratio. Indeed, effective interaction diameters �c and �p
are dictated by the long-range Coulomb interactions;
thus, they can greatly exceed the physical ones. The
charge on the particles provides in this case the physical
parameter that allows tuning of the physically relevant
225703-3
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size ratio q. In this case, the adiabaticity criterion reads as
��0�

p =��0�
c & 12
p=�q

2N0�.
In conclusion, we have shown that a sufficient asym-

metry in size and short-time mobilities is necessary for
the reentrant glass scenario to materialize in binary mix-
tures. For glass-forming mixtures governed by molecular
dynamics, the glass transition depends on the mass ratio
between the two components [27], but huge mass asym-
metries are needed to achieve the adiabatic limit. Vastly
different mass ratios can be realized in binary mixtures of
dusty plasmas [28], whose dynamics is almost New-
tonian. On the basis of the scaling argument pertaining
to Brownian dynamics, a reentrant glass transition in
colloid-polymer mixtures would occur for size asymme-
tries that do not exceed the value qc � 0:1. This helps to
explain why a very small size asymmetry was indeed
necessary to obtain an attractive glass in experimental
studies [1,4]. The scaling condition is stronger than the
one resulting from an a priori effective one-component
picture in the framework of MCT [8,22]. Although our
results have been obtained for the AO model, we expect
that the weak interactions between real polymers do not
cause any qualitative changes and that indeed our con-
clusions carry over to any asymmetric binary mixture.
The most striking consequences are obtained for a mix-
ture of charged colloids: A reentrant glass can be lost if
the physical core of the high-charge particles is de-
creased, even if the charges are kept constant. By tuning
the short-time mobility, the glass formation upon addition
of a second repulsive component can be tailored, opening
the way for external manipulation of the rheology of the
mixture.

If the kinetic glass transition in a mixture is cal-
culated within mode-coupling theory, it is not known
a priori whether the two-component or the effective one-
component version of the theory has to be employed. We
have shown that it is an appropriate adiabaticity criterion
that determines which theory must be applied. The impact
of the � dependence of the glass transition should also
have important consequences in asymmetric star poly-
mer mixtures, where the lighter polymers have been used
as rheology modifiers for the larger ones [29,30].
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