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Phase diagram of silica from computer simulation
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We evaluate the phase diagram of the “BKS” poterjtiah Beest, Kramer, and van Santen, Phys. Rev. Lett.
64, 1955(1990], a model of silica widely used in molecular dynami{®4D) simulations. We conduct MD
simulations of the liquid, and three crystg/$-quartz, coesite, and stishovitever wide ranges of temperature
and density, and evaluate the total Gibbs free energy of each phase. The phase boundaries are determined by
the intersection of these free energy surfaces. Not unexpectedly for a classical pair potential, our results reveal
guantitative discrepancies between the locations of the BKS and real silica phase boundaries. At the same time,
we find that the topology of the real phase diagram is reproduced, confirming that the BKS model provides a
satisfactory qualitative description of a silicalike material. We also compare the phase boundaries with the
locations of liquid-state thermodynamic anomalies identified in previous studies of the BKS model.

DOI: 10.1103/PhysRevE.70.061507 PACS nuni)er64.70.Ja, 81.30.Dz, 64.36t

[. INTRODUCTION perhaps for this reason that comprehensive phase diagrams
have not yet been developed for the simulation models used
The melts of silica, water, and a number of other sub-widely to study the complexities of important molecular lig-

stances at ambient pressidéorm so-called “tetrahedral lig- uids, such as water and silica. However, as a consequence, it
uids,” that is, liquids with properties that are strongly influ- has not been possible to self-consistently relate the behavior
enced by the occurrence of a network of tetrahedrallffound in simulations to the relevant phase boundaries of the
arranged atoms. This class of substances includes other mgradel system, as would normally occur in an experimental
lecular systems.oABz stoichiome_try(e.g., GeQ qnd_BeE), study.
as well as atomic systenie.g., Si and & Such liquids dis- With these motivations, we here focus on the van Beest,
play a rich spectrum of behavior, including density maximay ramer, and van SantaBKS) model of silica[9]. The BKS

[1], dynamical ?r:om?he[s’Z], ag WEeII_das the Tb'“ty _tot fotrhmt model has played an important role over the last decade in
humerous crystal polymorpH8]. Evidence also exists tha numerous studies of silica and related materials. For ex-

liquid-liquid phase transitions occur In some of these Sy.s_ample, the BKS model has been used in studies of pressure-
tems[4—6]. Yet a detailed understanding of the commonali-. duced amorphization of quartd0], the a- to B-quartz
ties among these materials is hampered by our incomple%]hase transitign[ll 12 thg fragile, to stfé)ng dyﬂamical
knowledge of their properties under comparable conditions: A e o

9 brop P rossover in liquid silicg13-19, the possibility of liquid-

For example, we have extensive knowledge of liquid wateC0S i :

for temperatured near and above the melting temperature!iduid phase separation in siligs], and in the study of the

T, for T=0.85T,,, but the behavior below this range remains 9€neric topological and e_ntrop_lc_propertl_es of random tetra-

a subject of debatf7]. Conversely, we have detailed knowl- hedral network$16]. Despite this interest in the BKS model,

edge of molten silica at ambief® for T<T,, but a much only fragments of specific crystal-crystal phase boundaries

less complete picture of the behavior at higieandP [8].  have been located, such as teto S-quartz transition. To
Computer simulations have contributed to filling this our knowledge no data currently exist for the melting lines,

knowledge gap by providing numerical estimates of liquidthough the liquid-gas coexistence curve has been located for

behavior outside the range of current experiments. Howeves model similar to that of BK$17]. In this paper we report

a key element has been missing from the description of manthe phase diagram of the BKS model, finding the stability

of these model materials: their phase diagrams. In an experfields in theP-T plane for the liquid phase, and three of the

mental study of a molecular liquid, knowledge of the phaseprominent crystal phases of real silica, stishovite, coesite,

diagram—that is, the coexistence boundaries demarcatingnd S-quartz.

the stability fields of the liquid, gas, and various crystal

phases—provides a vital reference that elucidates the ob-

served thermodynamic, dynamic, and structural properties of

the liquid phase. Simulations of molecular liquids are com-

monly based on semi-empirical classical interaction poten-

tials that cannot be expected to precisely reproduce the ex- We use the BKS potential, modified at short range to pre-

perimentally known phase diagrams of the real material. It isyent unphysical “fusion” events, and at long range to reduce

Il. METHODS
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the system size dependence of measured properties and to 7000 prrr o T
facilitate determination of minimum energy structu&s- r %Z o ° ° z g 2 :
herent structure3” Referencd15] provides a detailed speci- 6000 E e e E
fication of the modified potential, a summary of which is 5000 o 6 0 04 0o o E

provided in the Appendix of the present work. Results ob- E— 6 0 © 0 o

tained with our modified potential differ little from those € 4000fodmg@O © o D4 64X Q) X X ]

found using the original BKS potential in terms of averaged = ool 0 © 48 a@a0xoxx XX ]
structural and dynamical behavior. As described in [RE5], 3000fcomeo © © A s aaxsd K xxx

the values of thermodynamic properties are slightly shifted om0 o ®4 88 aaxaxxxXx ]
compared to the original BKS potential, but the qualitative 2000foocsme  © AaAAAXEXXXxX
behavior is unaffected. The Coulombic contribution to the Foom e ALAL DK XXKXX ]

energy is evaluated via the Ewald method, where the recip- 1000 ottt

rocal space summation is carried out to a radius of nine times V (cm® mol™)

the smallest reciprocal cell widffi18]. In all cases, the time

step used in our molecular dynami@dD) simulations is 1 FIG. 1. Location of points in th¥-T plane at which we conduct
fs. simulations of the liquidcircles, stishovite(squarey coesite(tri-

We restrict our attention to the liquid phase, and the crysangles, and s-quartz(crosses The large symbols locate reference
tal phases stishovite, coesite, agdquartz. A number of states(Vg,Tg) at which the entropy of each phase is evaluated
other crystal phases of silica are known. However, the stadirectly.
bility fields of these three crystals dominate the phase dia-

gram of silica on the widest scale Bfand T, and are there- ing through these points is then found, creating a continuous

fore natural first choices for examinatidB]. These three . !
, . function representinde(V) at T=T,. The value ofE at the
crystals are also representative of the main types of IocaluOint (V. T.) is evaluated from this function. The value Pf

coordination structures found in silica crystals. The structur ' . . .
of B-quartz is an open network of corner-shared Si€ra- at an arbitrary pointV,, T,) is calculated in exactly the same

hedra; coesite is a denser network of corner-shareq ®i© Way as forE, except that a fourth order polynomial Tis
rahedra: and stishovite is a network of corner- and edgef_itted to theP data along each of the nine simulated iso-
shared Si@ octahedra. Previous work has shown that thethores. Examples of the simulated and fitted valueis and

BKS model is appropriate for studying both low and high P @€ shownin Fig. 2.~ , _

density crystal structuregl9]. To determine the phase dia- 1€ value ofS at an arbitrary pointV,, T) is evaluated
gram, our approach is to evaluate numerically the Gibbs fre8Y thermodynamic integration, using teV, T) andP(V,T)
energyG of each of the phases as a functionPoéindT, and ~ Surfaces constructed as described above. The integration is

then seek the lines of intersection of these surface functiongliven by

A. Liquid free energy '1'65_ I(al) L
For the liquid phase, we use much of the equation of state .~ 1701 7
data reported in Ref{15], plus some new simulation data 4 75'_ ]
generated using the same methodology. These simulation 2 [ ]
modeled a system of a fixed number of 444 molecular units w gy _
(1332 iong in the liquid phase along nine isochores from ;
volumesV=4.6296 to 8.6804 cAmol™?, and ranging inT 1B o 500 7000 50905030 7000
from nearly 7000 to less than 2500(Kig. 1). Each of these T (K)
liquid state points was equilibrated at const&ntand using AT T T
velocity rescaling to attain a desirdd Average values oP _ A\
and T were evaluated from subsequent constd¥E runs "5 -1.745
having a duration of ten times the time required for silicon £
atoms to diffuse an average of 0.2 nm. The results provideg_tm_
the total energye(T) (potential plus kineticand P(T) along
the specified isochores. Refererjdé®] also describes the de- P TR _10' Dy gy
tails of a calculation of the entropy of the liquid pha&g, s & 7 1)8 9 s & 7 1;’ 9

3 - 3 _
=75.986+0.176 J mot K1, at a reference state located at vV {em” mol V {em” mol

— — -1
TR_;"OOO IK andeVR_8'680.4 cr mo_I : h ; FIG. 2. Examples of fitted and interpolated data for the liquid
The value ofE at an arbitrary pointV,, T,) on the surface phase(a) values ofE along theV=6.655 cni moltisochore, fitted

E(V,T) is evaluated as follows. Along each of the nine iso-\ith a cubic polynomial (line); (b) values of P for V
chores simulated, a third order polynomiallins fitted to the  =6.655 cni mol™2, fitted with a quartic polynomialline); (c) inter-
E data. The value dE at the desired =T, is calculated from  polated values of along theT=4000 K isotherm, fitted with a
the polynomial found for eacW. This creates a set of points cubic spline(line); (d) interpolated values of for T=4000 K, fit-
approximating the curv&(V) at T=T,. A cubic spline pass- ted with a cubic splingline).

0

o -
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S(Vo, To) = S+ J

(0]
= dT+— [ P(V,TydV. simulation cell away from the desired isochore. We restore
TR

To 1<3E> 1 (Vi (iv) Step (iii) may have changed the overall of the
Vg To VR

the value ofV of the simulation cell by isotropically rescal-
(1) ing the average cell lengths obtained in stiép, while leav-
ing the obtained average angles fixed. For all crystals, the
rescaling is never more than 0.5% of the desired volume, and
is typically 0.1%. This rescaled configuration is then used to
initiate a 30 ps constaMVE simulation, during which the
average values d? andT are evaluated.

We note that foB-quartz, steiii ) is carried out for 50 ps
and stepiv) for 80 ps. These longer times are used in order
fo resolve the subtle variation ¢t along isochores, since
i ) B-quartz displays a density maximum in the region of our
=E(V,T)+VP(V,T)=TSV,T). To find G at an arbitrary  gjmjations. We also note that ti2quartz phase spontane-
(P,T) point, we find the value o¥ from P(V,T) such tha® )y converts tar-quartz, but only fofT andV outside the
has the desired value. In this way we can construct arbltraryange of simulated points shown f@rquartz in Fig. 1. Our

The definite integral ovel is evaluated analytically using
the polynomial representation &fas a function ofT, on the
reference isochore. The definite integral oveis evaluated
numerically via Simpson’s rule, using data from the cubic
spline representation d? as a function ofV, constructed
along the desired isotherm.

Gibbs free energys at arbitrary state points using(V,T)

isotherms or isobars cutting through t¢P, T) surface. results therefore pertain only {6-quartz and are not influ-
enced by this crystal-crystal phase transition.
B. Crystal free energy The above procedure providE$T) andP(T) along speci-

We conduct simulations of three crystal phases: stishovitefied isochores. Using the same fitting and interpolation pro-
B-quartz, and coesite. Our simulations employ 1200 ions foeedure as is used for the liquid, we can therefore evalbate
stishovite, 1536 ions for coesite, and 1350 ionsfeguartz.  andP at arbitrary state pointé/,T).

We carry out simulations over a range\wand T appropriate Finally, we need to evaluat® for each crystal at a refer-
for each phase, as shown in Fig. 1. ence state point, in order to construct the surf&@g, T) via

We employ the following procedure to obtain equilibrium thermodynamic integration. Our method is as follows. For
averages foE(T) and P(T) along the specified isochores. each crystal phase we select a reference volvpesee Fig.
The rationale underlying this procedure is to allow us tol), and choose th&z=1500 K configuration obtained at the
obtain thermodynamic properties along a set of specified iscend of stefiv) above. Using the conjugate gradient method,
chores, so that we may construct tBéP, T) surface for each we optimize the atomic positiorat fixed cell geometryto
phase in the same way as described above for the |iquiﬂnd the minimum energy configuration. We then evaluate the
phase. However, obtaining isochoric data for crystals reHessian matrix of this minimum energy configuration and
quires care, as unit cell parameters may change Wittven  diagonalize it to find the eigenfrequency spectrum. The clas-
though the overall density remains fixed. In particular, wesical harmonic entropy is found from this eigenfrequency
must ensure that anisotropic stresses do not arise in the simsPectrum.(The details of this approach are given in Ref.
lation cell. The procedure, for each crystal, is as follows. [15], where the method is used to find the classical harmonic

First, we create an initial configuration of stishovite, €ntropy of inherent structures of the liquid state.
B-quartz[20], and coesitg21]. Then for a number of speci- To determine the total entropy, we need to evaluate the
fied V, we optimize thél=0 atomic coordinates and unit cell anharmonic contribution and add it to the harmonic entropy
parameters to minimize the energy and to remove anisotropi®und above. We use the energy-optimized configuration for
stresses. This optimization is carried out at constant overawhich we calculate the harmonic entropy as the starting con-
V, and consists of alternating applications of the simplexfiguration for 15 equally spaced simulations frafs100 K
method(to optimize cell parametersind the conjugate gra- t0 Tg=1500 K. We simulate each state point at constnt
dient methodto optimize atomic coordinatg§22]. This op-  Using velocity scaling to maintaih at the desired value, with
timization cycle is repeated until the energy converges to dixed cell geometry, for 150 p&00 ps for stishovite From
minimum value to within a tolerance of 1. these simulations we evaluate

Then, for eaci at which we desire thermodynamic prop-
erties, we carry out the following steps. 3

(i) Beginning with the optimized configuration at the ap- Eann(T) = U(T) = ZR(1 - IN)T, (2
propriateV, we conduct a 20 ps consta¥itsimulation, dur- 2
ing which the desired is established via velocity rescaling
every 100 time steps. whereU is the potential energy an@ is the gas constant.

(i) The configuration produced i) is used to initiate a  Using a polynomial fit,
20 ps constanMVE simulation, to ensure that an equilibrium
state at the desire@l has been achieved.

(iii) To relax any anisotropic stress that may have arisen
in bringing the system to nonzefD we carry out a 40 ps Banh =80+ 22 " 3)
constantNPT simulation (during which the simulation cell "
geometry is unconstraingavhere we sefP to the average
value from step(ii). we evaluate

Nmax
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0 — e " T00 7550 FIG. 4. (a) AG, the Gibbs free energy relative to that of coesite
T (K) (C) for the liquid (L), B-quartz (Q), and stishovite(S) phases, at

constantP=2 GPa. The intersections locate points on the stable and
FIG. 3. Eani(T) for (a) p-quartz,(b) coesite, andc) stishovite  metastable coexistence lines that cross this isgbpPotential en-
along their respective reference isochoregalrthe solid line is the ergy U as function ofV at T=0 for various crystal phases. Thin
fit to the data given by Eq(3) with Nia,=2. The fit forNma=3 is  straight lines represent “common tangent constructions,” the slopes

not visible as it overlaps with thi,,,,,=2 curve on the scale of this of which yield theT=0 coexistence pressures plotted(ln.
plot. In (b) the fits for bothN,,,,=2 (solid) andN,,,,=3 (dasheglare

shown. In(c) the fits for Npa,=2 (solid) and Nyha=4 (dashegl are
shown, while the curve foN,,,,=3 is not visible as it overlaps with

C. Coexistence boundaries and error estimates
the Njya=4 curve.

For every pair of phases we determine the coexistence
line as the locus of points in the plane Bfand T for which
G for the two phases is the same. Along each locus, we also
find the value ofV for each of the two coexisting phases.
Figure 4a) shows an example of the intersection of isobars
of G (relative to coesitefor each phase @&=2 GPa.
By using different values oN,,,=2 and 3 for coesite and We perform several checks on our scheme. We calculate
B-quartz, and 3 and 4 for stishovite, we obtain error estithe change ir§for a single phase around a closed path in the
mates forS,,(Tr). Figure 3 shows the variation &,,,with  V-T plane, which we find to be zero within an error of ap-
T for each of the three crystals simulated. The resultingoroximately 0.01 J moF K™1. We also check that the rela-
reference entropies for each crystal phas@@t1500 K at  tions P=—(JA/ V)1 (whereA is the Helmholtz free energy
their respective reference volumegy are as follows: and P-T(dP/dT),=—(JE/JV); are satisfactorily met. Fur-
44,982 Jmott K™t at Vz=8.9933 crdmol™ for B-quartz;  thermore, along the coexistence lines, we check the Clapey-
43.682 J mot K™t at Vz=7.1478 cm mol™ for coesite; and  ron relationdP/dT=AS/AV, whereASis the difference ir§
39.536 J mot' K™ at Vg=4.7650 crdmol™* for stishovite.  between the two phases and/ is the difference inv; we
The uncertainty in eachS value is approximately find this to be satisfied to within 0.1 MPak
0.01 Jmott K™, We also determine the stishovite/coesite and
The above procedure provid&V,T), P(V,T), and the  B-quartz/coesite coexistence conditionsTat0 by plotting
reference value of for each of the three crystal phases. Thethe potential energyJ obtained for the optimized atomic
procedure to evalua®(P, T) from this information for each configurations used to initiate the crystal free energy calcu-
crystal phase is the same as is used for the liquid phase. lations described in the previous section. We plotersusvV

R1[(GEL (T
Sun(To) = f —(—‘9 anti )

T T )VdT. (4)
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20 b o FIG. 6. Phase diagram of BKS silica in theT plane. The
- (b) . notation and symbols used have the same meaning as in Fig. 5.
151 . Note that in this projection, both one-phase stability fields as well as
[ N two-phase coexistence regions are located. The projections of the
310'_ h metastable coexistence lingdashed shown in Fig. 5 are also
?D; s ] presented.
a 5k _'
r ] Ill. RESULTS AND DISCUSSION
. Figure %b) plots P-T coexistence conditions, both stable
and metastable, occurring among the liquid pHasend the

070002000 30004000 2090" '6'(;00 crystqlline phgse;ﬁ%—quartz (Q), coesite(C), and stishpvite

T(K) (S). Figure 6 is the projection of the same boundaries onto

the plane ofV and T. This plot exposes the volume differ-
FIG. 5. (a) Experimentally determined coexistence lines of silica gpnces of coexisting phases along phase boundaries. This type

in the P-T plane. Stabillity. fields for the stishovitéS), coesite ¢ plot is rarely constructed for real materials, due to the
(C), p-quartz(Q), and liquid (L) phases are shown. Both stable ¢pg|lenge of determining the densities of coexisting phases,
(solid) and metastabledashed coexistence lines are shown. The ggpeciglly at high pressure. However, it is readily constructed
inset shows the stability fields of cristobalite and tridymite, notfrom simulation data.
considered in this work. Adapted from R¢8]. (b) Phase diagram Comparison of the BKS and experimental phase bound-

of BKS silica in theP-T plane. Solid lines are stable coexistence o .o 1a1'in Fig 5 exposes the quantitative deficiencies of the
lines. Dotted lines show error estimates for the crystal-liquid coex-

istence lines, as described in the text. Metastable coexistence IinQQOdel' Apparent'ln particular is .the difference between the
(dashegl are also shown that meet at the metastaéble-Q triple pressures at Whlch corre_spondlng features Occur'. For ex-
point. The locations of th&-C (filled squarg¢ andC-Q (filled circle) ample, theS-L-C triple point occurs at 13.4 GPa in real

coexistence boundaries B0, determined from Fig.(®), are also  Silica, but at only 5.8 GPa in the model. Overall, fAeange
shown. of the crystal stability fields is substantially lower in the

model. The pressure difference between the model and real-
ity is more of a shift than a rescaling. For example, the
o . coesite stability field has approximately the same exte®t in
at T=0 in Fig. 4b) and extract the coexistence pressure§apout 5 GPpat low T in both BKS and real silica. However,
from the slope of “common tangent constructions” bridgingihe s.c coexistence boundary is shifted downwardFrin
coexisting phases. The=0 coexistence pressures are plottedihe model by more than 7 GPa compared to real silica. The
in Fig. 5(b) and serve to check that the method used to deresult is that coesite, rather than quartz, is the equilibrium
termine coexistence boundaries at finltés consistent with  phase of BKS silica at ambieRtfor most of the temperature
the (more straightforwardT=0 evaluation. Note that we do range. Indeed, at the very lowest the stishovite stability
not locate theB-quartz/stishovite coexistence condition atfield just reaches ambierf, making stishovite ther=0
T=0 due to the fact thap-quartz transforms tax-quartz  ground state of BKS silica &=0 (filled square in Fig. &)].
beforeT=0 is reached at the relevant volume for the com- The correspondence of the thermal behavior is better than
mon tangent construction. that of the mechanical behavior, but significant differences
Throughout the evaluation scheme described above, thstill occur. TheT of the S.L-C and C-L-Q triple points are
largest single source of statistical error is the uncertaintyespectively 15% and 32% higher than their experimental
cited in Ref.[15] for S, the entropy of the liquid at the values. Also, the maximunT reached by the coesite, and
reference state point. We therefore create confidence limitsspecially the3-quartz stability fields, are too high compared
for our melting lines, shown in Fig. 5, by allowing the value to reality. However, the curvature of the crystal-liquid coex-
of Sy to vary by +0.18 J mof K1, istence boundaries are comparable to experiment.
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Despite the guantitative deficiencies of the BKS model, it 20—
is noteworthy that the topology of the real silica phase dia-
gram is reproduced in the simulations. All three studied crys-
tals have large stability fields, which increase in extenPas
increases. More subtle features, notably the melting line

maxima in both theéQ-L andC-L coexistence lines, are also §10
reproduced. Also, the occurrence of a metasta®i@-L ]
triple point in the stability field of coesite, suggested by an o
extrapolation of the experimental boundaries, is observed in 5
the model. Thus, while acknowledging its deficiencies, the
BKS model is appropriate for studying the qualitative behav- 0
ior of a substance with a silicalike phase diagram. C
The phase information given in Figs. 5 and 6 allows pre- 1000
vious (and future observations of the behavior of BKS silica T(K)
to be considered within the context of the phase behavior of 5000 [
the model itself. For example, several studies of BKS silica F (b) e ® C
have identified the location of a density maximum in the 4500 L o o
liquid phase[5,13. A thermal anomaly, a line of maxima of : o
the isochoric specific he&&,, has also been located in simu- 4000F s SsL e O Qel
lations of the liquid14,15. Both of these features have been _ o Cly\ J_\l‘
related to the early stages of the formation of a structured < 35001 ®
tetrahedral network in the liquid state. This structural evolu- = -
. . . . 3000 ®
tion also is believed to underlie a crossover from non- e
Arrhenian (“fragile”) to Arrhenian (“strong”) dynamics in 2500F Py
the liquid [13-15. s $+C cj c+a }a
We show in Fig. 7 the location of the line of density and 20001 | | ¥ |
Cy maxima in both theP-T and V-T planes. These lines I e
approximately separate the liquid behavior into a “tetrahedral Vv (em® mol™)
network influenced” region at low and largeV (low P ),
and a “normal liquid” region at higii and smalV (high P). FIG. 7. BKS phase boundaries (g) the P-T plane andb) the

Consistent with this, the stability fields g8-quartz and V-T plane, in relation to density maximdilled circles and Cy
coesite(both of which have four-coordinated silicon atgms maxima(squaresin the liquid phase. Also located is the state point
occur within the network influenced region, while the stabil- (Sta) at which evidence of liquid-liquid phase separation was re-
ity field of stishovite(with six-coordinated silicongalls out- ~ Ported in Ref[5].

side. o _ _confirmed experimentally in real silica, this is expected from

We also show in Fig. 7 the location of the state point afihe fact that the disruption of the tetrahedral network with
which evidence of liquid-liquid phase separation was rejncreasingP facilitates molecular mobility, and so suppresses
ported in Ref.[5]. This point occurs at a density just above T_. Ultimately the trend will reverse as packing effects begin
that of the high density edge of the one-phase stability fieldo dominate at higheP. Based on simulation results for the
of coesite. This is a plausible density at which the open tetdiffusion coefficient of liquid BKS silicg15], the minimum
rahedral network structure of th@ne-phasg supercooled value ofT, as a function oP should approximately coincide
liquid state begins to collapse to a higher density, perhaps viwith the line of density maxima, which at loWw occurs atP
a discontinuous phase transition. slightly higher than thes-L-C triple point. Hence, in BKS

We can use the comparison of the real and simulatedilica, Ty continues to decrease withthroughout the region
phase diagrams to assess the potential for finding a liquidsetween ambienP and that at which evidence of a liquid-
liquid phase transition in real silica. To be observable, thdiquid transition is observed. This particular assessment
critical temperaturel, of the liquid-liquid phase transition therefore suggests that if a liquid-liquid transition occurs in
must occur above the glass transition temperalyref the  real silica, therT, may be greater thaf, potentially expos-
supercooled liquid. Choosing a common point of reference iring the transition to direct observation.
both the BKS and real silica phase diagrams is one way to To conclude, we note that important low pressure phases
facilitate such an assessment. Here we chooseStheC  of silica, especially tridymite and cristobalite, while not ad-
triple point, since evidence for a liquid-liquid phase separadressed here, are also stable crystal phases of the BKS
tion in BKS silica was found at about the sarReas this model. We choose not to include these phases in the present
feature. Evidence of a liquid-liquid transition in BKS silica study because we want to study BKS silica over a very large
occurs at 56% of thd of the BKS S-L-C triple point; see range ofP and T, focusing on the principal stability fields
Fig. 7(@. TheS-L-C triple point occurs in real silica at about that dominate the phase diagram. That said, and in light of
3100 K, 56% of which is 1730 K. This temperature is higherthe results presented here, the phase behavior of these low
than T,=1450 K, the glass transition temperature for realpressure polymorphs merits attention in future work. The
silica at ambienP. FurthermoreT, should initially decrease BKS model has been widely used to study the open network
in value asP increases above ambient. Although not yetstructure of silica glass. Examining its ability to reproduce
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the thermodynamic relationships among all the crystal poly- TABLE I. Potential parameters used to defifigys Also re-
morphs having an open network structure would be a severguired to specify $gks are a=2.5 nm‘?, Rs=0.77476 nm R
test, and would further elucidate the strengths and weak=1 nm, qsi=2.4e, andgo=-1.2, wheree is the magnitude of the

nesses of the BKS model. charge of an electron.
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Our model of atomic interactions in silica, denoted here ag
dgks is based on the original BKS potential, modified in _**
two ways. First, the BKS potential energy for both the Si-0Fwr
and O-O interactions diverges unphysically to negative infin-
ity at sufficiently small distances. To prevent thisgk s con-
sists of the standard BKS potential plus a short range ter
given by

(1072 3/nnf) -117.7993 61.33742 -26.25876
(10720 3/nn?) -23.83785 12.33446 -5.415203

nqegree polynomial that tapers smoothly to zero over the
rangeRs<r;; <R;, whereR;=1 nm. The values of the poly-
nomial coefficients are given in Table I, and the method by
o, \° (o,,\° which they are chosen is described in R@f]. The Ewald
4%»[(%) B (%) } (A1) parameter is assigned the valag 2.5 nnit,

! ! The real space contribution tbgys denoted here ag, is
wherer;; is the interatomic separation between an atooh  therefore a piecewise defined function of the form
speciesu, and an atomj of speciesy. The values of the

parameters,,, ando,, are given in Table I, and the method H(ri <R = 9,9, erfolar) | A Bt 4 S
by which they are chosen is described in Ré&#]. U dme 1 i re
The second modification to the standard BKS potential 30 6
included indgggrelates to the treatment of long range inter- + 4EMV{(EM) (Zﬂ/) ] (A2)
actions. As is common in implementations of the BKS po- Fij Fij

tential, we calculate the long range contributions to the Cou- . .
lombic potential energy using the Ewald summation DR <1jj <R) =D, (rij =R+ E,.(rj = Ro)

technique. The reciprocal space summation is carried out +F,(ri —R)3 (A3)

here to a radius of nine reciprocal lattice cell widths. For the prl ’

real space summation, instead of discontinuously cutting off #(r; = R)=0 (A4)
ij = — Y

the potential, as is often done, we introduce a switching
function. At a fixed distanc&,=0.774 76 nm the real space where erf¢x) is the complementary error function amds
terms of the standard BKS potential are replaced by a fifttthe permittivity constant.
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