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We numerically investigate the competition between phase separation and dynamical arrest in a
colloidal system interacting via a short-ranged attractive potential. Equilibrium fluid configurations
are quenched at two different temperatures below the critical temperature and followed during their
time evolution. At the lowest studiedT, the phase-separation process is interrupted by the formation
of an attractive glass in the dense phase. At the higherT, no arrest is observed and the
phase-separation process proceeds endlessly in the simulated time window. The final structure of the
glass retains memory of the interrupted phase-separation process in the form of a frozen spinodal
decomposition peak, whose location and amplitude is controlled by the average packing fraction.
We also discuss the time evolution of the nonergodicity parameter, providing evidence of a
progressively decreasing localization length on increasing the packing fraction. Finally, we confirm
that the reported results are independent of the microscopic dynamics. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1924704g

I. INTRODUCTION

Advances in colloidal science make it possible to realize
systems of interacting particles, with a tunable interparticle
potential.1 Interactions can be controlled in range and in
strength, expanding considerably the possibilities found in
atomic and molecular systems. The size of the colloidal par-
ticles allows experimentalists to study these systems with a
wide range of optical techniques, such as dynamic light scat-
tering and confocal microscopy. Among the colloidal sys-
tems which have no atomic counterpart are the so-called
short-ranged attractive colloidalsSRACd systems, in which
the interparticle potential has a range significantly smaller
than the colloidal size. Experimentally these systems can be
realized by adding to a solution of colloidal particles a de-
pletant agent, generally a polymer. When the radius of gyra-
tion is smaller than the colloidal size, the large particles ex-
perience an effective attraction whose range is related to the
size of the polymer and the intensity to the concentration.2

SRAC systems possess an extremely rich thermody-
namic and dynamic behaviorsfor recent reviews see, for ex-
ample, Refs. 3–6d. The short-range attraction affects pro-
foundly the structure of the phase diagram. When the range
of the attraction is comparable to the particle size, the phase

diagram presents a typical structure of a van der Waals fluid,
i.e., a liquid–liquid critical point at low density and a solid–
fluid phase transition at high density. However, when the
range is much shorter than the diameter of the colloidal par-
ticles, the liquid–liquid phase separation becomes metastable
and is buried inside the fluid–solid coexistence curve. This
phenomenon, predicted theoretically within perturbation
theory,7–9 has been confirmed by simulation10 and
experiments.11,12 It is interesting to note that critical fluctua-
tions related to metastable critical point favor nucleation of
the crystal phase.13

Slow dynamic properties in SRAC systems also show
features not observed in atomic systems. When short-ranged
attractions are present, the fluid-glass linesas well as its pre-
cursors, the isodiffusivity lines14,15d shows a reentrant behav-
ior in the interaction strength-packing fraction plane. Two
different competing mechanisms for dynamic arrest are
present, generating, respectively, a repulsive-dominated and
an attractive-dominated glass. The dynamics become so
complex that the usual stretched exponential decay charac-
terizing the usual slowing down close to a glass transition
crossover toward a logarithmic decay.16–21These novel phe-
nomena, first proposed on the basis of theoretical calcula-
tions based16,17 on the mode coupling theorysMCTd devel-
oped by Göetze and collaborators,22 have been subsequently
confirmed by simulations14,15,23,24and experiments.25–28adElectronic mail: giuseppe.foffi@epfl.ch
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An additional phenomenon which is not usually encoun-
tered in atomic systems takes place at low packing fractions,
where SRAC systems are known to form gel, i.e., an arrested
space-spanning structure.29–33The nature of the gel transition
in short-range attractive colloidal systems has received sig-
nificant attention in recent yearssfor a recent review see, for
example, Ref. 34d. Several routes to the gel state have been
proposed and critically examined, with a special emphasis on
the analogies and differences between glass and gel forma-
tions. It has been shown that, for some class of potentials,
structural arrest at low packing fractions can be interpreted
as a glass phenomenon of self-assembled clusters.35–37 For
the case of SRAC, evidence is building that the gel state
results from an arrested phase separation when the phase-
separation dynamics generate regions of local density suffi-
ciently large to undergo anattractiveglass transition.38–44

In this manuscript we report results of Newtonian and
Brownian molecular-dynamics simulations of a binary mix-
ture of particles interacting via a short-range attractive square
well. For this system, the location of the phase-separation
region and of the repulsive and attractive lines have been
previously studied. The attractive glass line intersects the
colloidal-rich–colloidal-poor coexistence curve on the
colloidal-rich side at an intersection temperatureTx, a few
percent smaller than the critical temperatureTc. We quench
initial configurations at different densities, equilibrated at a
temperature where the system is homogeneoussT@Tcd to
two temperatures lower than the critical onesT,Tcd and
study the coarsening dynamics. For the case of the higher
final temperature, the coarsening dynamics never arrests and
the systems slowly approach to equilibrium phase-separated
state, characteristic of a conserved order-parameter phase-
separation process. For lower-temperature quench, we find
that the coarsening dynamics arrests within the simulated
time, leaving the system in an out-of-equilibrium arrested
structure. The morphology of the resulting gel is controlled
by the phase-separation process at large distancessor small
wave vectorsd. At length scales comparable to the particle
size, the structure resembles the one characteristic of the at-
tractive glass.

II. DETAILS OF THE NUMERICAL SIMULATIONS

We investigate a system that has been extensively stud-
ied earlier, a binary square wellsSWd mixture.15,20 The bi-
nary system is a 50%-50% mixture ofN=2000 particles. The
two speciesslabeledA andBd are characterized by a diam-
eter ratiosA/sB=1.2, which effectively suppresses crystalli-
zation. Masses are chosen to be equal and unitary, i.e.,ma

=mb=1. The SW interaction is defined according to

Va,bsrd = 5` r , sa,b

− u0 sa,b , r , sa,b + Da,b

0 r . sa,b + Da,b
6 , s1d

wheresa,b−ssa+sbd /2 ,a ,b−A,B, andDa,b is the range of
the attraction. We fix sa,b and the well-width e
; Da,b/ sDa,b+sa,bd =0.005. The chosene value is arbi-
trary, but representative of all SW potentials with the inter-
action range smaller than a few percent as far as thermody-

namic and dynamics equilibrium properties are
concerned.13,45For the chosen potentialTc<0.20. We choose
kB=1 and set the depth of the potentialu0=1. HenceT=1
corresponds to a thermal energykBT equal to the attractive
well depth. The diameter of the small species is chosen as
unity of length, i.e.,sB=1. Density is expressed in terms of
packing fraction f=srAsA

3 +rBsB
3dsp /6d, where ra

=Na /L3,L being the box size andNa the number of particles
of speciesa. Time is measured in units ofsBsm/u0d1/2. New-
tonian dynamicssNDd has been coded via a standard event-
driven algorithm, commonly used for particles interacting
with stepwise potentials.46 Between collisions, particles
move along straight lines with constant velocities. When the
distance between the particles becomes equal to the distance
where the potential has a discontinuity, the velocities of the
interacting particles instantaneously change. The algorithm
calculates the shortest collision time in the system and propa-
gates the trajectory from one collision to the next one. Cal-
culations of the next collision time are optimized by dividing
the system into small subsystems, so that collision times are
computed only between particles in the neighboring sub-
systems. Brownian dynamicssBDd has been implemented
via the position Langevin equation:

ṙ istd =
D0

kBT
f istd + r̊ istd, s2d

coding the algorithm developed by Strating.47 In Eq. s2d r istd
is the position of particlei, f istd is the total force acting on
the particle,D0 is the short-timesbared diffusion coefficient,
and r̊ istd is a random thermal noise satisfyingkr̊ istdr̊ is0dl
=2D0dstd. In Strating’s algorithm, a random velocitysex-
tracted from a Gaussian distribution of varianceÎkBT/md is
assigned to each particle and the system is propagated for a
finite time step

2mD0

kBT according to event-driven dynamics. We
choseD0 such that short-time motion is diffusive over dis-
tances smaller than the well width.

Initial configurations were equilibrated atT=1 for den-
sities ranging fromf=0.01 tof=0.50. For each density, the
system was quenched at two different final temperatures,
Tf =0.05!Tx and Tf .0.15.Tx. The constantT evolution
was then followed in time. In the case of ND, the character-
istic time of the thermostat has been chosen so that velocities
reach thermal equilibrium before the system starts to rear-
range its structural degrees of freedom.

III. RESULTS AND DISCUSSION

A. Phase diagram

The coexistence curve in the limit of vanishing well
width, i.e., the celebrated Baxter limit,48 has been recently
precisely calculated by Miller and Frenkel.49 These data pro-
vide an accurate estimate of the coexistence curve of all
short-range interacting potentials, via an appropriate law of
corresponding states.45 Indeed, Noro and Frenkel noticed
that when the attraction range is much smaller than a few
percent of the particle’s diameter, the value of the first virial
coefficient at the critical temperature was essentially inde-
pendent of the details of the potential down to the Baxter
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limit. Following this prescription we reported in Fig. 1 the
coexistence curve calculated by Miller and Frenkel in the
t-f planest is the Baxter stickiness parameterd after trans-
forming it to theT-f plane according to

1 −
1

4t
= h1 − sebu0 − 1dfs1 − ed−3 − 1gj, s3d

i.e., imposing the equivalence of the virial coefficient of the
Baxter and binary SW model. To independently support the
mapping, we calculate explicitly the location of the spinodal
line by bracketing it with the highestT at which no phase
separation takes place and the lowerT at which we observe a
growing spinodal decomposition peak. The calculated spin-
odal line, also reported in Fig. 1, is in very good agreement
with the estimates of Miller and Frenkel.

Figure 1 also shows isodiffusivity lines for the studied
SW model, i.e., lines along which the normalized diffusion
coefficient is constant.14 These lines show the typical non-
monotonic behavior characteristic of SRAC systems, in
which a speedup of the dynamics takes place at the tempera-
ture at which the competition between the two different ar-
rest mechanisms is balanced. The isodiffusivity lines provide
also a guide to the shape of the glass transition line, which
has been numerically estimated, by extrapolation, as the
zero-isodiffusivity line.24 As previously reported, the glass
line meets the coexistence and spinodal line on the colloid-
rich side, confirming that arrest in SRAC systems can take
place at low packing fractions only as a result of an inter-
rupted phase separation.42,43

Figure 1 also shows the location of the studied points in
the phase diagram.

B. Potential energy–number of bonds

One of the advantages of the SW models is represented
by the fact that the potential energy per particleU /N is di-
rectly related to the number of bondsnb per particle bynb

=−2U / sNu0d. Indeed two particles can be unambiguously
considered bonded if their relative distance is within the at-
tractive well distance. In the initial configurations, i.e.,T
=1.0, the potential energy varies between values characteris-
tic of a few particles bonded, for the lowest density, to less
than one bond per particle, forf=0.50.

Figure 2sad reports the time evolution ofU /N for the ND

FIG. 1. Graphical representation of the studied state points in the tempera-
ture packing fraction plane. The crosses represent the equilibrium starting
configurations atT=1, which, at time zero, are quenched atTf =0.15
scirclesd andTf =0.05 ssquaresd, respectively. The symbols are shaded if, at
the end of the simulation, the structure of the system is percolating. The
error bars, calculated as explained in the text, provide an indication of the
spinodal curve for the studied model. The present estimates are consistent
with the phase coexistence calculations of Miller and FrenkelsRef. 49d for
the Baxter modelsdashed lined, properly transformed using the virial map-
ping fEq. s3dg. The red star indicates the location of the critical point from
Ref. 49. To better frame the location of the studied state points, the figure
also shows three calculated isodiffusivity curves, i.e., the locus of points at
which the diffusion coefficientD /D0=5310−2,1310−2, and 5310−3 with
D0=sBsT/Md. The bold line is the extrapolation toD /D0→0 from Ref. 42,
rescaled to the present well-width case using Eq.s3d. The extrapolated
D /D0→0 line ssee Ref. 24d provides an estimate of the location of the line
of dynamical arrest for this system.

FIG. 2. sad Time evolution of the potential energy per particleU /N at Tf

=0.05, following the quench fromT=1, for different packing fractions.sbd
Same assad but for Brownian dynamics.scd Same assad but for Tf =0.15.
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case andTf =0.05. Following the quench att=0, the velocity
degrees of freedom equilibrate and beforet.1.0 the selected
Tf is reached. Structural degrees of freedom, however, relax
on a much longer time scale, dragged by the tendency of the
system to phase separate. The evolution of the energy shows
three different processes. After a characteristic time, which is
longer the smaller the initial packing fraction is, aggregation
sets in and the energy decreases significantly. This aggrega-
tion process slows down significantly once a number of
bonds of the order of six per particle is reached. In this late
stage of the simulation run, two different behaviors can be
distinguished. At very low density, i.e.,f,0.05, the energy
continues to drop and does not seem to reach any stationary
value in the simulation time window. Forf.0.05, however,
the time dependence of the energy abruptly stops and the
system does not show sign of further evolution. This can be
seen as a first indication that an arrested structure has
formed.

Figure 2sbd reports data similar to the one presented in
Fig. 2sad but for BD. Despite the different microscopic dy-
namics, the time dependence of the energy shows similar
trends and the value of the energy at which the system stops
for different densities is indeed very similar to the ND case
ssee Fig. 3d. Comparing in more detail the two dynamics, one
notices that the Brownian aggregation dynamics is smoother
as compared to the Newtonian one, probably because in ND

momentum-conservation law requires many-body interac-
tions for cluster aggregation. Two-body interactions between
two monomers cannot produce a bounded dimer state. Once
a small number of small clusters is present in the system,
aggregation speeds up significantly.

Figure 2scd reports, for ND, the time dependence of the
energy for the quench atTf =0.15. Comparing Fig. 2sad with
Fig. 2scd we notice that the major difference with theTf

=0.05 case is in the long time scale. In the present case,
instead of remaining frozen, the energy continues to drift for
all the densities we consideredsbetweenf=0.05 andf
=0.50d, indicating that the separation process does not arrest
during the simulated time.

The f dependence of the final values of the energy is
shown in Fig. 3sad for the three cases discussed above. For
the Tf =0.05 quench, on the overall range of densities this
quantity varies between 3.1 and 2.8 and it presents a maxi-
mum close to the critical packing fraction. In equilibrium
conditions, one would expect the energy to grow with the
packing fraction but, in this out-of-equilibrium situation, this
is not the case. To understand how the maximum arises, we
show in Fig. 3sbd the distribution of bonds for three repre-
sentative packing fractions, 0.10, 0.25, and 0.50. While the
high- and low-density cases have roughly the same average
number of bonds, at the critical packing fraction such an
average is lower, as indeed expected by the value of the
energy. This difference is originated by the presence of a
large tail of particles with a low number of bonds. In other
words, at the critical packing fraction the aggregate pos-
sesses more surface particles than at lower and higher pack-
ings. This phenomenon may result from the fact that at the
critical packing fraction critical fluctuations are stronger than
at lower and higher packings.

It is interesting to note that, within numerical error, ND
and BD results forTf =0.05 are in agreement. Indeed this is
not a trivial issue, since one would expect microscopic dy-
namics to play an important role in an out-of-equilibrium
situation.

For Tf =0.15, the finalU values are smaller than the ones
at Tf =0.05, providing further evidence that at lowT a dy-
namic arrest transition has taken place, blocking the ap-
proach to an equilibrium phase-separated state. Indeed, if
equilibrium would have been reached,UsT=0.05d should
have been lower thanUsT=0.15d.

C. Structure of the aggregates in real space

An insight of the evolution of the structure during the
phase-separation process can be gained by examining Fig. 4,
where snapshots of thef=0.10 system are presented for dif-
ferent times forTf =0.05sboth for ND and BDd as well as for
Tf =0.15. Before structural rearrangements start to take place
stop rowd, the particles are homogeneously distributed within
the simulation box. In the second set of snapshots, the phase-
separation process starts to create regions richer and lower in
colloidal particle concentrationssecond rowd, which progres-
sively coarsensthird rowd. In the final configurationssfourth
rowd, both the ND and BD results present a very similar
ramified structure for theTf =0.05 quench, while, as ex-

FIG. 3. sad Potential energy per particle at the end of the simulation vsf for
Tf =0.05 sNewtonian and Brownian dynamicsd and for Tf =0.15 sNewton-
iand. sbd Histograms of the distribution of bonds per particle for three pack-
ing fractions:f=0.10,f=0.25, andf=0.50.
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pected, the structure forTf =0.15 is more compact. Compar-
ing these intermediate states with the last recorded one, it
appears that forTf =0.05 the system dynamics has arrested.
For Tf =0.15, however, even if the system forms a percolat-
ing space-spanning structure, its evolution is not arrested.
Indeed the system is still able to rearrange itself, suggesting
the presence of a significant mobility.

It is important to stress that the arrested structures ob-
tained by ND and BD are indeed very similar, which pro-
vides a support to the independence of the nonequilibrium
structure to the microscopic dynamics. Thus, if one is inter-
ested, as in the present work, to characterize the arrested
structure, it is possible to use equivalently BD or ND since
the results are insensitive to the evolution scheme chosen.
Obviously, since BD evolves toward the final structure
roughly two orders of magnitude slower than ND, the use of
ND offers a net gain in terms of computational time. If one,
however, is interested in the kinetics of the process, i.e., how
the gel structure forms, issues concerning the microscopic
dynamics should be properly addressed.

Figure 5 shows snapshots of the final configurations for

packing fractions between 0.01 and 0.10 for the two
quenches. At low temperature, i.e.,Tf =0.05, and low pack-
ing fraction, i.e.,f=0.01, the system is made up of a large
elongated cluster that does not span all the simulation box,
i.e., does not percolate. Percolation is not observed at any
stage during the separation process. Some monomers are still
present, but their number progressively decreases with time.
In a real system the large aggregates will be eventually sub-
jected to precipitation due to the gravitational field. Atf
=0.05, the final structure percolates. All particles belong to
the spanning cluster, which is extremely open and with tiny
connections. The situation is even more evident atf=0.10.
The network that spans the box has a more defined structure
and the distribution of particles appears to be more uniform.
This structure clearly resembles the idea of a gel a, highly
inhomogeneous percolating arrested structure. It is perhaps
interesting to stress that the percolating structure is formed
during the separation process.

For Tf =0.15, at low packing fraction, i.e.,f=0.01, the
final structure is similar to the previous case; the system has
formed a single nonpercolating cluster. Its structure, how-

FIG. 4. Snapshots of configurations at different times from the quench atTf =0.05 andf=0.10: sad Newtonian dynamics andsbd Brownian dynamics.scd
Same assad for Tf =0.15 andf=0.10.
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ever, is more compact than in the previous case, resembling
more the shape of a spherical droplet. Atf=0.05, the situa-
tion is different. A single cluster is present but it does not
form anymore a rigid percolating structure but rather an
elongated cluster. It is only atfù0.10 that the systems per-
colate again. The general trend, however, is that the struc-
tures are significantly more compact than forTf =0.05, in
agreement with the larger number of bondsslower energyd
observed atTf =0.15, as compared to theTf =0.05 case.

D. Static structure factors

To properly quantify the structure of the system we study
the static structure factor as a function of the time elapsed
after the quench. For a binary mixture the partial static struc-
ture factorsSabsq,td can be defined as

Sabsq,td = k%a
* sq,td%rsq,tdl, s4d

where the partial density variables are defined as%asqd
=ok=1

Na expfiq·rstdk
sadg /ÎN. At equilibrium, time translation in-

variance impliesSabsq,td=Sabsq,0d, i.e., the static structure
factor is a time-independent function. In our case, however,
we are in an out-of-equilibrium condition and thet depen-
dence must be maintained. In particular, we shall focus on
the total static structure factor defined as

Ssq,td = o
a,b

1,2

Sabsq,td. s5d

Numerically this quantity is calculated for a given configu-
ration at a timet by calculating the density variable%asqd
and averaging on differentq vectors with the same modulus
q but different orientations. Such spherical average was per-
formed over up to 300 distinctq vectors. For the ND, results
for the Tf =0.05 case are shown in Fig. 6 for three different
densities:f=0.10 in Fig. 6sad; f=0.25 sthe critical densityd
in Fig. 6sbd; andf=0.50, in Fig. 6scd.

At f=0.10, the structure factor starts from the typical
shape of a low-density hard-sphere fluid, i.e., no structural
peaks either at contact, i.e.,q,6.2, or at higher values. As
the energy starts to drop, roughly att,102, the system be-
comes more structured. A first effect is represented by an
increase at the nearest-neighbor peak of the structure factor,
a structural confirmation of bond formation. Simultaneously,
a spinodal decomposition peaksat low q starts to emerge.
This indicates the development of a characteristic length
roughly proportional to 2p /qp, whereqp is the location of
the peak. This peak grows, coarsens, and eventually stops.

To characterize the evolution of the peak we studied the
evolution of the maximum and of the first momentq1 of
Ssqd. This moment is defined as

q1 ;
E

q

qc

qSsq,tddq

E
0

qc

Ssq,tddq

, s6d

where the integral is performed with a proper cutoffqc. This
quantity scales as the peak location but can be calculated
with better accuracy.42,50 We have chosenqc=4.0 to weigh
the long-wavelength fluctuations responsible for the phase
separation.Ssqp,td and q1std are shown in the inset of Fig.
6sad. The maximum of the peak starts to grow att,102 and
then att,4Ã103 reaches a value around 20 and it remains
frozen at this value. This is also confirmed by the behavior of
q1 that after a transient time reaches a plateau. As discussed
before,39,40,42 these are phenomena that are typical of the
formation of a dynamic arrested structure.31,32

For density close to the critical one, i.e.,f=0.25, the
behavior is similar to the previous case, but less pronounced,
as shown in Fig. 6sbd. Ssq,0d presents a more pronounced
contact peak, a consequence of the higher density. As the
system evolves in time the contact peak grows as in thef
=0.10 case. The dynamical evolution of the maximum and of
the first momentq1, shown in the inset of Fig. 6sbd, is similar

FIG. 5. Snapshots of the final configurations forTf −0.05 stop leftd andTf

=0.15 stop rightd for 0.01,f,0.5. The unity of lengthssbd is graphically
kept constant for the first and the last three rows. Hence, an increase in
density implies a smaller simulation box.
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to the previous case but the final plateau values are much
lower. Hence in this situation the arrested phase presents
smaller aggregates and is more homogeneous than the case at
lower density, quantifying the previous observations based
on the real space picturesssee Sec. III Cd.

A different situation emerges when the system is at high
density. The evolution of the structure factor forf=0.50 is
presented in Fig. 6scd. Ssq,0d presents a very pronounced
contact peak, higher than 2.5 due to the high particle pack-
ing. After the quench, when the system evolves, this first
peak decreases and moves to slightly higherq, i.e., the op-
posite trend of the previous case. This is not surprising; it is

well known that when the system at high density and tem-
perature is cooled the effect for SRAC systems is the lower-
ing of the first peak and the appearance of long-tail oscilla-
tions. Indeed in MCT this trend is responsible for the
reentrant glass line and for the formation of the attractive
glass18 and it has been observed in simulations on SW sys-
tems both at equilibrium51 and in the aging regime.20 It is
interesting to note that while the contact peak decreases with
time, the second peaksq,12.5d increases, a clear indication
of the emergence of these oscillations. Also for lowerq, the
situation is different from the two densities discussed above.
A slight increase of the structure factor is present with time
but now we cannot talk of a real peak formation. The system
freezes but its structure remains basically homogeneous and
no large aggregates are formed, as confirmed by the evolu-
tion of the maximum and ofq1 reported in the inset of Fig.
6scd. These results suggest that at this packing fraction the
system is sufficiently homogeneous that the MCT scenario is
recovered. The frozen structure is similar to the one of a
homogeneous liquid and the contact interactions are respon-
sible for the structural arrest, enforcing the idea that SRAC
gels are spatially inhomogeneous attractive glassessin the
MCT fashiond, where the inhomogeneity is built by the
phase-separation process.

Analysis of the BD configurations confirms the above
scenario, in agreement with the previous discussion based on
the potential energy. Figures 7sad–7scd report BD results for
f=0.10,f=0.25, andf=0.50, respectively. The results are
very similar to those that we previously discussed for ND.
For f=0.10 andf=0.25 a low-q peak emerges and gets
arrested at a plateau. The difference with ND results is rep-
resented by the time it takes to get to the maximum value of
the low-q peak. In the BD, the transient is slower, as was
found in the energy evolution. Indeed this phenomenon is
more evident forf=0.10, where in the explored simulation
window, only the approach to the plateau can be studied. At
f=0.50, no low-q peak emerges, in agreement with the ND
results.

The situation is different for the higher-temperature
quench case, i.e.,Tf =0.15. Figures 8sad–8scd report Ssq,td
for f=0.10, 0.25, and 0.50, respectively. As for theTf

=0.05 case, following the quench the system starts to de-
velop inhomogeneities, expressed by the formation of a
growing low-q peak inSsq,td. In this case, however, no signs
of structural arrest are observed. For example forf=0.10,
Fig. 8sad, Ssq,td develops a maximum att,103 that shows a
slow but continuous increase. Similarly the position of the
peak, represented byq1, moves to lowerq and continues to
drift for all the time of the simulation, indicating that the
aggregates are growing in size. At a later stage,t,43104,
the slow growth of the maximum presents a sharp increase,
giving evidence that a different regime has been reached.
Similar behavior is observed forf=0.20, Fig. 8sbd, but in
this case the increase in the maximum and position of the
first peak is faster as expected since the quench is deeper in
the phase-separating region. Finally forf=0.50, Fig. 8scd,
there is an evident formation of a low-q peak that, differently
from theTf =0.05, slowly grows.

To conclude our analysis, we present theSsqd of final

FIG. 6. Time evolution of the static structure factorSsqd for Tf =0.05 at
three packing fractions:sad f=0.10, sbd f−0.25 sthe critical packing frac-
tiond, and scd f=0.50. In the inset, the evolution of the height of the first
maximum and its position expressed by the quantityq1 is shownssee text
for detailsd. The full symbols in the inset represent the times at which the
structure factors are shown in the main figure.
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configurations at all the densities that have been investigated
with ND. Figure 9sad shows theTf =0.05 case. The first thing
to notice is that the shape of the structure factors does not
significantly depend onf whenqù5.0, suggesting a similar
local structure. At lowerq, however, differences are evident.
For the lowest density,f=0.01 andf=0.05, the system pro-
ceeds with the phase separation but for higher density this
phenomenon is arrested. Moreover, increasingf the degree
of dishomogeneity in the system decreases continuously up
to f=0.50 where a low-q peak is not detected and the struc-
ture is very similar to that of a homogeneous liquid. From
this analysis it is evident that we can distinguish between
two different f regions.sid At low packing fraction, i.e.,f
,0.10, the system does not present any arrest in the phase-
separating process.sii d In the intermediate regime, i.e.,f.
0.10, the system gets arrested in a structure that presents a

lower degree of dishomogeneity as the density is increased.
The crossover between these two regimes is characterized by
the connectivity properties of the resulting structure. The on-
set of a percolating attractive glass structure appears to be the
condition for global arrest. At small packing fractions, glass
clusters can still freely diffuse and aggregate progressively.
Formation of a gel built with a diffusion-limited cluster
mechanism in which the glassy clusters created in the phase-
separation process are the renormalized monomers is a pos-
sibility which cannot be excluded, but it would require the
study of a much bigger system, which is out of our present
capabilities. This issue remains open for further investiga-
tions.

In theTf =0.15 case, the low-q regime grows indefinitely

FIG. 7. Same as Fig. 6 for Brownian dynamics. FIG. 8. Same as Fig. 6 forTf =0.15.
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since at this value of the temperature the phase separation is
taking over and the effect of the low-temperature affects only
the kinetics of this process.

E. Structure of the aggregates in two-dimensional
slabs

In this section we focus our attention on the properties of
two-dimensionalslabsof the simulation box along one of the
axis. This is something that, in general, is achieved in con-
focal microscopy experiments. Indeed, the typical size of a
colloidal particle allows for this very powerful investigation
in real space. Among the important phenomena that have
been studied by this technique we can mention structural
relaxation in hard-sphere mixtures,52 nucleation
phenomena,53 fluid–fluid interfacial properties,54 and indeed
aggregation and gelation phenomenon.55–57

We divide our simulation box in slabs along thez axis,
mentioning that in our simulation there is no external field
acting on the systemssuch as, for example, gravityd and con-
sequently the choice of the height of the slabs is arbitrary.
We take slabs of thicknessD=4, i.e., four times the diameter
of the B particles. We focus on the final configuration atf
=0.10 andTf =0.05, shown in Fig. 10. Figure 11sad shows
snapshots from the top of three arbitrary slabs. The structure
is extremely ramified and it is possible to notice long elon-
gated clusters that form the basic unit of the arrested struc-
ture. As expected, the distributions of particles in the three
slabs are very similar since the phase-separating process was
arrested before a big compact cluster was formed. The situ-

ation is different for theTf =0.15 case. The three slabs
present very different distributions, showing the presence of
a big aggregate that results from the tendency of the system
to form a single spherical droplet, since no arrest is taking
place. On the contrary in a different slab, only a few particles
are present.

FIG. 9. Static structure factorsSsqd of the final configuration for different
packing fractions:sad Tf =0.05 andsbd Tf =0.15.

FIG. 10. Representation of the studied two-dimensional slabs. The three
slabs are chosen at a heightz=2.4, 12.0, and 22.6 and they have a width of
4sb.

FIG. 11. Snapshots of the two-dimensional slabsssee Fig. 10d of the final
configurations at three values of thez coordinate.sad Tf =0.05 andf=0.10;
sbd Tf =0.15 andf=0.10.
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To better characterized this nearly two-dimensional con-
figuration, we calculate the two-dimensional structure factor
S2dsqd defined as

S2Dsq,zd = o
a,b

1,2

k%̂a
* sq̂d,%̂bsq̂,zdl, s7d

with

%̂asq̂d =
1

ÎNszd
o
k=1

Nszd

exphifqxxk
sad + qyyk

sadgj , s8d

where the sum is restricted to coordinates belonging to the
particle that lies withinz+D /2 andz−D /2 ;Nszd is the num-
ber of such particles andnaszd the relative concentration of
the two species in the slabs. The vectorq̂ lies in the plane of
the slabs and has the chosen modulus whereas the orientation
is chosen randomly. For the total two-dimensional structure
factor a definition analogous to the one given by Eq.s5d
holds. Figure 12sad reports the results forTf =0.05 for the
three z values considered together with the spherical aver-
agedSsqd considered before. In all cases in which the slab
dimensions are representative of the sample, the three-
dimensionalSsqd coincides with the two-dimensional one.

F. Nonergodicity parameter

When a system forms an arrested state only a few of the
possible configurations in phase space are actually explored,

i.e., the system is nonergodic. This is normally detected by
the density correlation functionsfq

abst ,twd defined by

fq
abst,twd = k%a

* sq,td%bsq,t + twdl, s9d

where configuration at a timetw after the quench is corre-
lated with a configuration attw+ t. In what follows we focus
our attention on the total correlator defined, in a similar fash-
ion to Eq.s5d, by

fqst,twd = o
a,b

1,2

fq
abst,twd. s10d

When the system is at equilibrium, time translational invari-
ance holds and the correlators are independent from the wait-
ing time, i.e.,fq

abst ,twd=fq
abstd. When the system starts to

lose ergodicity, the correlators do not relax anymore to zero.
This effect is usually measured in terms of the nonergodicity
parameterfq, defined as the long-time limit of the correlator,
i.e., fq=fqst→`d. This quantity represents the order param-
eter for the glass transition, since when it is zero the system
is in an ergodic state, when it is finite the system is in a
nonergodic state. In equilibrium, within MCT formalism it is
possible to directly calculatefq from the static structure fac-
tor and eventually test the theory with experimental or nu-
merical results. We studied both the density–density correla-
tion function and its long-time value. We focus on the case
Tf =0.05 and we chose to analyze the system closer to the
critical packing fraction, i.e.,f=0.25

In Fig. 13sad, the evolution of the correlation function,

FIG. 12. Two-dimensional structure factorS2dsqd for different values of the
z coordinatessee text for detailsd. sad Tf =0.05 andf=0.10;sbd Tf =0.15 and
f=0.10. The dashed line corresponds to the three-dimensional spherically
averagedSsqd.

FIG. 13. sad Density–density correlation functionfqstd for different waiting
times tw after the quench. This case corresponds tof=0.25 andTf =0.05.
The correlation functions are calculated forqsB=20. sbd Time evolution of
the nonergodicity parameterfq with increasingtw for the same case.
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expressed asfqst− twd, is presented for waiting times longer
than the time needed to thermalize the velocity degree of
freedom and for a representativeq vector, qsB−20. For a
short waiting time, the correlation functions relax to zero.
For a larger waiting time, a nonergodic contribution arises.
Eventually, for large enoughtw, the correlators remain on a
plateau that is very close to unity. This behavior is different
from the evolution of the aging dynamics for SRAC systems
at higher density.20 In that case, after a low-temperature
quench, there was no evident sign of a plateau even at the
largest waiting time considered. In other words, the aging
dynamics of the attractive glass is different from the present
one, a fact that enforces the idea that the two phenomena
have different origins.

The evolution of fqstwd with waiting time as obtained
from the long-time limit of the correlators is shown in Fig.
13sbd for four representative waiting times. The wave-vector
dependence offqstwd develops progressively, starting from
small q. The width of the nonergodicity parameter is related
to the localization length. As time goes on, more and more
particles aggregate, resulting in a decrease of the average
localization length. The fact that already at short time the
system possesses a finite low-q nonergodicity parameter is a
clear indication of the presence of a spanning structure made
of a few particles. As more particles join the percolating
cluster the system becomes more nonergodic on shorter and
shorter length scales. This suggests that the localization
length progressively decreases, following the same pattern
recently observed in both chemical58 and thermoreversible59

gels.
We have attempted to compare the nonergodic behavior

observed in our simulations with MCT predictions, using as
input the Ssqd calculated from the simulations. Unfortu-
nately, as well known, MCT overestimates dynamical arrest.
In the case of hard spheres, arrest is predicted to take place
for f.0.516 if the Percus–YevichSsqd is used and forf
.0.525 with Verlet–Weiss correction or, more precisely, for
f.0.546 the “exact”Ssqd calculated from simulations is
chosen.60 In both cases, these criticalf values are smaller
than the experimentally and numerically detected value of
f=0.58. Similarly, the MCT predictions for the attractive
glass overestimate the ideal glass transition temperature by
more than a factor of 2. Comparing experimental or simula-
tion data with MCT predictions for the ideal glass transition
locus requires an appropriate mapping in thef−T plane.24,61

MCT predictions which do not account for the mapping sug-
gest that the ideal glass line preempts the spinodal linesi.e.,
it is located above the phase-separation curved.62 Only when
the appropriate mapping is accounted for does the attractive
glass line correctly end in the high-colloid-concentration side
of the spinodal curve.12 It is very unfortunate that the over-
estimation of the glass critical line prevents the possibility of
meaningfully solving the MCT equations for the case of the
phase-separating system by using as input the exact numeri-
cal Ssq,twd, since the role of the largeq is dominating al-
ready at short time. Our attempts to solve the MCT equations
failed in reproducing the small width observed infq at short

times ft=57 in Fig. 13sbdg. The first nonvanishingfq was
characterized by a width already larger than 50sin units of
qsBd.

We perform a further analysis considering the variation
of the final fq with density. The result is shown in Fig. 14sad
for a packing fraction ranging from 0.05 to 0.50. The width
of the nonergodicity parameter decreases when the packing
fraction is decreased. This is an indication of the fact that the
average localization length is larger for the lower packing
fraction, the one characterized by a more open structure. As
we discussed above, at high density the system maintains a
certain homogeneity and no open empty region is detected.
An open structure presents large-amplitude modes and, as a
consequence, the mean localization length is expected to
grow with decreasing packing fraction. This interpretation is
confirmed by the mean-square displacementsMSDd. In out
of equilibrium, this quantity is defined askur st− twd−r stwdu2l,
where r std is the position of the particle at timet and the
averagek·l is performed over all the particles. Here we focus
on the total MSD, i.e., evaluated with no distinction between
particles of the two species for different values oft+w. The
results are presented in Fig. 14sbd. After a ballistic short-time
region, the MSD reaches a plateau, whose value is larger the
smallerf is. Since the long-time value of the MSD provides
an estimate of the characteristic size of the cages confining
the particles, data in Fig. 14sbd confirm that, in the arrested
state, particles are more and more localized on increasingf.

FIG. 14. sad Nonergodicity parameter for different packing fractions in the
final arrested state atTf =0.05. sbd Mean-square displacement in the final
arrested state for different values off.
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IV. CONCLUSIONS

The aim of this manuscript is to provide numerical evi-
dence that, in the case of SRAC systems, the formation of an
arrested state at low packing fraction results from a phase-
separation process interrupted by an attractive glass transi-
tion. We have shown that indeed, only when the system is
quenched belowTx, the temperature at which the attractive
glass line crosses the coexistence line on the high-polymer
concentration side, the coarsening dynamics gets arrested
due to the mobility reduction associated with the glass tran-
sition. We also observed that the arrest takes place only when
the structure is percolating, which at the studiedTf, requires
f*0.05. For smallerf, diffusion of the droplets provides a
slow coarsening mechanism which is missing in the perco-
lating case. ForT.Tx, we observed a continuous progres-
sive coarsening process. The percolating ramified structures
produced during the early stages of the phase-separation pro-
cess become thicker and thicker and the percolating cluster
eventually collapses in the attempt of minimizing the surface
area. These slow rearrangement processes are possible due to
the residual mobility of the high-f phase.

The final structure of the aggregates as a function off is
characterized by a peak at a finite wave vectorqp, which
constitutes the frozen memory of the interrupted phase-
separation process. The location of the peak and its ampli-
tude depends onf. The smaller thef, the lower isqp, and
the larger is Ssqpd. A complex interaction between the
strength of the phase separation and the mobility in the dense
phase defines the final structure of the system. For example,
for f=0.50, the system is so dense that it freezes before it
can get significantly inhomogeneous and no considerable
peak is detected in the static structure factor. It is also inter-
esting to note that in this case, the evolution ofSsqd is not
very different from the case of a quench in the attractive
glass phase region,20 i.e., a decrease in the contact peak with
waiting time. In the low-density case the trend is the oppo-
site, since more particles experience contact after the quench.
It is also worth recalling that the connectivity of the frozen
structure at particle level is also a function off. We find that
the number of bonds is minimized roughly in correspon-
dence of the critical packing fraction. Perhaps this is related
to the strength of the critical fluctuation, which increases the
surface of the aggregate lowering, as a consequence the num-
ber of bonds.

Finally we studied the evolution of the nonergodicity
parameter evaluated from the density–density correlation
functions. We found that, differently from the aging dynam-
ics in glasses, the nonergodicity parameter progressively in-
creases withtw. The first components to become significantly
nonergodic are the large-wavelength density fluctuations.
The width of fq increases progressively during the coarsen-
ing dynamics. When dynamic arrest is completed, the local-
ization length has become extremely narrow. Moreover it
changes with packing fraction, showing less-localized aggre-
gates at lower density. The progressive increase of thefq

width is reminiscent of the behavior recently observed in
chemical58 and thermoreversible59 gel formation.

A final remark is on the effect of the microscopic dy-

namics. In order to exclude any artifact introduced by the
Newtonian dynamics, we performed simulations, for the
lowest T, also using Brownian dynamics. The two micro-
scopic dynamics provide the same equilibrium description
but different time scales. On approaching a structural glass
transition, it has been shown that ND and BD generate the
same long-time behavior.63 When the system is phase sepa-
rating, as in our case, the microscopic dynamics could play a
major role. We show, however, that the arrested structure
obtained by the two different dynamical schemes are very
similar. Since BD simulation can be a few orders of magni-
tude slower than ND simulation, it is important to have the
possibility to use the latter to describe aging processes in
colloids.
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