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Gel to glass transition in simulation of a valence-limited colloidal system
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We numerically study a simple model for thermoreversible colloidal gelation in which particles can
form reversible bonds with a predefined maximum number of neighbors. We focus on three and four
maximally coordinated particles, since in these two cases the low valency makes it possible to
probe, in equilibrium, slow dynamics down to very low temperatures T. By studying a large region
of T and packing fraction � we are able to estimate both the location of the liquid-gas phase
separation spinodal and the locus of dynamic arrest, where the system is trapped in a disordered
nonergodic state. We find that there are two distinct arrest lines for the system: a glass line at high
packing fraction, and a gel line at low � and T. The former is rather vertical �� controlled�, while
the latter is rather horizontal �T controlled� in the �−T plane. Dynamics on approaching the glass
line along isotherms exhibit a power-law dependence on �, while dynamics along isochores follow
an activated �Arrhenius� dependence. The gel has clearly distinct properties from those of both a
repulsive and an attractive glass. A gel to glass crossover occurs in a fairly narrow range in � along
low-T isotherms, seen most strikingly in the behavior of the nonergodicity factor. Interestingly, we
detect the presence of anomalous dynamics, such as subdiffusive behavior for the mean squared
displacement and logarithmic decay for the density correlation functions in the region where the gel
dynamics interferes with the glass dynamics. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2177241�
I. INTRODUCTION

Systems composed of mesoscopic solid particles dis-
persed in a fluid are named colloids. The properties of the
particles and of the fluid can be controlled via chemical or
physical manipulations to a great extent. As a result the
particle-particle interaction can be tuned from very short
range depletion attractions to very long range Coulombic
repulsion,1 making colloids important both in terms of basic
scientific research and industrial applications.2–5 The canoni-
cal model system for colloids is the hard-sphere system, for
which sterically stabilized colloidal particles such as PMMA
provide a very accurate experimental realization.6,7 Hard-
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sphere colloids have been used to directly observe crystal
nucleation and to test theoretical predictions surrounding
glass transitions.8 The addition of small, nonadsorbing poly-
mers to a hard-sphere solution leads to a short-range effec-
tive attraction between colloids through the so-called deple-
tion interaction.9,10 The size of the small polymer controls
the range of attraction, while the concentration controls the
strength of attraction u0. Neglecting the role of solvent inter-
actions, these systems can be simulated on a computer with a
short-range attractive potential, as simple as a hard core
complemented by a square well �SW�. Colloid-polymer mix-
tures have been found to offer new scenarios of arrested
states. These hard-sphere plus short-range attraction systems

exhibit the usual hard-sphere glassy dynamics near ��0.6.
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However, a fascinating phenomenon arises when the range of
attraction is less than approximately 10% of the hard-sphere
diameter, a reentrance of the glass transition line, predicted
by mode coupling theory11–14 �MCT� and confirmed by sev-
eral experiments15–20 and simulations.21–25 In this case, for a
particular range of �, arrest can be achieved by either in-
creasing or decreasing T /u0, the ratio of temperature T to
attraction strength u0. The two types of glass are now com-
monly named hard-sphere or repulsive glass for the one at
higher T, and attractive glass for the one at lower T.

At low densities short-range attractive colloids exhibit
particle clustering and gelation.26–29 Recently, several nu-
merical works have focused on colloidal gelation,30–35 with
the aim of better characterizing colloidal gels and attempt to
formally connect gel to glass formation.12,27,31,36,37 Following
MCT ideas, the gel state was interpreted as a low-� exten-
sion of the high-� attractive glass12,36–38 and, generating
some confusion, the term “gel” is still often interchanged
with the term “attractive glass.”

Differently from chemical gelation, which was exten-
sively studied in polymer physics39–41 and modeled in com-
puter simulations,42–47 colloidal gelation is still quite poorly
understood. Gelation arises when a stable particle network is
formed due to bonding. For chemical gels, bonds are irre-
versible, and thus gelation can be explained in terms of per-
colation theory. However, the bonds intervening in colloidal
aggregation have an energy typically of the order of kBT, as,
for example, bonds induced by depletion interactions. Thus
such bonds are mostly transient at finite attraction strength.
The existence of a finite bond lifetime creates a gap between
the location of the percolation line and the dynamic arrest
line. Earlier simulations on a lattice42,46,48 and off-lattice47

have discussed the effects of reversible bond formation on
the gelation process.

The quest for bond stabilization often calls for exploring
regions of very high attraction strength in the phase diagram
to increase the bond lifetime and promote gelation. However,
in this region, at low packing fraction � and at low T �or at
high u0 values�, a phase separation into gas �colloid poor�
and liquid �colloid rich� always takes place.49 Recent theo-
retical studies have addressed the question of the relative
location of the phase separation and of the attractive glass
line. It has been found50,51 that the attractive glass line meets
the spinodal at a finite temperature, on the high density side.
At low �, arrest in �spherically interacting� short-range at-
tractive colloids occurs only as arrested phase separation,
where the liquid phase is glassy, and hence the phase sepa-
ration cannot proceed fully.50 This scenario was found in
numerical simulations of the square well potential for a well
width ranging from 15% to arbitrarily small values,50–52 as
well as in Lennard-Jones potential.53 Gels as a result of in-
terrupted phase separation have been identified in
experiments54 and simulations.50,55,56 For extremely deep
quenches �at very low T� irreversible gelation may occur
through diffusion limited cluster aggregation.57–61

Other mechanisms must be invoked for stabilization of
thermoreversible gels and suppression of the spinodal line.62

A possibility is to consider the effect of residual charges on

the colloidal particles, which may produce a long-range re-
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pulsive barrier in the interparticle potential, thus efficiently
stabilizing the bonds and preventing the condensation of the
liquid phase. The emergence of an equilibrium cluster phase
has been recently evidenced both in experiments63,64 and
simulations31–33 on charged colloidal and protein suspen-
sions. A dynamical arrest transition then follows, driven by
electrostatic repulsions between the clusters31 or by cluster
branching and percolation.32,33

Very recently, forming a gel in equilibrium, without the
interference of phase separation, has been achieved by lim-
iting the number of attractive interactions �bonds� between
nearest neighbors. Following ideas first introduced by
Speedy and Debenedetti,65,66 a model for thermoreversible
gelation has been studied numerically.34 This model, in
which particles interact via a SW potential with the addition
of a geometrical constraint in the maximum number of bonds
nmax a particle can form, describes particles interacting via a
hard-core plus nmax randomly located sticky spots.67 In this
respect, the model retains the spherical symmetry but incor-
porates features of associating liquids.68 Other possibilities to
limit the number of bonded pairs implementing geometrical
constraints and retaining a spherical pair potential can be
found in Refs. 69 and 70, while the same basic ideas have
inspired recent work on self-assembly of
supermolecular/nanostructures.71,72 In the literature it is pos-
sible to find several related models, also based on limited
short-range attractions in which the bonding constraint is im-
posed via angular degrees of freedom, though the focus has
not always been on their dynamic properties.35,73–76 In gen-
eral, Ref. 34 puts forward the hypothesis that it is only when
a restricted part of the colloidal surface is active in the for-
mation of attractive bonds that dynamic arrest at low � can
be observed in the absence of a phase separation. An experi-
mental test of the previous hypothesis will hopefully be pro-
vided by the new generation of “patchy” colloids, or colloids
with “sticky spots,”77 which is about to be synthesized.

Understanding gelation at low densities in short-range
attractive models may also be relevant to the study of pro-
teins, since they are expected to belong to the class of short-
range attractive interacting systems.74,78 Indeed, the forma-
tion of arrested disordered states at low densities often
interferes with crystallization, and this is possibly one of the
reasons why proteins are often difficult to crystallize.79,80

In a recent Letter,34 we showed that the nmax model �de-
tailed in Sec. II below� allows us to study thermoreversible
gels. We showed that the signatures of the gel state, as, for
example, the nonergodicity factor fq, are quite distinct from
those of both the hard-sphere and the attractive glass. In the
present study, we explore the full-� dependence of dynamics
at low T for both nmax=3 and nmax=4. We observe a transi-
tion over a small range in � from a gel to a repulsive glass.
In Sec. II, we give details of the model and simulations.
Section III contains the results for the calculated phase dia-
gram and compares the relative location of the thermody-
namic and kinetic arrest lines. We also report static and dy-
namic correlation functions. In Sec. IV we discuss results

and in Sec. V conclusions are drawn.
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II. SIMULATION DETAILS

We perform event-driven molecular dynamics simula-
tions of N=10 000 particles of mass m=1 with diameter �
=1 �setting the unit of length� interacting via a limited-
valency square well potential. The depth of the well u0 is
fixed to 1, and the width � of the square well attraction is
such that � / ��+��=0.03. T is measured in units of u0, and
the unit of time t is ��m /u0�1/2. This system is a one-
component version of the binary mixture that has been ex-
tensively studied previously.23,50,81,82 In the following we
will use the acronym SW to indicate the � / ��+��=0.03
standard square well potential. The limited-valency condition
is imposed by adding a bonding constraint. The square well
form can be used to unambiguously define bonded particles,
i.e., particles with centers lying within � and �+� of each
other are bonded. The interaction between two particles, i
and j, each having less than nmax bonds to other particles, or
between two particles already bonded to each other, is thus
given by a square well potential,

Vij�r� = �� , r � � ,

− u0, � � r � � + �

0, r � � + � .
� �1�

When i and/or j are already bonded to nmax neighbors, then
Vij�r� is simply a hard-sphere �HS� interaction,

Vij�r� = �� , r � �

0, r � � .
	 �2�

The resulting Hamiltonian of the system has a many-body
term containing information on the existing bonds. Due to
the fact that the list of existing bonds is necessary at any
instant of the simulation, configurations are saved, storing
also the bond list. Moreover, all simulations are started from
high temperature configurations where all particle overlaps
are excluded within the attractive well distance �+�. In
cases of multiplicity of possible bondings, such as, for ex-
ample, when a bond is broken for a particle that was fulfill-
ing the nmax allowed bonds and more than one neighbor par-
ticle lie within its attractive well, a random neighbor, with
less than nmax bonds, is chosen to form the new bond.

The idea of constraining the number of square well
bonds a particle can form was introduced by Speedy and
Debenedetti.65,66 In contrast to their original version of the
model, where triangular closed loops were not allowed, in
the present model no constraints on minimal bonded loops
are introduced. Our model can be considered as a realization
of particles with nmax randomly located sticky spots.67 The
limited valency properly defines the ground state of the sys-
tems, corresponding to a potential energy per particle
−u0nmax/2. This is achieved when every particle has nmax

filled bonds. We note that fully bonded clusters of finite size
may occur. The smallest fully connected cluster sizes are 4
�tetrahedra� for nmax=3,6 �octahedra� for nmax=4, and 12
�icosohedra� for nmax=5. This introduces the intriguing pos-
sibility of forming a hard-sphere gas of such clusters at low
� and T, as seen from the simulations. We study in depth the

cases nmax=3 and 4, for which we already know that there
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exist significant differences in the location of the spinodal
lines as compared to the nmax=12 �or standard SW� case.

For all state points simulated, we first equilibrate the
system at constant T until the potential energy and pressure
of the system reach a steady state and the MSD reaches
diffusive behavior, i.e., during the equilibration time particles
move on average at least one particle diameter. A subsequent
constant energy simulation is used to gather statistics for all
reported quantities.

To estimate the equilibrium phase diagram, we calculate
the gas-liquid spinodal and the static percolation line. The
latter is defined as the locus in �� ,T� such that 50% of the
configurations possess a spanning, or percolating, cluster of
bonded particles. To characterize the structure and dynamics
of the system, we evaluate the static structure factor,

S�q� 
 ���q�0��2 , �3�

the mean squared displacement �MSD�,

�r2�t� 
 ��
i=1

N

�ri�t� − ri�0��2/N , �4�

the diffusion coefficient,

D 
 lim
t→�

��
i=1

N

�ri�t� − ri�0��2/6Nt , �5�

the dynamic structure factor, or density autocorrelation func-
tion,

Fq�t� 
 ��q�t��−q�0�/��q�0��−q�0� , �6�

and its long time limit or plateau value fq, i.e., the nonergod-
icity parameter. In all cases, �  denotes an ensemble average,
ri is the position vector of a particle, q is a wave vector,
i labels the N particles of the system, while �q�t�
=1/�N�i=1

N exp�−iq ·ri�.
Also, we monitor the bond lifetime correlation function,

averaged over different starting times and defined as

�B�t� = ��
i�j

nij�t�nij�0�/�NB�0�� , �7�

where nij�t� is 1 if two particles are bonded up to time t and
0 otherwise, while NB�0�
��i�jnij�0� is the number of
bonds at t=0. We note that �B counts which fraction of
bonds found at time t=0 persists at time t, without ever
breaking within the store rate of configurations. Associated
with �B�t�, we extract an estimate of the bond lifetime �B via
stretched exponential fits.

Although colloidal systems are more properly modeled
using Brownian dynamics, we use event-driven molecular
dynamics due to its efficiency in the case of stepwise poten-
tials. While the short-time dynamics is strongly affected by
the choice of the microscopic dynamics, the long term struc-
tural phenomena, in particular, close to dynamical arrest, are
rather insensitive to the microscopic dynamics.76,83 To have a
confirmation of this, we also performed additional simula-
tions where the effect of the solvent was mimicked by so-
called ghost particles.84 In particular, we studied a system of
1000 colloidal particles and 10 000 ghost particles and we

found that the long-time behavior of the dynamical quanti-
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ties, such as the T dependence of �B and the q dependence of
fq, are independent from the microscopic dynamics. We also
note that equivalence between Newtonian and Brownian dy-
namics is not guaranteed when studying small length scales
�as, for example, the decay of density fluctuations at large q�,
i.e., for intracage motion, since there the microscopic dy-
namics may affect the shape of the decay of the correlation
function. This is most relevant in gel systems for which the
cage length can be significantly larger than the particle size.

III. RESULTS

In this section we examine the results of our simulation
in terms of the thermodynamic and dynamic quantities men-
tioned above. We focus our attention on the cases nmax=3
and nmax=4, where a significant suppression of the liquid-gas
spinodal as compared to the SW case is observed.34 The
suppression of the critical temperature and the shrinking of
the unstable region in the �−T plane makes it possible to
study in one-phase conditions state points characterized by
an extremely slow dynamics. More precisely, it is possible to
study without encountering phase separation all �	0.2 for
nmax=3 and �	0.30 for nmax=4. In the SW case, phase
separation was encountered already at T�0.32, when par-
ticle mobility is always large.50

A. Phase diagram

References 34 and 62 show that constraining the number
of bonded neighbors reduces the energetic driving force for
particle clustering. Therefore, as nmax decreases, the phase
separation transition �that we monitor by studying its spin-
odal� and the percolation line both shift to lower T �along
isochores� and lower � �along isotherms�.

Figure 1 reports the percolation and spinodal loci for
nmax=3 �a� and nmax=4 �b�. To evaluate the location of the
spinodal line we interpolate the pressure P��� and search for
the condition dP /d�=0. To better track down the spinodal
and estimate the effect of the spinodal in its vicinity we also
determine the loci of constant S�q→0�, which we name “iso-
S�0� lines,” that can be considered as precursors of the spin-
odal line. Indeed, S�0� is connected to the isothermal com-
pressibility 
T= �d� /dP� /� by S�0�=�kBT
T. The iso-S�0�
lines are calculated as loci of constant �dP /d�� /kBT. We
cross-check these estimates with the less precise value ob-
tained calculating directly S�q→0�. The iso-S�0� lines are
shown to emphasize that, in bonded systems, an increase at
small q in the scattering intensity can arise in the one-phase
region due to the vicinity of the spinodal curve.

Figure 1 also shows isodiffusivity lines, i.e., lines where
D /�T is constant. The scaling factor �T is used to take into
account the trivial contribution of the thermal velocity with
T. The investigated values of D /�T cover four orders of
magnitude. Such isodiffusivity lines are precursors of the
dynamical arrest transition, corresponding to D→0. Previ-
ous works22,23,85 have shown that these lines provide esti-
mates of the shape and location of the arrest line. The isod-
iffusivity lines show an interesting behavior. They start from
the high-� side of the spinodal curve and then end up track-

ing the high-T hard-sphere limit. They are rather horizontal
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�parallel to the � axis� at low � and rapidly cross to a ver-
tical shape �parallel to the T axis� at high �. The crossing
from horizontal to vertical becomes sharper and sharper on
decreasing D /�T. In the SW case, the isodiffusivity lines
exhibit a reentrance in �, in agreement with the predictions
of MCT. The reentrance becomes more and more pro-
nounced at lower and lower D /�T values. In the nmax case, a
reentrant shape is hardly observed. Indeed, in the SW the
reentrance arises from the competition between cages created
by the nearest-neighbors excluded volume, with a typical
hard-sphere localization length �0.1�, and cages created by
bonding with a localization length ��. In the nmax case, such
a competition becomes less effective due to the smaller num-
ber of bonds.

B. Estimation of dynamical arrest lines

To provide an estimate of the dynamical arrest lines, we
can identify a range of parameters where the characteristic

FIG. 1. Phase diagram for �a� nmax=3 and �b� nmax=4. �b� showing the
spinodal �dashed lines with squares�, percolation �solid lines with open
circles�, isodiffusivity loci where D /�T=constant �lines with triangles�, and
“iso-S�0� lines” �dashed lines�. Also shown is the extrapolated glass line,
labeled as �c from power-law fits.
time follow a power-law dependence. In the case D is se-
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lected, data can be fitted according to D−1���=A��c

−��−��T�, where �c is the best estimate for the glass line.
Figure 2 shows in log-log scale D−1��� /�T vs ��c−�� for
nmax=3 and nmax=4, where the �c values are chosen by a
best-fit procedure. For ��c−���0.3, data are found to be
well represented by power laws for at most two decades in
D. The fits are performed over the range ��c−���0.3. The
T dependence of the fit parameters is also reported in Fig. 2.
The two fit parameters vary almost in phase with each other
for both nmax values. At high temperatures �T	0.3� attrac-
tion does not play a role, the arrest line is almost vertical,
and �c and � are practically constant. For T�0.3 smaller
values of �c and � are found. The values of � are rather
small at high T, close to the lowest possible value allowed by
MCT, and become smaller than the lowest possible value
allowed by MCT at low T. We note on passing that crystal-
lization limits the � range over which dynamic measure-
ments in �metastable� “equilibrium” can be performed. The
region where we detect crystallization varies with T. At high
T crystallization happens already for ��0.54, while at low
T, crystallization does not intervene up to �=0.56. Thus, we

FIG. 2. Power-law fit of inverse diffusivity D−1=A��c−��−��T� for �a�
nmax=3 and �b� nmax=4. The lines are guides to the eye. Insets �a-i� and �a-ii�
show the behavior of �c in the �−T plane. Insets �b-ii� and �b-ii� show the
exponent � as a function of T.
cannot fully rely on the high-T fits as �−�c is always large.
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Notwithstanding this, the estimate �c�0.58 is reasonable.
On the other hand, at low T, the vicinity to �c increases, but
the range of D values over which a power law can be fitted
decreases to about one decade, making the fit questionable.
The fact that � decreases well below the lowest meaningful
MCT value could tentatively be associated with difficulty of
the theory to handle the crossing to an energetic caging �see
also below�. The resulting �c�T� line is also reported in Fig.
1. Independently of the fitting procedure, a clear vertically
shaped arrest line, driven mostly by packing, is observed on
isothermal compression.

To provide a better estimate of the arrest line at low �
we have studied the behavior of D with T along isochores.
We have tried two routes. The first one consists in perform-
ing again power-law fits but in temperature along an isoch-
ore, i.e., D�T��A�T−Tc��T, selecting an appropriate T inter-
val. For both nmax=3 and 4, such fits appear to hold for a
rather small interval in D and are strongly dependent on the
T interval selected in the fit procedure. In this way, we can-
not extract a reliable estimate for Tc. Indeed, for the same
state point Tc could vary from 0.2 to 0.08 depending on the
fitting interval. However, fixing a T interval of fitting for all
isochores, the resulting Tc��� is again rather flat for both
nmax values. The second route is more robust and is based on
the observed low-T behavior, where data are found to follow
very closely an Arrhenius law. Figure 3 shows D as a func-
tion of 1 /T, for both nmax=3 and 4. Arrhenius behavior of D
is observed at all � at low T. The activation energy is around
0.45 for nmax=3 and 0.55 for nmax=4. Since at the lowest
studied temperatures the structure of the system is already
essentially T independent �see later on the discussion con-
cerning Fig. 5�, there is no reason to expect a change in the
functional law describing the T→0 dynamics. In this re-
spect, the true arrest of the dynamics is located along the T
=0 line, limited at low � by the spinodal and at high � by
crossing of the repulsive glass transition line. This peculiar
behavior is possible only in the presence of limited valency,
since when such a constraint is not present, phase separation
preempts the possibility of accessing the T→0 Arrhenius
window.

We can summarize the dynamical arrest behavior in Fig.
4. One locus of arrest is found at high �, rather vertical and
corresponding to the hard-sphere glass transition. The isod-
iffusivity lines suggest a rather flat arrest line. Two different
loci could be associated with arrest at low T. One defined by
the Tc of the power-law fits and one at T=0 associated with
the vanishing of D according to the Arrhenius law. Notwith-
standing the problem with the power-law fits and the big
undeterminacy on Tc, it would be tempting to associate the
Tc line to the attractive glass line, at least as a continuation of
it at low �, and interpret the wide region between the two
lines as a region of activated bond -breaking processes.81

Reference 34 showed that arrested states at low � and T
are profoundly different from both attractive and hard-sphere
glasses. Data reported in the next sections will show that, in
the present model, the identification of such line with an
attractive glass line �or its extension to low density� is not
valid, independently of the fit results. Indeed, we will show

that, in this system, particles are never localized within the
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attractive well width �, at any �. On the other hand, the
establishment of a percolating network of long-lived bonds,
that we will refer to as a gel is identified. We refer the reader
to a future work to compare these results with corresponding
MCT predictions for the same model.86

C. Static structure factor

This section reports results for the static structure factors
for various studied T and � and both nmax=3 and nmax=4.
Results along an isochore and an isotherm are general for
both studied nmax values.

Figure 5�a� shows the evolution with temperature of S�q�
at the lowest accessible � �i.e., the lowest � where phase
separation is not present�. On lowering T, S�q� shows an
increase of the intensity at small wave vectors, which satu-
rates to a constant value when most of the bonds have been
formed. This indicates that the system becomes more and
more compressible, with large inhomogeneities, characteriz-
ing the equilibrium structure of the system. The inhomoge-
neities can be seen as an echo of the nearby phase separation

FIG. 5. �a� Evolution of the static structure factor S�q� with T for the �
=0.20 isochore for nmax=3. Below T=0.125 the system has reached an
almost fully connected state and S�q� does not change any longer with T; �b�
evolution of the static structure factor S�q� with � for the T=0.125 isotherm
for nmax=4.
FIG. 3. Arrhenius plot of D for �a� nmax=3 and �b� nmax=4 along all studied
FIG. 4. Summary of the thermodynamic and kinetic phase diagram for
nmax=3, including spinodal �dashed lines with filled circles�, isodiffusivity
loci where D /�T=0.005 and 0.0005 �lines with triangles and squares�, iso-
S�0� locus where S�0�=1.5, extrapolated glass �labeled as �c�, and gel �la-
or, equivalently, as a consequence of building up a fully con-
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nected network of particles with low coordination number.
The large signal at small q is a feature of S�q� which is often
observed in gel samples.28,87 However, sometimes it may be
difficult to discriminate between a true equilibrium gel and
an arrested state generated through spinodal decomposition.
In the present model, where phase separation is confined to
the low-� region of the phase diagram, it is possible to reach
in equilibrium extremely low T, i.e., a condition where the
bond lifetime is significantly long, making it possible to
study reversible gel formation.

Besides the low-q growth, on cooling S�q� shows a pro-
gressive structuring of peaks at q��2 and multiples
thereof, signaling the fact that particles progressively be-
come more and more correlated through bond formation. In-
deed, the potential energy of the system progressively ap-
proaches the ground state value, where all particles have nmax

bonds.88 Figure 5�b� shows the evolution of S�q� on increas-
ing � along a low-T isotherm. Moving further from the spin-
odal, the q→0 peak decreases. A small prepeak, around
q��3, is present at low densities, and persists with smaller
intensity also at intermediate �. Beyond ��0.45, a signifi-
cant growth of the nearest-neighbor peak is found, signaling
the increasing role of packing.

D. Mean squared displacement and caging

One of the hallmarks of glassy dynamics is the caging of
a particle by its immediate neighbors. Caging is most easily
seen in a log-log plot of the mean squared displacement
�MSD� versus time as an intermediate time plateau, separat-
ing short-time ballistic intracage motion and long-time diffu-
sion out of the cage. The height of the plateau in the MSD
provides a typical �squared� value for the localization length
l0 of the particles within the arrested state. For the standard
HS glass, l0 is found to be roughly 0.1� and corresponds to
the average distance a particle can explore rattling within its
nearest-neighbor cage. For an attractive glass, on the other
hand, l0 corresponds to the attractive well width, since par-
ticles are forced to rattle within the bond distance. For this
reason, the MSD plateau is significantly smaller than for the
HS glass �of the order �2�10−3 vs �0.1��2�10−2�. For the
same reason, the q width of fq is significantly larger for the
attractive glass solution than for the repulsive one.

In the low-� study reported in Ref. 34, on isochoric
cooling a clear plateau develops in the MSD, but its value
indicates a very high localization length, of the order of one
or more particle diameters. The localization length does not
change appreciably with T, even below Tc. We attributed this
finding to the presence of a long-living percolating network
of particles allowing for ample single particle movements
�arising from the gel “vibrational” modes� which completely
mask the bond localization. In this respect, the connectivity
of the network plays an important role in the slowing down
and provides an additional mechanism of arrest with respect
to both attractive and repulsive glasses.

Here we study the high-� behavior with the aim of lo-
cating the crossover from low-� arrest �gel� to the high-�
case and to see if a crossover or transition emerges to one of

the above cited glasses. Results for the � dependence of the
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MSD along a low-T isotherm are presented in Fig. 6 for
nmax=3 and 4. Both graphs show similar features. A very
high plateau of order unity, slightly decreasing with �, is
found up to ��0.45. Although the long-time dynamics is
monotonically slower with increasing �, the plateau be-
comes less defined near �=0.50, slowly crossing over to a
quite distinct plateau compatible with the HS one at �
=0.55 for nmax=4 and at �=0.56 for nmax=3.

The cage length l0 can be defined as the square root of
the MSD value at the inflection point of the MSD in log-log
scale. We plot l0 in the insets of Fig. 6. The cage length starts
from values larger �nmax=3� or close �nmax=4� to � and pro-
gressively approach the HS limiting value 0.1�.

In a window of � values, the crossover between the two
plateaus in the MSD displays a subdiffusive behavior for up
to two decades in time, i.e., �r2� t�, with a state-point de-
pendent exponent ��1. A similar behavior was found in the
simulations of the SW system,23,82 in a limited T window,
within the liquid reentrant region. In the SW case the subdif-
fusive behavior is found for MSD values between �2 �the
bond cage� and 10−2�2 �the HS cage� and it is due to a
competition between attractive and HS glasses at low and

FIG. 6. Mean squared displacement �MSD� and caging. �a� MSD along T
=0.1 for nmax=3; �b� MSD along T=0.125 for nmax=4. The insets show the
localization length l0 as a function of �, with the dotted line as guide to the
eye. The dashed lines highlight subdiffusive behavior at intermediate �.
high T. Explicit MCT predictions have confirmed this
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feature,89 connecting it with the presence of a nearby higher
order singularity. In the present case it appears that the sub-
diffusive behavior arises from the competition between the
very different localization lengths of the gel-arrested network
and the HS glass. The MSD phenomenology is reminiscent
of that found in the presence of a higher order MCT
singularity.90 It is possible that the subdiffusive behavior
�and other features such as the logarithmic decay of the den-
sity autocorrelation functions discussed later on� arises ge-
nerically from the competition between two disordered ar-
rested states.

E. Density relaxation, bond relaxation,
and nonergodicity

We now focus on the behavior of the density autocorre-
lation functions Fq�t�. Reference 34 called attention on the
different time dependences of the low- and high-q windows.
At small q, dynamics slow down significantly and become
nonergodic, while at larger q �already on the scale of nearest
neighbors� dynamics remain ergodic to within numerical ac-
curacy. At low density, the nonergodicity parameter for the
gel is different from that of either the repulsive or attractive
glass. We now investigate the effect of density on these find-
ings.

To provide a picture of the behavior of the dynamics at
low T as a function of � we plot in Fig. 7 the density corr-
elators for three different values of q, corresponding to dis-
tances, respectively, much larger, larger, and comparable to
the nearest-neighbor distance �. In addition, we report the
behavior of the bond correlation function �B�t� at the same
low T, for small and large �.

The � evolution of the shape of the correlation function
is particularly complex. At very small q�q��1�, all correla-
tion functions show a clear plateau, followed by the
�-relaxation process. Interestingly, the plateau value has a
nonmonotonic behavior with �. It starts from a high value at
the lowest � and decreases down to less than 0.1 before
increasing again on approaching the hard-sphere glass. At the
present time, we have no explanation for these trends.

Even more complicated is the q��3 case. The plateau
value first increases with �, then a reversal of the trend is
observed at �=0.40 where the plateau height starts to de-
crease. Such a decrease persists up to �=0.50, after which a
distinguishable plateau almost disappears. Correlators are
higher at comparable times and become almost logarithmic
for up to three time decades. At �=0.56, a clear repulsive
glassy behavior is recovered.

Much simpler is the interpretation of the last case, q�
�7 �and larger q�. Here, the standard scenario for the repul-
sive glass is observed, despite the presence of a connected
long-living network of bonds. The absence of any detectable
�within our numerical precision� plateau at small length
scales and low � confirms the ability of the particles to ex-
plore distances smaller than � without any constraint. This is
an effect of the loose character of the network, of the small
overall � �as compared to the typical HS glass values�, and
of the small local degree of connectivity.
Focusing on the behavior of �B�t�, we find that the

Downloaded 28 Mar 2006 to 141.108.6.191. Redistribution subject to
curves follow closely, at all studied �, a simple exponential
law, i.e., a stretched exponential fit gives an exponent � al-
ways close to 1 �tending to 1 with decreasing T�. From the
figures, it is evident that bond relaxation is always much
slower as compared to density relaxation even for very small
q. This suggests that, up to at least a time of order 10, the
density relaxation is coupled to the movements of a perma-
nent network which, without breaking most of its bonds, is
capable of spanning a large part of the simulation box. At
longer times, the breaking of the bonds enters into play, pro-
ducing a secondary very slow relaxation in Fq�t�, accompa-
nied by a very small plateau, as is evident in panels �a� and

FIG. 7. Density autocorrelation functions for T=0.1 and nmax=3 at various
� and q��1, 3, and 7. Also, bond correlation functions �B�t� �dashes lines�
at small and large � are reported in all three panels for comparison.
�b� for small q.
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On increasing nmax, the same features for Fq�t� are ob-
served at a progressively larger q. An example is reported in
Fig. 8 for the case q��8. Here, around �=0.52 a logarith-
mic decay for about two time decades is observed. At this
wave vector, corresponding to lengths smaller than the
nearest-neighbor one, the nonmonotonic behavior of the pla-
teau is not present anymore.

To better grasp the logarithmic behavior observed in
Figs. 7 and 8, in Fig. 9 we show the q dependence of Fq�t� at
�=0.54, i.e., the � showing the most enhanced log�t� depen-
dence, for nmax=3. We note that the best �long-lasting� log�t�
dependence is seen in a finite window of q values, roughly
between 3�q��6, and it covers about three orders of mag-
nitude in time. Again, on increasing nmax this q window
shifts to larger q �approximately between 8�q��10�.

A possible quantification of the characteristic time of the
dynamics and of the nonergodicity parameter is provided by
stretched exponential fits �Fq�t�= fq exp− �t /�q��q� of the long
time decay. This fit allows us to extract information on the
behavior of the nonergodicity parameter fq, as well as on the
stretching exponent �q, and an estimation of the relaxation
time �q. Still, in a certain region of � and q values, the decay

FIG. 8. Density autocorrelation functions for T=0.125 and nmax=4 at vari-
ous � and q��8.

FIG. 9. Density autocorrelation functions for T=0.1, �=0.54, and nmax=3 at
various q�. A log�t� behavior is observed for 3�q��6 for up to three time

decades.
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of the correlators is clearly different from a stretched expo-
nential, being Fq�t� essentially linear in log�t�. Under these
conditions we cannot fit the density correlators and estimate
the nonergodicity parameter.

Figure 10 shows fq along the low-T isotherm for nmax

=3 and 4 for several �. In both cases, a different nonergodic
behavior at low and high � is evident. At low �, fq is largest
at q→0, then decays rapidly to zero within a range of about
5 in units of q�. With increasing �, the overall height of fq

decreases, but a small peak starts to form at larger q, which
is still of the order of a few q�. This behavior roughly fol-
lows that of S�q�, for which the low q increase turns to a
small peak at finite q �see, for example, in Fig. 5�b��. At large
� the shape of fq closely resembles that of a hard-sphere
system, with the first peak around q��2, i.e., the nearest-
neighbor length scale.

At intermediate �, we observe a slightly different behav-
ior between the two studied values of nmax. As discussed
before, for nmax=3 and 0.45���0.55, we cannot estimate
fq from the fits. The reason for this is that Fq�t� displays
unusual features, such as a logarithmic decay at certain q
followed by a secondary relaxation reminiscent of the gel
type. Figure 10 shows that a sharp transition in the q depen-

FIG. 10. Nonergodicity factor, obtained from stretched exponential fits, at
various � for �a� T=0.1 and nmax=3 and �b� T=0.125 and nmax=4.
dence of fq takes place between 0.45���0.55, which we
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associate with the gel to glass transition. For nmax=4 there
seems to be a smoother transition although a similar non-
monotonic behavior of fq with � at low q is observed.

We further note that the relaxation time �q, extracted
from the fits or otherwise, monotonically increases with �
despite the nonmonotonicity in the plateau. The behavior of
�q with � at low T is shown in Fig. 11 at the q values
discussed above for nmax=3, together with the corresponding
behavior for the bond relaxation time �B. Apart from the fits,
�q can be also conventionally defined as the time at which
the normalized correlators are equal to an arbitrary �low�
value, which is chosen for convenience as 0.1. Doing so, for
q��7, we find that �q follows a typical, for glass-forming
systems, power-law dependence on � �also shown in the
figure�, with critical �c of 0.562 and exponent ��2.5. This
result for �c is quite consistent with that extracted from the
diffusivity fits discussed earlier. However, on lowering q, the
situation becomes more complicated. At q��3, the conven-
tional arbitrary value of 0.1 is too high, since the correlators
display smaller plateau values. Thus, in Fig. 11 we report �q

obtained both from the fits and by choosing a conventional
value of 0.01. The results are parallel to each other and do
not show a power-law behavior. Rather there seems to be a
crossover regime at intermediate �. However, the relaxation
time is monotonically increasing at this length scale of ob-
servation, despite the nonmonotonic behavior of the plateau.
At even lower q, e.g., q��1, we cannot define a satisfying
finite value for Fq�t�, below the plateaus at all studied � and
numerically detectable. Also the fits cannot be relied on at
high densities. As shown in the inset, it seems that �q does
not vary strongly with �, and indeed all correlators �see Fig.
7�a�� seem to meet at Fq�t�=0 at around the same value of t,
up to �=0.52.

A sensible estimate of �B is simply obtained by stretched
exponential fits of �B�t�. �B is always longer than the density
relaxation time at all q, as remarked above. Moreover, the
increase of �B upon � is rather small, indicating that bonds

FIG. 11. � dependence of the density relaxation time �q at q��1, 3, and 7
vs bond relaxation time �B �triangles� at fixed T=0.1 for nmax=3. �q are either
extracted from stretched exponential fits or via the relation Fq��q�=0.01
�q��3� and Fq��q�=0.1 �q��7�. In the latter case, the dashed line is a fit
of the data to a power law ��−�c��.
are slightly stabilized by crowding. �B is completely decou-
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pled from �q at large q, while it becomes coupled to �q at
small q, the data being almost parallel, and, it seems that in
the limit q→0, the two relaxation times would coincide.
Once again, we associate the large �B with the very slow
secondary relaxation observed for density correlators at
small q �see, for example, q��3 and 0.50���0.55 in Fig.
7�b��.

A final observation concerns the behavior of �q extracted
from the fits, outside the logarithmic regimes. We find at
high q �q��7� and low � that values of �q are larger than 1,
actually close to 1.5, associated more with a compressed than
a stretched exponential.29,91,92 However, this value decreases
below 1 for high � and large q, while it tends to be 1 for low
� and low q �q��7�. We note that care has to be taken
when exponents greater than 1 are found in Newtonian dy-
namics, since they could arise from undamped motion of
clusters �possibly of rotational origin�, or elastic motion
within the percolating structure. A comparison with a Brown-
ian dynamics simulation may help to clarify this issue.

Additionally, we focus on the T dependence of the den-
sity correlators. In Ref. 34, we discussed the T dependence
along the lowest isochore �=0.20. There, we found that only
at low enough q was there an emergence of a gel plateau at
low T and that, in this region of wave vectors, the density
relaxation time �q and the bond relaxation time �B both fol-
lowed an Arrhenius law. On increasing density, there is the
gel to glass crossover, which is clearly visible by looking at
the T behavior of Fq�t�, as shown in Fig. 12. Up to �
=0.45 a clear gel plateau is approached. Beyond this value,
the anomalously slow logarithmic decay is observed, at its
best for �=0.54, reported in Fig. 12�a�. Above this �, e.g.,
�=0.55 in Fig. 12�b�, a crossover from logarithmic to stan-
dard glass regime �i.e., typical two-step relaxation� is ob-
served. A clear difference between these two graphs is the
fact that at �=0.54 pure logarithmic decay is observed up to
the lowest T, while at �=0.55 a kink, evidence of the nearby
glass transition, is present. We also note that, interestingly,
the shape of the correlators in Fig. 12�b� is very reminiscent
of the MCT predictions and simulation results for the SW
model of Fig. 11 in Ref. 13 and Fig. 6 in Ref. 23, respec-
tively, for fixed temperature in the reentrant region and vary-
ing density. Here, the analogous plot is reported, at a density
within the gel to glass crossover and varying T. Again, this
suggests a close similarity of the features at the gel to glass
crossover with respect to the SW crossover from repulsive to
attractive glass.

Finally, both the relaxation time �q and the bond relax-
ation time �B are found to obey Arrhenius dynamics in T at
all �.

IV. DISCUSSION

The interpretation of the results reported so far is not
completely straightforward. However, they strongly suggest
that the system gels at low � and forms a glass at high ones.
It is important to understand what happens in between these
two regimes, where a new type of relaxation takes place, as a
result of the competition of the two effects. Similarly to the

simple short-range SW case, where anomalous dynamics
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arises in the reentrant liquid region from the competition
between attractive and repulsive glass, here again anomalous
dynamics is generated from the presence of two distinct ar-
rested states. However, in the attractive versus repulsive
glass scenario, temperature is the control parameter generat-
ing a liquid pocket in between. Here � is the control param-
eter. We have to bear in mind that at T=0.1 the energy per
particle of the system for nmax=3 varies from about −1.48 at
�=0.20 to about −1.495 at �=0.56, indicating that most of
the particles ��99% � are fully bonded �i.e., they have
reached the nmax limit already�. With increasing �, more
neighbors surround each particle but only nmax of them inter-
act via an attractive well, the others probing only the hard-
core interaction. Thus we cannot expect a nonmonotonic �
dependence of the characteristic time �i.e., no reentrance�.

Where does the logarithm/subdiffusivity come from? A
more intuitive understanding of the anomalous dynamics re-
sults from interpreting the MSD behavior. If one thinks sim-
ply of a filling up of space, the MSD plateau should mono-
tonically decrease and no subdiffusive behavior should be
observed. However, at ��0.54 a clear t� law is observed.
After the ballistic regime, particles start to feel the presence

FIG. 12. Density autocorrelation functions for nmax=3 at various studied T
for �a� �=0.54 and q��4.4 �maximally enhanced log�t� behavior� and �b�
�=0.55 and q��3 �interference between log�t� behavior and standard
glasslike � relaxation�.
of the nearest neighbors and the MSD slows down. At long
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times, particles are able to break and reform the bonds, the
network fully restructures itself, and proper diffusion is ob-
served. In the intermediate time window one observes the
competition between excluded-volume confinement and ex-
ploration of space associated with the motion of the unbro-
ken network. We believe that this is at the origin of the
anomalously slow diffusion and logarithmic decay.

To support this hypothesis we note that the logarithmic
decay shows up only in a window of small q significantly
less than the nearest-neighbor inverse length �i.e., over dis-
tances where connectivity is probed�. On increasing nmax,
this length becomes smaller due to the higher degree of con-
straint for the network, in the same way as the localization
length, estimated from the MSD, decreases. However, we
recall that in the SW system such anomalous log�t� decay
was observed for very large q, associated with the typical
distance of the short-range attraction. This provides further
evidence that in the nmax case the connectivity of the network
is associated with generating unusual log�t� features and con-
firming that the width of the attractive well does not play any
significant role.

A final comment is needed regarding the existence of the
so-called higher order MCT singularity. In the SW case, the
width of the attraction � is the crucial control parameter
driving the system close to the singularity. In the nmax case, �
does not play a relevant role. It is intriguing to ask ourselves
which parameter plays the role of � if the gel to glass cross-
over belongs to the same class of models possessing a higher
order MCT singularity. One possible answer is nmax itself.
Indeed, we noted that the characteristic length scale to ob-
serve logarithmic behavior in Fq�t� shifts with increasing
nmax. Within our present knowledge, this is found at q��4
for nmax=3 and q��8 for nmax=4. We also know that for the
SW, where the competition between repulsive and attractive
glasses is present, such length scale moves up to q��20.82

The possible existence of a smooth crossover between the
two phenomena could be theoretically investigated with
simulations. However, the existence of the higher order sin-
gularity in the present model is destined to be uncertain,
unless some theory is devised for the gel transition and its
predictions tested against the simulations.

V. CONCLUSIONS

Understanding the slowing down of the dynamics in col-
loidal systems and the loci of dynamic arrest in the full �
−T plane, encompassing gel and glass transitions, is one of
the open issues in soft condensed matter research. Two
classes of potentials have been explored in some details in
the recent years: �i� short-range attractive spherical potentials
and �ii� short-range attractive spherical potentials comple-
mented with a repulsive shoulder. In the first case, it has been
shown that low-� arrested states arise only as a result of an
interrupted phase separation. The second case appears to be
much more complicated and partially unresolved. For certain
values of the parameters of the repulsive potential the system

separates into clusters �which can be interpreted as a meso-
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scopic interrupted phase separation� and dynamic arrest at
low � can follow from a cluster glass transition or from
cluster percolation.

In the attempt to provide an accurate picture of dynamics
and a model for dynamic arrest at low � in the absence of
phase separation �both at the macroscopic and mesoscopic
level� we present here a study of a minimal model of gel-
forming systems. The model builds up on the intuition that
phase separation is suppressed when the number of interact-
ing neighbors becomes less than 6, since the energetic driv-
ing force for phase separation becomes less effective.93 To
retain the spherical aspect of the potential, a standard SW
interaction potential is complemented by a constraint on the
maximum number nmax of bonded neighbors �a model simi-
lar to the one first introduced by Speedy and
Debenedetti�.65,66

In this manuscript we have presented a detailed study in
the �–T plane of the dynamics for nmax=3 and nmax=4. For
these two values of nmax the region of phase diagram where
unstable states �with respect to phase separation� are present
shrinks to T�0.1 and ��0.3, making it possible to ap-
proach on cooling low-� arrested states, technically in meta-
stable �with respect to crystallization� equilibrium. The sim-
plicity of the model makes it possible to study it numerically
even at very low T and estimate, with accuracy, the low-T
fate of the supercooled liquid. It becomes possible to predict
the regions in the phase diagram where disordered arrested
states are kinetically stabilized as compared to the lowest
free energy crystalline states.

Dynamics in the nmax model is also important because it
provides a zeroth order reference system for the dynamics of
particles interacting via directional potentials. These systems
include globular protein solutions �hydrophilic/hydrophobic
patches on the surfaces of proteins�, the new generation of
patchy colloids, and, at a smaller scale, network-forming liq-
uids. In this respect, the nmax model allows us to study the
generic features �since it neglects the geometric correlations
induced by directional forces� of particle association. It has
the potential to provide us with an important reference frame
to understand dynamical arrest in network-forming liquids
and the dependence of the general dynamic and thermody-
namic features on the number of patchy interactions.

One of the important results of the present model is con-
tained in Fig. 1, which shows the locus of isodiffusivity in
the �−T plane. These lines, which provide an accurate esti-
mate of the glass transition line �D→0� are found to be
essentially vertical at high �, in correspondence to the HS
glass transition, and essentially horizontal at low T. Only a
very weak, almost negligible, reentrance in � is observed.
Extrapolating the D dependence by power laws in � and by
Arrhenius laws in T, we estimate the glass lines. The Arrhen-
ius law is found to be valid for many decades, suggesting
that, at intermediate �, D vanishes only at T=0. Data
strongly support the possibility of two distinct arrest transi-
tions: a glass of the HS type driven only by packing at high
� and a gel at low T.94

We have chosen the word gel to label arrest at small and
intermediate � since the analysis of the simulation data con-

firms that the establishment of a network of bonded particles
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and the network connectivity plays a significant role in the
arrest process. While particles are locally caged by SW
bonds with nmax neighbors �and in this respect one would be
tempted to name it an attractive glass�, particle localization is
not only controlled by bonding. Bonded particles are free to
explore space �retaining their connectivity� until they are
limited by the network constraints. Indeed, the plateau of the
MSD is, especially at the lowest �, larger than the particle
size. We remark that the bond localization, typical of the
attractive glass case, is not observed throughout the phase
diagram, neither in the MSD nor in the width of fq. We
believe this is due to the fact that, although bonding is
present, particles are confined by the potential well only rela-
tive to each other. The network connectivity length is the
quantity that enters into the determination of the localization
length in the arrested state. On increasing �, the localization
length progressively approaches the one characteristic of the
hard-sphere glass, signaling that a crossover to the excluded-
volume case takes place.

The intersection between the repulsive glass and gel loci
appears to be associated with anomalous dynamics. No inter-
mediate liquid state, i.e., no reentrant regime in �, is found.
Interestingly enough, these anomalies are strongly reminis-
cent of the anomalies observed close to the intersection of
the attractive and repulsive glasses in the case of short-range
interacting particles. Correlation functions show a clear
log�t� dependence in a window of q vectors and the MSD
shows a clear subdiffusive behavior �t�. Here, the gel local-
ization length is larger than that of the HS glass, a different
scenario from the attractive-repulsive case. These results
support the hypothesis that a possible MCT-type higher order
singularity in the nmax model is present and, at the same time,
provides further support to the intrinsic difference in the lo-
calization mechanisms that are active for the two arrested
states. In contrast to the SW case, the well width is not a
crucial length scale in the problem, while an important pa-
rameter is nmax, that could be the control parameter of a
putative higher order singularity of the MCT type.

One further consideration refers to the role of � in the
nmax model. We have chosen to use �
� / ��+��=0.03 to
connect with the well studied corresponding SW case. We do
not expect significant differences for the two arrested states
for � values up to ��0.1–0.2, since the connectivity prop-
erties would be essentially identical. Thus, we still expect the
existence of distinct gel and glass lines. Only the interplay
between the two could be affected, as, for example, the log�t�
behavior should be shifted in its q dependence. Also, in that
case, the behavior with nmax is not a priori clear, since for
larger � values no MCT singularity is present for the SW
model and, from a theoretical point of view, the attractive
glass line is not physically distinct from the repulsive one.

In summary, the present model provides a clear indica-
tion that even if liquid-gas phase separation can be avoided
and arrest at low � can be explored in equilibrium condi-
tions, the observed arrested state is not the low-� extension
of the attractive glass. The present results strongly suggest
that the attractive glass is an arrested state of matter which
can be observed in short-range attractive potentials only at

relatively high �, being limited by the spinodal curve. When
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the interparticle potential favors a limited valency, arrest at
low � becomes possible but with a mechanism based on the
connectivity properties of a stable particle network, clearly
different from what would be the extension of the �attractive�
glass line.
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