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We report extensive Monte Carlo and event-driven molecular dynamics simulations of a liquid composed of
particles interacting via hard-sphere interactions complemented by four tetrahedrally coordinated short-range
attractive (“sticky”) spots, a model introduced several years ago by Kolafa and Nezbeda (Kolafa, J.; Nezbeda,
I. Mol. Phys.1987, 87, 161). To access the dynamic properties of the model, we introduce and implement a
new event-driven molecular dynamics algorithm suited to study the evolution of hard bodies interacting,
beside the repulsive hard-core, with a short-ranged interpatch square well potential. We evaluate the
thermodynamic properties of the model in deep supercooled states, where the bond network is fully developed,
providing evidence of density anomalies. Different from models of spherically symmetric interacting particles,
the liquid can be supercooled without encountering the-¢igaid spinodal in a wide region of packing
fractionsg. Around an optima, a stable fully connected tetrahedral network of bonds develops. By analyzing
the dynamics of the model we find evidence of anomalous behavior: around the optimal packing, dynamics
accelerate on both increasing and decreagingye locate the shape of the isodiffusivity lines in tige{ T)

plane and establish the shape of the dynamic arrest line in the phase diagram of the model. Results are
discussed in connection with colloidal dispersions of sticky particles and gel-forming proteins and their ability
to form dynamically arrested states.

I. Introduction separation. This favors the establishment of a spanning network
This paper presents a detailed numerical study of the of long-living bonds, which in the colloidal community provides

thermodvnamics and the dvnamics of a model introduced sever Iindication of gel formation but which, in the field of network-
ermodynamics a € dynamics ot a mode Infroduced seve aforming liquids, would be rather classified as glass formation.
years ago by Kolafa and Nezbédas a primitive model for

water (PMW). The model envisions a water molecule as a hard The study of the dynamics of the PMW provides a test of the

) Nmax = 4 results, in the absence of many-body interactions and
fphere" (HS) having a surface qlecorated by four short rangedin the presence of a geometric correlation between the bonding
sticky” spots, arranged according to a tetrahedral geometry,

two of which mimic the protons and two the lone-pairs. Despite sites, retaining the maximum valency. This paper, by reporting
. L L . results on a model that can be at the same time considered to
its original motivation, the Kolafa and Nezbeda model is

. . . - ._ be a simple model for the new generation of patchy colloids or
representative of the larger class of particles interacting via oL .
; o ) . for network forming liquids, starts to bridge the gap between
localized and directional interactions, a class of systems thatthese wWo fields
includes, besides network-forming molecular systems, also " . o
proteing~4 and newly designed colloidal particledndeed, Thermodynamic and structural properties of several primitive
recent developments in colloidal science are starting to provide Models for water (and other bondegi‘,g/stems) have been studied
particles with specific directional interactioh#n the same way N detail during the past 30 yeatd? *° because this type of
as sterically stabilized colloids have become the ideal experi- Primitive model h?S.befgzme one of the landmarks for testing
mental model for realizing the hard-sphere fluid, novel physical thepr|%si7of associatioft-?? In particular, the theory of Wer-
chemical techniques will soon make available to the community theim®1” has been carefully compared to early numerical
colloidal analogues of several molecular systems. A colloidal Studies, suggesting a good agreement between theoretical
water is probably not far from being realized. predictions and numerical data in the temperature and packing
Recent work has focused on the dynamics of colloidal fraction regions where it was possible to achieve numerical
particles interacting with a restricted number of nearest neigh- €quilibration:> Recently, the increased numerical facilities,
bors. In refs 7 and 8 particles are interacting via a limited- extending the range of studied state points, have clarified that
valency square well mod@t! imposing a many-body constraint deviations from the theoretical predictions start to take place
on the maximum numbenmay of bonded interactions. It has &S Soon as the number of bonds (between different patches) per

been found that whenmax < 6, a significant shrinking of the molecglzes increases and a network of bonded particles ap-
liquid—gas (or colloidal rich-colloidal poor) spinodal takes ~ Pears:®*Geometric correlations between different bonds, not
place. A window of packing fraction values opens up in which included in the theory, are responsible for the breakdown of
it is possible to reach very low temperature (and hence statesthe theoretical and numerical agreement. Attempts to extend

with extremely long bond lifetimes) without encountering phase the perturbation theory beyond first order do not appear to be
able to solve the probled®.The PMW is a good candidate for

* Dipartimento di Fisica and INFM-CRS-SOFT. Festing new theories of as_sociation _and, for this reason, it is
8 Dipartmentoi di Fisica and INFM-CRS-SMC. important to clearly establish numerically the IGwbehavior
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of the supercooled liquid state. The equilibrium PMW phase uniformly betweent0.5 radiant. Equilibration was performed
diagram, recently calculaté@jncludes two crystal regions and ~ with MC and monitored via the evolution of the potential energy
a metastable fluid-gas coexistence. (a direct measure of the number of bonds in the system). The
All previous studies of primitive models for sticky directional mean square displacement (MSD) was also calculated to
interactions have focused on thermodynamic and static proper-guarantee that each particle has diffused on average more than
ties of the model. However, the ability to fully exploit the fast its diameter. In evaluating the MSD we have taken care to
developments taking place in colloidal phygte® requires subtract the center of mass displacement, an important correction
understanding of not only the equilibrium phases of systems of in the low T long MC calculations. At lowT simulations
patchy particles and their modifications with the external fields required>10° MC steps, corresponding to several months of
but also the kinetic phase diagr&fthat is, the regions in phase CPU time. Here a MC step is defined Bsattempts to move
space where disordered arrested states can be expected, antranslation and rotation) a randomly selected particle.
when and how these states are kinetically stabilized with respect We have also performed ED molecular dynamic simulations
to the ordered lowest free energy phases. In this respect, it isof the same system, modeling particles as constant density
worth starting to establish the dynamic properties of simple spheres of diameterand massn. The momentum of inertia is
models of patchy interactions, because the simplicity of these diagonal and equal tmo?/10. The algorithm implemented to
models (based on hard-sphere and square well interactions) hav@ropagate the Newtonian trajectory in the presence of patchy
the potential to provide us with an important reference frame square well interaction is described in detail in Appendix VII.
and may play a relevant role in deepening our understandingm ED dynamicsl time is measured in units of/m/uo_
of the dynamic arrest in network-forming liquids. Questions Assuming asn the mass of the water molecule, @sa typical
concerning arrest phenomena associated with gel form&fion  value for hydrogen bond~20 kJ/mol), and as the nearest-
(i.e., the establishment of a percolating network of long-lived neighbor distance in water (0.28 nm), the unit of time corre-
bonds), arrest related to excluded volume effects, and thesponds to~0.3 ps. All static quantities have been evaluated
dependence of the general dynamic and thermodynamic featuresyith both MC and MD configurations with no differences found.
on the number and spatial location of patchy interactions can  Pressure, measured in units wfo3, has been calculate as
be properly addressed. The case of the PMW reported here issum of three contributions. A trivial kinetic contribution, equal
a good starting point. In this paper we report thermodynamic to nkgT. A positive HS contribution and a negative contribution
data, extending the previously available information to lower arising from the SW interaction. Details of the calculatiorPof
temperatures, and, for the first time, dynamic information in both MC and ED simulations is provided in the Appendix
obtained solving the Newton equations using a new algorithm v/,
based on event-driven propagation.

I1l. Results: Static

Il. Model and Numerical Details . . .
A. Potential Energy E. Because in the PMW each site can

In the PMW, each particle is composed of a hard sphere of take part in only one bond, due to geometric constraints fixed
diametero (defining the length scale) and by four additional by the small value o, the lowest energy configuration is
sites located along the direction of a tetrahedral geometry. Two defined by four bonds per particles, corresponding to a ground-
of the sites (the proton sites H) are located on the surface of state energy per particlys = —2 (in units ofuo). Of course,
the hard sphere, that is, at a distancex@rbm the center. The  this absolute ground-state value may not be accessible gt all
two remaining sites (the lone-pair sites LP) are located at a due to the strong constraints introduced by the bonding
distance of 0.45. Besides the hard-sphere interaction, prevent- geometry. According to Wertheim's first-order thermodynamic
ing different particles from sample distances smaller than  perturbation theory, complemented by an appropriate choice of
only the H and LP sites of distinct particles interact via a square the shape of the radial distribution function of the reference
well (SW) potentialusw of width 6 = 0.15 and deptu, that hard-sphere system, tieand ¢ dependence of the potential

Is energy per particl€ is given by-13-15

= — < 2

Usw=—Up ' <0 ) E—Ep=1- )
=0r>9
where

wherer is the distance between H and LP sites. The choice of
0 = 0.15 guarantees that multiple bonding cannot take place c=0.5[1+ 192" — 1)pJ*°— 1 ()
at the same site. The depth of the square well potamtdefines
the energy scale. Bonding between different particles is thus (1= ¢/2) —cp(1+ @)
possible only for specific orientations and distances. In the linear J= 1- ¢)3 (4)

geometry, the maximum center-to-center distance at which
bonding is possible is lalbecause the LP site is buried 0605  with ¢; = 2.375x 1075 andc, = 2.820°6.1415The Wertheim

within the hard core, a value typical of short-range colteid  theory, which assumes uncorrelated independent bonds, predicts

colloid interactions. as lowT limit of eq 2 an ArrheniusT dependence

We have studied a systemf= 350 particles with periodic
boundary conditions in a wide range of packing fractipe= liMmE — Ege= 4 e 05T (5)
a/6ne® (wheren is the number density) and temperatufes T—0 S @

whereT is measured in units afy (ks = 1). We perform both

Monte Carlo (MC) and event-driven (ED) molecular dynamics. that is, with an activation energy of half bond energy. It is worth
In MC, a move is defined as a displacement in each direction observing that such an Arrhenius law, with an activation energy
of a random quantity distributed uniformly betwe&0.05 and equal to 0.5, characterizes the lowdependence of the energy

a rotation around a random axis of a random angle distributed in the nyax model-® (a model of particles interacting via a SW
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Figure 1. Potential energy for the PMW: (a) data for all studied
isochores as a function @f (b) enlargement of the low region, where
the network is fully developed. Note that for this model, the lowest
possible energy iy = —2.

potential with an additional constraint on the maximum number
of bonds), where no geometric correlation between bonds is
imposed.

Figure 1 shows th& dependence of the potential energy for
different isochores. As discussed in detail in the following, for
¢ < 0.24 a phase separation is encountered on cooling,
preventing the possibility of equilibrating one-phase states below
T~ 0.11. Forp > 0.24 the system remains homogeneous down
to the lowest investigated. The low T behavior is expanded
in Figure 1 (bottom). With the extremely long equilibration runs
performed, proper equilibration is reached only Toe 0.09.

The enlargement of the low region shows that the absolute
ground-state value of-2ug is closely approached &t~ 0.3.

At higher or smallep, the potential energy appears to approach
a constant value larger than2up. Consistent with previous
claims!® high T data are very well represented by first-order
thermodynamic perturbation theory. Systematic deviations

between theory and simulation data appear as soon as the

number of bonds per particle becone&. Comparison of the
simulation data with the Wertheim theory confirms that the
physics of the network formation is completely missing in the
first-order perturbation theory.

Figure 2 shows the dependence OE along isochores. At
high T (T > 0.13), a monotonic decrease Bfis observed,

caused by the increased bonding probability induced by packing.

In this T region, the number of bonds is at most of the order of
two per particle. Completely different is the situation for lower
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Figure 2. Potential energy versug along isotherms: (symbols)
simulation data; (lines) Wertheim’s theory.

network packing fractions as the range of packing fractions for
which it is possible to fully satisfy the bonds in a disordered
homogeneous structure. &t~ 0.3, the number of bonds at
the lowest investigated (the lowestT at which equilibration
is feasible with several months of computation time) is about
3.8 per particle; that is, about 95% of the bonds are satisfied.
The range of optimap values appears to be rather small. Indeed,
for packing fractions lower or higher than this optimal~
0.314, the formation of a fully connected network is hampered
by geometric constraints: at lower, the large interparticle
distance acts against the possibility of forming a fully connected
network, whereas at largg, packing constraints, promoting
close packing configurations, are inconsistent with the tetrahe-
dral bonding geometry. Not surprisingly,= 0.314 is within
the range ofp values that allow for a stable open diamond
crystal phase (0.255 ¢ < 0.34)15 A reduction of the geometric
constraints (as in th@max model29 increases the range of
optimal ¢. It is worth also noting that the liquid side of the
spinodal curve is close to the region of optimal netwegrk

The existence of a convex form for the potential energy (here
for ¢ 2 0.3) has been observed in several other models for
tetrahedral networks, including models for water (and water
itself??). It has been pointed out that a negatively conyex
dependence is indicative of a destabilization of the free eAgrgy
and a precursor of a possible liquitiquid critical point (in
addition to the lower gas-liquid one). Liquid-liquid critical
points have been observed in several models for wétét.
Indeed, the Helmholtz free energyis related tdJ (the sum of
the kinetic and potential energy) via= U — TS whereSis
the entropy. The curvature of an isothermPofnust be positive
for a homogeneous phase of a specified voluxhéo be
thermodynamically stable. The curvaturefofan be expressed

as

[24) () {29

VAt VAt VAt
Becausd® = —(dA/dV)r, the inverse compressibilitgr = —1/
V(aV/9P)t is related to the curvature @& by

CR:)

(6)

()

T. The¢ dependence becomes nonmonotonic. There is a specificThe curvature ofA is thus proportional to Ky for fixed V.

value of the packing fractiong(~ 0.3) at which the lowest
energy states are sampled. In the following we define the optimal

Because Kt must be positive for a thermodynamically stable
state, for the range oW/ in which (@2U/9V3)r < 0, the
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Figure 4. Thermodynamic phase diagram for the PMW. The theoretical

energy around the optimal network density. The dashed line, shown asyertheim prediction for the locus at whichR/aV)r = 0 is compared

a reference, has an activation energy of. 1

contribution of the internal energy reduces the thermodynamic
stability of the liquid phase. The liquid remains stable wHhere
has negative curvature only because the contribution of the
entropic term in eq 6 is large enough to dominate. Yet entropic
contributions to these thermodynamic quantities are suppresse
asT decreases, due to the occurrence of the factdr iof the
second term on the right-hand side of eq 6. Hencelthe V
data suggest that at low&ra single homogeneous phase of the
liquid will not be stable for certain values &f, leading to a
separation into two distinct liquid phases of higher and lower
volume. Due to the predominant role Bfin the free energy at
low T, the possibility of a phase separation of the PMW liquid
into two liquid phases of differeng, for ¢ > 0.3 andT lower
that we are currently able to equilibrate should be considered.

Figure 3 shows Irf — Eg¢) versus 1IT. At the optimalg, the
energy of the fully connected state is approached with an
Arrhenius law, characterized by an activation energyfi,
clearly different from the 0.5 value predicted by the Wertheim
theory. For larger¢ values, data suggest that the lowest
reachable state has an energy different fre@uo, consistent
with the expectation that on increasigiggeometric constraints
forbid the development of a fully connected network even at
the lowestT.

B. P. The Wertheim prediction for th& and¢ dependence
of the PMW pressure (the equation of state, EOS) is

P=Pys—

196(E" — 1) Cip(1+ ¢ — 0.5) — 26,9°(L+2¢)
(1+0) 1-¢)

wherePys is the pressure of the HS fluid at the same packing

fraction. Pys can be very well represented by the Carnahan
Starling EOS6

nks 8)

Lt e+¢°—¢)
(1-¢)°
The Wertheim EOS predicts a vapdiquid critical point atT,

= 0.1031 and¢. = 0.085!%> The vapor-liquid spinodals
calculated according to the Wertheim theory and from simulation

nks ©)

I:)HS

with numerical estimates of the spinodal, calculated by bracketing it
via the locus of point at whic0) ~ 5 and the locus of points where

a clear phase separation is detected. The location of the bond percolation
line is also reported.

spinodal of the PMW with the corresponding spinodal of the

cFymmetric spherical square well potential with the same depth

and well widthé = 0.15. In that case, the critical point is located
at T, ~ 0.56 andg: ~ 0.2127 and the high packing fraction
(the liquid) side of the spinodal extends beyame= 0.6. The
net result of decreasing the surface available to bonding and of
limiting to four the maximum number of nearest neighbors that
can form bonds is the opening of a wide region¢gofalues
where (in the absence of crystallization) a homogeneous fluid
phase is stable (or metastable). This finding is in full agreement
with the recent work of ref 7, in which a saturated square well
model was studied for different values of the maximum valency.
Indeed, it was found that when the number of bonds becomes
<6, the unstable region [the surface in the £ T) plane
encompassed by the spinodal line] significantly shrinks, making
it possible to access loWwstates under single-phase conditions.
Figure 5 showdsP(T) for different isochores. In agreement
with previous analysis? is well represented by the Wertheim
theory only at high temperature. At loWw several interesting
features are observed: (i) Fgr< 0.25, isochores end in the
spinodal line. (ii) In the simulation data, a clear difference in
the low T behavior is observed between the two studied
isochoresp = 0.288 andp = 0.314. Whereas in th¢ = 0.288
caseP(T) decreases continuously on cooling, in the= 0.314
case the lowTl behavior ofP is reversed and approaches a
positive finite value on cooling. This different loWw trend
indicated that forp < 0.3, on cooling, the network becomes
stretched (negative pressures), in an attempt to preserve the
connected bonded state. This implies that at bihere is a
driving force for phase separation into a fully connected
unstressed network and a gas phase. This also suggests that the
spinodal curve ends = 0 aroundy = 0.3. At¢ ~ 0.3, the
packing fraction is optimal for the formation of an unstressed
fully connected network at lowl. The bond formation on
cooling does not require any stretching, and it reversesTthe
dependence oP. (iii) At 0.3 < ¢ < 0.38 a minimum ofP
appears. The existence of a minimumH(T) along isochores
demonstrates the presence of density anomalies (i.e., expansion
on cooling along isobars) because points in whigl/{T)y =

data are reported in Figure 4. The numerical estimate is providedO coincide with points in whicle = (0V/0T)p = 0, that is, with

by locating, along isochores, the high&sitate point in which
phase separation is observed and That which the smallg
limit of the structure factor is<5. These two state points bracket
the spinodal locus. It is interesting to compare the ligtgds

points in which density anomalies are present. Indeed, by using
the rules for derivatives of implicit function§V/aT)p = —(aP/
aT)v(dV/9P)t, and mechanical stability guarantees ttasf/§P)

> 0.
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Figure 5. Isochores oP according to the Wertheim theory (a) and as

calculated from the simulation data (b). Symbols refer to simulation Figure 7. Isotherms ofP according to the Wertheim theory [full
data. The same sequencegofalues is shown in both panels.

" =031

continuous lines in (a)] and as calculated from the simulation data
[symbols in both (a) and (b)] as a function of the volume per particle
v = n~% Note the crossing of the different isothermsvat 1.4 and

1.7.

Figure 7. Again, the simulation data are consistent with the
Wertheim theory predictions only at largeand indeed it was

already noted that no density anomalies are found within the
theony. The simulation data also show a clear crossing of the

s isotherms around a volume per particle= 1.4 and 1.7,
- GoP E corresponding t@ = 0.314 andp = 0.38. Again, crossing is
=0 P ideal gas indicative of the presence of density anomalies. The increase
S1B ®©oPHS || of P on cooling, betweerw = 0.314 andy = 0.38, suggests
&~ P bonding also a possible emergence of a second van der Waal-type loop
| . | (in addition to the gasliquid one) forT lower than the one we
0.1 0.2 are currently able to equilibrate. The possibility of a second

E}

*

T

Figure 6. Components of the pressureg@t= 0.314. The totaP is

critical point between two liquid phases of different densities
has been discussed at length in the gadpllowing the
discovery of i#% in one of the first models for waté®.

decomposed in ideal gas, HS, and bonding components. Note the
isochoric minimum inP and T = 0.105, a signature of an isobaric
density maximum.

C. g(r). The PMW radial distribution functions for > 0.15
have been reported previoudlidere we focus on the interesting
structural changes observed during the development of the bond

The simplicity of the model allows us to access the different network ingoo andgu-p, a T region that was not possible to
contributions taP and investigate the origin of the increase of access in the previous simulatiorggo provides information
P on cooling (Figure 6). In the PMW, apart from the trivial on the center to center particle correlation, whergas p(r)
kinetic component contribution, the only positive component contains information on the bonding and on the attractive
to P arises from the HS interaction. Interestingly enough, the component of the pressure.
HS component increases on cooling. Such an increase in the Figure 8 showgyoo(r) at three different packing fractions.
HS repulsion, indirectly induced by the formation of the bonding |n the interval 1< r < 1.1 the function is highly peaked, a
pattern, in the range 0.38 ¢ < 0.36, appears to be able to  consequence of the distance imposed by bonding. Outside the
compensate for the decrease in the bonding componeRt of  honding distancer (> 1.1),goo(r) shows significant oscillations

To confirm the presence of density anomalies, it is instructive only at low T. A peak, beside the bonding one, is observed at
to look at theV dependence of along isotherms, shown in  r ~ 1.7 corresponding to the characteristic distance between
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. o Figure 9. Radial distribution functions for OO (a), HH (b), andHdP
two particles bonded to the same central particle in a tetrahedral(c) pairs at the optimal network density= 0.314. Insets igoo and

geometry. The absence of information about the geometry of g,_.» provide enlargements of the contact region. On cooling, a
the bonding sites in the theory of Wertheim is responsible for significant structure appears, associated with the intense bonding.
the absence of the peak at @.and the breakdown of the
predictive ability of the Wertheim theory as soon as a particle

is engaged in more than two bonds. A few observations are in : ) i
order when the) dependence ajoo(r) is analyzed: At lows, bonding and by the geometry by which the bonding between H

the tetrahedral peak at~ 1.7 is the only peak igoo(r). When and LP propagates. _Inde_ed, in the PMW model the interaction

¢ approaches the optimal network density, a clear tetrahedralPetween different sites is zero. o

pattern develops argho(r = 1.7) becomes 2. The tetrahedral D. §(0). The, structure facto_r ofEhe system, defined in terms

peak ar~1.7 is followed by oscillations extending up to.4At of the particle’s center coordinatésas

even largerp, there is still a residual signature of tetrahedral N N

bonding at 1.4, but the depletion region far > 1.1o is not SG) = & eiﬁ-(?i—?j)D (10)

developed any longer, signaling a competition between the HS ;;

packing (which favors peaks at positions multiple @fand

the local low density required by bonding. provides information on the wave vector dependence of the
Figure 9 compares, a = 0.314, the OO, HH, and HLP density fluctuations. In isotropic systen&g) is a function of

radial distribution functions in linear scale. In all three functions, the modulusg. The behavior of§(q) at smallq provides an

the progressive structuring induced by the bonding is clearly indication on the phase behavior, because an increaS&ypf

evident. Evergyn(r) shows very clear signs of spatial correla-
tions, which are induced by the tetrahedral geometry of the
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at smallq indicates the development of inhomogeneities with 4 T T T T . I

length scale comparable to the system size studied. As an i () ®=0.10 — %8{?2
indicator of the location of the phase boundaries (of the ligtuid ) — T0116
gas spinodal line), we estimate the locus of pointSip), where 3F — To011
S(q) for the particle centers become$ at smallg. This locus — T0.12
is reported in Figure 4. Fap = 0.28 5q) does not show any I : TO.13
sign of growth at smalj in the region ofT where equilibration = o decreasing T T0.14
is feasible, being characterized by valuesf) at smallq of @ — 10.20

the order of 0.1. This confirms that, at this packing fraction,
there is no driving force for phase separation, because the
average density has reached a value such that the formation of
a fully connected network of bonds does not require a local
increase of the packing fraction. It is also important to stress
that atyp = 0.288, at the lowest studield the average number

of bonds per particle is 3.8, and hence the system is rather close
to its ground state and no more significant structural changes 2
are expected on further cooling.

Figure 10 showsS(q) at ¢ = 0.105,¢ = 0.288, andp =
0.385. The¢p = 0.105 case has been chosen to show the
significant increase i§(q) associated with the approach of the
spinodal curve. The cage= 0.288 shows both the absence of
a smallg-vector divergence and the clear development of the
typical g-pattern of tetrahedral networks. On cooling, the peak
atqo = 2z characteristic of excluded volume interactions splits
in two parts: a prepeak arourgd ~ 5 and an intense peak
aroundqo ~ 8. The case = 0.385 confirms that the packing
fraction is now so high that a full tetrahedral network cannot
develop, and the splitting of the main peak in two distinct 0 L 1 ' 1 ' 1
components is very weak and visible only at the lowest 0 5 10 15
investigatedT.

E. Percolation. The PMW, as all other models based on HS 2 (c)'
and SW interactions, is particularly suited for calculation of bond
properties, because a bond between particlasd j can be
unambiguously defined when the pair interaction energy be-
tweeni andj is —uo. In the case of continuous potentials such
a clear-cut bond definition is not possible and several alternative
propositions have been put forwaitt We focus here on the
connectivity properties of the equilibrium configurations. We
use first standard algorithms to partition particles into distinct
clusters and then check for the spanning properties of each of /s )
these clusters. To implement a strict definition of percolation, /4 decreasing T
we do not limit ourselves to the comparison of the largest ' ' | . | . |
intracluster distance with the simulation box length, but make 00 5 10 15
sure that the cluster is spanning in the infinite system limit. qo

(';"‘”l‘? eXpJI(.:ItIyl,I LO teslt for pel;;:otiatlotr:.,l_thefs;:m:latlon b?x IS Figure 10. Particle-particle structure factor ap = 0.105 (a),p =
uplicated in all directions, and the ability of the largest cluster ( 5gg (1) andy = 0.385 (c). Note that at = 0.105, an intense signal

to span the replicated system is controlled. If the cluster in the develops at smal, related to the approach to the spinodal instability.
simulation box does not connect with its copy in the duplicated Small q intensity is completely missing at the highgrshown.

system, then the configuration is assumed to be nonpercolating.

The boundary between a percolating and a nonpercolating statdine crosses the spinodal curve close to the critical point, on
point has been defined by the probability of observing infinite the left side of the spinodal curve. In this respect, the equilibrium
clusters in 50% of the configurations. The resulting percolation gas phase a$ smaller than this crossing point is always
line is reported in Figure 4. State points on the right side of the nonpercolating. Percolation at very smattan be achieved only
line are characterized by the presence of an infinite cluster in as a result of an out-of-equilibrium process, quenching the
>50% of the configurations. This definition of percolation locus System inside the spinodal curve.

is strictly a geometric measure and does not provide any The high¢ side of the percolation loctsifferent from the
information on the lifetime of the spanning cluster. Along the SW case-does not extend to infinit€, because at high, even
percolation line, about 1.5 bonds per particle are observed, withat large¢, the reduced particle surface available for bonding
a small trend toward an increase of this number on decreasingPrevents the possibility of forming a spanning network with a
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¢. In terms of bond probabilityy, this corresponds t@y, ~ random distribution of particle orientations.
0.375, not too different from the bond percolation value of the )
diamond lattice, known to be 0.388. IV. Dynamics
As previously found in short-range SW potenti&ddsn the Thermodynamic and static properties of the PMW presented

Baxter potentidt* and in other simple modelsthe percolation in the previous section clarify the location of the regions in
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Figure 11. Mean square displacement for differemtvalues, at
three differenty values: (a)¢p = 0.131; (b)¢ = 0.314; (c)¢ =
0.450.

which the bond network forms, the region where the liguid
gas phase separation takes place and the region aphitiere
packing phenomena start to be dominant. In the following we
present a study of the diffusion properties of the model in the
phase diagram, with the aim of locating the limit of stability of
the liquid state imposed by kinetic (as opposed to thermody-
namic) constraints.

A. MSD. We focus on the mean square displacenigi(t)C]
of the particle centers, as a functionTodnd¢, calculated from
the Newtonian dynamic trajectories. Figure 11 shéif)for
a few selected isochores. For short tifmi#t) (= @12, where
[@72= 3/kgT is the thermal velocity. At higfT, the short-time
ballistic behavior crosses over to a diffusion proces4¥~ t)
directly. At low T, the ballistic short-time and the diffusive long-
time laws are separated by an intermediate time window in
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Figure 12. Mean square displacement along a consiapiath. Note
the ¢ dependence of the plateau at intermediate times, which provides
an estimate of the caging length.

which [@2(t)0is approximatively constant, an indication of
particle caging.

Several features dii?(t)Jare worth pointing out: (i) Fop
< 0.209, the spinodals are encountered on cooling before the
caging process is visible. The phase separation process sets in
well before particles start to feel the caging process. (i) The
static percolation curve reported in Figure 4 has no effect on
dynamics. There is no dynamic arrest at the static percolation
transition. (iii) For ¢ such that a well-developed tetrahedral
network can form, it is possible to cool the system to
temperatures at which, on the scale of simulation, arrest is
observed, in the absence of any phase separatf@ develops
a clear intermediate region where only the dynamic inside the
cage is left. At thisp, the caging is not associated with excluded
volume interactions, but with the formation of energetic baids.
(iv) The plateau value ifi2(t)(is a measure of the localization
length induced by the cage. To visualize thelependence of
the localization length, we show in Figure IZ(t)Cfor three
different state pointsf — T) with the same long-time diffusivity.
The cage length is always significantly larger than the typical
HS value [@(t)d~ 0.01) and grows on decreasigg

B. Diffusion Coefficient. The long-time limit of i2(t)0is,
by definition, @t, whereD is the diffusion coefficient. The
and T dependence dD is shown in Figure 13. We show log-
(D) both versusl and versus Tl. Again, a few considerations
are in order: (i) The range @ data covers about 5 orders of
magnitude. The data fa@¥ < 0.24 are limited iril by the phase
separation process, whereas the datapfer 0.26 are limited
by computational resources, because equilibration cannot be
reached within several months of calculations. (ii) Datador
> 0.26 cross around ~ 0.105, suggesting a honmonotonic
behavior of thep dependence of the dynamics. (iii) The early
decay ofD with T can be described with a power laW, —
Tuerl”. Power law fits, limited to the region af betweenT =
0.11 andT = 0.15, cover the first 23 orders of magnitude in
D, in agreement with previous studies of more detailed models
for watef>47 and with the previously proposed MCT inter-
pretation of thent’-50 (iv) A crossover to an Arrhenius activated
dynamics is observed at low. Activated processes become
dominant in controlling the slowing of the dynamics. The
activation energy is~4up, close to the optimal networlp,
suggesting that at low diffusion requires breaking of four
bonds. The crossover from an apparent power-law dependence
to an Arrhenius dependence has also been observed in simula-
tions of other network-forming liquids, including siliée?and
more recently wate?® The low T Arrhenius dependence also
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Figure 15. Isodiffusivity lines in the T — ¢) plane. An excursion of

5 orders of magnitude iD values is explored. All lines start from the
spinodal and end at infinitd at the corresponding HS location. At
small D, lines cannot be continued aboge= 0.5 because there the
HS interaction is dominant and the system crystallizes. Extrapolating
along isochores the observed Arrhenius functional form suggests an
idealD = 0 arrest line afl = 0.

this counterintuitivep dependence of the dynamics is to be
found in the geometric constraints requested by the tetrahedral
bonding requiring an open local structure. Increagirestroys
the local bonding order with a resulting acceleration of the
dynamics.

3f . | . | C. Isodiffusivity (and Arrest) Lines. A global view of the
10 0 5 10 dynamics in theT — ¢) plane is offered by the isochronic lines,

T that is, the locus of state points with the same characteristic

s e
Figure 13. Temperature dependence of the diffusion coefficient along time>®In the prese_nt case we fo_cus on the isodiffusivity lines.
isochores. The dashed line is an Arrhenius dependence with activationTn€ shape of the isodiffusivity lines, extrapolatedo— 0,
energy equal to 4. provides a useful indication of the shape of the glass transition

line 56758 Figure 15 shows the isodiffusivity lines for several
different values oD, separated from each other by 1 order of
magnitude. The slowest isodiffusivity lines are only weakly
dependent at low. For small values oD, isodiffusivity lines
start from the right side of the spinodal, confirming that slow
dynamics is only possible for states with> ¢.. At large¢ the
isodiffusivity lines bend and become parallel to theaxis,
signaling the crossover to the hard-sphere case. Extrapolation
to 0 of theT (or ¢) dependence dD provides estimates of the
dynamic arrest line. In the present model, the Ibdependence

of D along isochores is well modeled by the Arrhenius law,
and hence technically arrest is expected at 0. The shape of
the isodiffusivity lines suggests that the vertical repulsive glass

3 line (controlled by excluded volume effects) starting at high
10 0,1 0,2 03 04 0,5 from the HS glass packing fraction meets at a well-defiped

o the T = 0 bond glass line.

The shape of the PMW isodiffusivity lines is very similar to
the short-range square well case, for which aTlatdependent
“attractive” glass line crosses (discontinuously) into a perpen-
suggests that in the region where bonding is responsible for dicular¢g independent “repulsive” glass lifi&>° Differently from

10T

1072

10

10°¢

Figure 14. Diffusion coefficient along isotherms. Note the nonmono-
tonic behavior that develops far < 0.11.

caging, the vanishin@® locus coincides with thd = 0 line. the SW case, in the PMW the equivalent of the attractive glass
Particularly interesting is the behavior 8f(¢) along iso- line extends to much smallef values, because the reduced

therms. An almost linear dependence at smpa{up to ¢ = valency has effectively reduced the space in which phase

0.235) is followed by a nonmonotonic behavior. Beldw= separation is observédlt is also worth pointing out that the

0.11 (Figure 14), a diffusion anomaly is observed in Thend shape of the isodiffusivity lines at low is similar to the shape

¢ region, where the tetrahedral network develops. Arofirel of the percolation line. As in all previously studied mod&tg,

0.34 an isothermal compression of the system generates arcrossing the percolation line does not coincide with dynamics
acceleration of the dynamics. Above ~ 0.35, D starts to arrest, because the bond lifetime is sufficiently short that each
decrease again on increasing packing. Diffusivity anomalies of particle is able to break and re-form its bonds.

the type observed in the PMW are found in several tetrahedral D. D versusE — Egs At the optimal network density, the
network-forming liquids, including watéf. The explanation for low T behavior of bothD and E — Egs (which, as discussed
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Figure 16. Diffusion coefficient versug& — Egsfor different¢ values. 10" 3
The dashed line is a power law with exponent four. . 10-2}
above, is also a measure of the number of broken bonds) is < S 10'3[
Arrhenius. This suggests the need for a more careful look into g 104;
the relationship between the activation energy of the two @A _SE oo MC 9038
processes. One possibility is offered by a parametric pl@ of o 107¢ = oMD ¢=0',38
versusE — Egsin log—log scale, so that the slope of the straight 107 o0 MC (rescaled)
line provides the ratio of the two activation energies. Such a b
plot is shown in Figure 16. We find the remarkable result that, 10
close to the optimal networlp, the slope of the curve has 01 011 012 013 014 015
exponent four, that i) ~ (E — Eq49.# Because the fraction of ’ ’ T ’ ’ ’
broken bonds in the system is exacty Egg)/Egs the previous 102
relationship suggests thBtis proportional to the fourth power :
of the fraction of broken bonds, that is, to the fraction of particles 1 0—3;_
with no bonds, and that the elementary diffusive process requires 3
the breaking of four bonds. A functional law for diffusion in a g 10-4;,
tetrahedral model of this type was proposed by Teftera OQ :
interpret theT dependence d in water in the context of the Q 0-5;.
percolation model developed in ref 61. A similar dependence A oo MC 904
has been recently reported for a model of gel-forming four- & ;4 oo MD ¢=0’41
armed DNA dendrimer% 3 -6 MC (resc.aled)
E. D — MD versus MC. All dynamic data presented above 10'7;
refer to ED Newtonian dynamics. Indeed, MC simulations 3 | L (c)

intrinsically miss dynamic information, being based, in their 0,1 ' 0,11 ' 0,|12 ' 0,13 0,14 ' 0,15
simpler formulations, on random displacements of the individual T

particles. Still, if the random displacement in the trial move is Figure 17. Comparison between the MD and MC diffusion coefficients
small compared to the particle size, the sequence of MC stepsat three differeny values. The MC data are also shown multiplied (by
can be considered a possible trajectory in configuration space.2 common factor of 0.1) to better visualize the Idvoverlap.

When this is the case, the number of MC steps (each step being

defined as an attempted move per each particle) plays the roledependencies @"© andD are identical. Moreover, the scaling
of time in the evolution of the configurations in configuration factor between MC and MD dynamics is independentpof
space. In the absence of interactions, a particle evolved suggesting that at low, with the chosen units, the relationship
according to the MC scheme diffuses with a bare diffusion DMC/D,(\),IC = & holds. From comparing MC and MD data we
coefficient DY fixed by the varianced?. of the chosen find that the proportionality constagt~ 10 and shows no state-
random displacement along each direction [in our calculations point dependence. To confirm that caging is fundamental to the
we have used a uniform distribution of displacements with a observance of independence of the slow dynamics from the
variance ofdye = (0.1%/12, corresponding t®yc = 30%/6 microscopic one, we look at the shape [B(t)0(Figure 11),

in units of 6?MC step]. If needede,,C provides a means to f|nd|n_g that gt t_h_eT at Whl_ch MC and MD dynamics start to
associate a physical time to the MC step. At [Bywvhen slow coincide a significant caging is present.

dynamic processes set in (favored by bonding or by packing), Because the microscopic time of the MC dynamics is not
it is expected that the microscopic dynamics becomes irrelevantaffected by temperature (being always fixed by the variance of
(except for a trivial scaling of time). The escape from the cage the random displacements), it is interesting to consider the
created by neighboring particles is indeed a much rarer eventrelationship betwee® and E — Egs also for DMC, shown in

as compared to the rattling of the particles in the cage. Under Figure 18 at the optimal network densigy= 0.314. Again,
these conditions, the slow dynamic processes become indepenthe slope of the curve has exponent four, but compared to the
dent of the microscopic dynamics, and hence Newtonian, MD case, the region of validity of the power law covers the
Brownian, and MC show the same trends. Figure 17 shows thatentire range ofl studied, from very higfT (where the number
this is the case for threg values. In all cases, at low, the T of bonds is negligible) to the lowest equilibrated temperature,
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10%¢ ; ———r—ry reached. For highep, the progressive destruction of the bond
network due to the increased packing accelerates the dynamics.
1071k For even higherg, D(¢) resumes its standard decreasing
E behavior associated with the approach of the excluded volume
u102F glass transition. Diffusion and density anomalies in the PMW
o= 3 models are thus strongly related, similarly to what has been
GD“ 10°F observed in more realistic models for watéiThe simplicity
= 3 of the model is crucial in clarifying these aspects because the
A 104E hard-core and square well interactions guarantee the absence
E of volumetric effects related to th& dependence of the
1075k vibrational amplitudes.
E A second interesting aspect of the presented results concerns
10'160_1 ' e ‘160 the dynamics in network-forming systems. The present study

E-E.. provides a complete characterization of the dynamics in the
& entire ¢ — T) plane, from the smallest possibjeliquid state
Figure 18. Relationship betweeD"®, normalized by the bare MD  points to the close-packed state. From the reported data, the
mfé“csj':tz Foollr;?:/ag\:)e“rﬂcs ?)?geErs_ofEr%S;OLi':Ag dyn‘.am"fs'fNO:ﬁ that th‘le relative role of the energy and of the packing in controlling the
(full red line) gnitude a simple fourth-poweriaw - 4y namics stands out clearly. The isodiffusivity lines are es-
sentially parallel to the-axis (i.e., T controlled) in the network

covering more than 4 orders of magnitude. The validity of the 10w ¢ region and are essentially parallel to thexis (i.e.,¢
relationshipD ~ (E — Eq9* extends to higf, when the system  controlled) at larger. Interestingly enough, along isochores,

is well above percolation and there is no evidence of a low T dynamics follows an Arrhenius law, the landmark of
tetrahedral network (as shown in the structural data reported in Strong glass-forming behaviét*®The Arrhenius law is foreseen
Figures 10 and 8). The extended validity of the power law, with by @ T region where dynamics has a strofigdependence,

an exponent exactly equal to the valence of the model, is highly compatible with a power-law dependence. In this power-law
suggestive and, in principle, very important for theoretical region the first signatures of caging in the mean square
considerations, because it appears to cover either the region oflisplacement are observed. Similar changes in the dynamics
temperature where liquid dynamics is observed or the Tow have been observed in previous studies of shi¢d ' water;3
states where signatures of slow dynamics (see Figure 11) arend silicon?® In particular, for the cases of silica and water, it
very well developed. The limit of validity of this finding needs has been suggested that the region where dynamics starts to
to be carefully checked in other primitive models with different feel the presence of energetic cages can be interpreted in terms
valence and with more realistic models of network-forming ©Of mode coupling theor§?-5267.6973

liquids. The dynamics at the optimal netword is particularly
' suggestive. Although in the present model slowing of the
V. Conclusions dynamics prevents equilibration of the supercooled liquid to very

Results presented in this paper cover several apparently'OW T, at the lowesT simulations the average number of bonds

distinct fields. To start with, results presented here can be has gone upto 3.8 per patrticle. In this respect, fu_rther structural
discussed in relation to the dynamic and thermodynamic @nd dynamic changes are hard to foresee. This suggests that
properties of water. We have shown that the thermodynamics th€ Arrhenius behavior is retained down o= 0. Such

of the PMW includes, besides the compressibility anomalies SPeculation is reinforced by the numerical values of the
reported beforé also density anomalies (at much lovigr The activation energy oD, which is found to be~ 4up, that s,
source of the density anomalies is shown to be associated withc0rreésponding to the breaking of four bonds. This suggests that
the establishment of the bond network in the tetrahedral N Network liquids, the limited valency imposed by the
geometry. On cooling (along isochores) the energetic driving directional forces fixes a well-defined energy of the local
force that favors the formation of the bond, due to geometric configuration and a discrete change of it, which is reflected in
constraints associated with the formation of the open tetrahedralthe Arrhenius behavior. The presence of a limited valency and
structure, forces the pressure to increase, hence generating & Well-defined bond energy scale appears to be the key
density maximum state point. The simplicity of the PMW allows ingredient of the strong liquids behaviilt is also worth

us also to clearly detect an optimal network density, at which exploring in future works the possibility that the optimal network
the ground state of the system (i.e., the state in which eachdensity plays, in studies of one-component systems, the same
particle is involved in four bonds) can be closely approached. ol as the reversibility windo® in bulk alloy glasses.

At this packing fractiong the T dependence of the potential Connections with the concept of self-organization in network
energy is the most pronounced, generating a minimum in the 9lasse& should also be pursued.

isothermalkp dependence. The presence of a minimur&(p) |+ A further aspect of this work concerns the relative location
is highly suggestive because it indic&fethe possibility of a between the liquietgas spinodal and the kinetics arrest lines,
liquid—liquid phase separation @tlower than the one we have the shapes of which are inferred by the study of the isodiffusivity
been able to equilibrate. We have also shown that at this optimallines. As in the short-range SW modéf the kinetics arrest

¢, low T dynamics slows with the fourth power of the probability lines end in the right side of the spinodal, that is, in the liquid
of broken bonds; that is, the dominant component to dynamics phase. However, differently from the SW case, the limited
arises from single-particle motions and, specifically, from the valency has shifted the right side of the spinodal to very small
particles that happen to have all four bonds broken at the sameg values,¢ < 0.25. Indeed, the limited valency effectively
time. We have also shown that, as in real water, diffusion disfavors condensation of the liquid phase, reducing the driving
anomalies are observed. At Iolythe decrease of the diffusivity ~ force for phase separation and making it possible to generate
on increasingp is reversed once the optimal network density is low packing fraction arrested states in the absence of phase
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separation, that is, homogeneous single phase stable in equi- Despite the difference between percolation and arrest lines,
librium, at lowT.”” The possibility to access loWwhomogeneous  if one considers the present model as a system of colloidal
supercooled states fap > 0.25 characterized by a glassy particles with sticky interactions, one would be led to call the
dynamics, driven by the bonding energy as opposed to packing,arrested state at 0.3 ¢ < 0.5 a gel, led by the fact that the
confirms the findings of the zeroth-order model with limited arrested state has a lafvopen connected structure. Similarly,
valency reported in ref 7. The absence of geometric correlation if one considers the PMW to be a model for a network liquid,
between the bonding sites, the key ingredient of the maximum one would be led to name the same arrested state a network
valency model, is thus not crucial for the stabilization of the glass. Although we cannot offer any resolution to this paradox
network. The role of the geometric constraint appears to be thewith the present set of data, future work focusing on the shape
reduction in the range op values where the fully bonded of the wavevector dependence correlation functions and the
disordered state can be reached. Two different arrest mechanismgesulting nonergodicity parameters can help to clarify this issue
characterize the dynamics of network systems: arrest due toand confirm/dispute the hypothesis on the differences between
the formation of energetic cages, with an arrest line that runs gels and glasses recently propodé#®2 At the present time,
almost parallel to the-axis, and arrest due to excluded volume Wwe can only call attention to the fact that a continuous change
effects, with an arrest line parallel to tfieaxis. These two lines  from energetic cages to excluded volume cages takes place on
are reminiscent of the attractive and repulsive glass lines increasingg.

observed in short-range attractive collo#885°70.7€onnecting A final comment refers to the propensity of the system to
the results presented in this paper with previous studies of form disordered arrested states. Despite the relevant amount of
network-forming liquids’>52 it is tempting to speculate that ~ supercoolind? in all studied state points where a network
mode-coupling theory predicts satisfactorily the shape in the structure is present, we have not observed any sign of crystal-
(¢ — T) plane of the dynamics arrest lines. Still, although in lization. The kinetic suppression of the crystallization phenom-
the region where excluded volume controls caging the relative €non can be traced to the similar energy characterizing the
error in the location of the glass line is limited, in the case in Crystal state and the fully bonded disordered state, fading the
which the bonding mechanism is dominant in generating arrest, energetic driving force toward crystallization. The observed
the location of the MCT line can be significantly distant from Propensity to form gel states as opposed to crystalline states
the actual dynamic arrest line (technically locatedTat O, manifested by the studied model (which can be seen also as a
being dynamics Arrhenius), due to the role of activated bond- model for short-range sticky colloidal particles as well as
breaking processes, which offer a faster channel for the decaydlobular proteins with aeolotopic interactiéhmay well explain

of the correlations. The evaluation of the MCT lines for the the difficulty of crystallizing some class of proteins. It also warns
present model, in principle feasible within the sifite approach ~ US about the relevance of the dynamic arrest phenomenon in
developed by Chong and Goet¥& or within the molecular  the future attempts to build a colloidal dlamon_d photo_nlc crystal
approach developed by Schillidg8t can help to clarify this made of particles with short-ranged patchy interactions.

issue.

The possibility of an intersection between the excluded
volume arrest line (starting at highfrom the HS glass-packing
fraction) and the bond-controlleid= 0 arrest line is particularly
sugg_es_t.ive. The shap(_e of the ispdiffusivity lines supports the ;- Appendix: Event-Driven Algorithm for Hard
pos_S|b|I|ty that the vertical repulsive glass _Ilne meets at a W_eII— Spheres with Patches
definedg the T = 0 bond-controlled glass line. If this scenario
is correct and general, one would conclude that the fragile and In an ED algorithm, events such as times of collisions
strong kinetic behavior is intimately connected to the dominant between particles and cell crossing have to be taken into account.
mechanism of arrest (frag“e for excluded volume and Strong All of these events have to be ordered. Code must be written in
for bonding) and, more interesting|y’ that Strong behavior can such a way that |0cating the next event and insertion/deletion
be observed only when the interaction potential is such that Of new events have to be performed efficiently. In the literature,
fewer than six neighbors are present (i.e., in network-forming Several ED algorithms for simulating hard-sphere systems exist,
systems). Indeed, only under these circumstances does thénd several propositions on how to handle such events efficiently
suppression of the liquidgas phase separation make it possible have been reported. One elegant approach, proposed 20 years
to approach th@ = 0 bond-controlled glass line. ago by Rapapo® arranges events into an ordered binary tree

An additional comment concerns the relationship between (calendar of events) so 'ghat in.sgrtio.n, deletion, and retrieving
gel and glass arrest states. Results reported in this paper confirmg(ﬁ) vepl;s r(:;n :gisglne\)lvvrlltgrzlffi::Iglgcfjr(r?gg?o'\fl)é\?e(r}t)s, ﬁwn?he
once more, that in this class of models the geometric percolation g ), resp Y, W .
line does not have any impact on the dynamic arrest becausecalenda.r' we ‘."‘d"p‘e" .thls solution to h."’“?‘?”e the events.calendar
at percolation the lifetime of the bond is still rather small. Only g‘vgilér r‘zlmqlgilf?n'rsgig% ?hna|1¥ :rée‘}gifr:g'twgeﬂf:ﬁfg&g?ﬂﬁotr?
when the system is well inside the percolation region has the P ylong

bond lifetime slowed significantly to affect all measure- simulation runs are performed.
Signitic y o aflec A. Motion of Rigid Bodies. The orientation of a rigid body
ments of global connectivity with an intrinsic time scale shorter

than the bond lifetime (as, for example, finite frequency shear can be conveniently represented by the three column eigenvec-

viscosity). Indeed, already long ago it was noted for the case torsu; (with | = 1, 2, 3) of the inertia tensor expressed in the

of Watelﬁl.that bon’d percolation is irrelevant to any thermody- laboratory reference system. These vectors form an orthogonal
. . o . set and can be arranged in a matRxthat is

namic or dynamic anomaly. More sophisticated models, incor-

porating bond cooperativity or significant entropy contribu- N

tions to bonding (as in the case of polymeric gels), may reduce R = (ugu,uy) (11)

the distance between dynamic arrest states and percola-

tion 82 where'A indicates the transpose of the matiixThis matrix is
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such that ifx are the coordinates of the laboratory reference
system and' are the coordinates of the rigid body reference
system, it turns out that

X' = Rx (12)

In what follows, we assume that the three eigenvalues of the

inertia tensor are all equal to Namingw = (W, Wy, W,) the
angular velocity of a free rigid body, the matrX is defined
as

0
Q=|w, 0 —w (13)
-W, W, 0

Knowing the orientation at timée= 0, the orientatiorR(t) at
time t is84:85

R(t) = R(O)(I + M) (14)
whereM is the matrix
sin(wt)Q n 1- cos(/vt)92 (15)

w

V\/Z

andw = ||w||. Note that ifw = 0 thenR(t) = R(0). To derive
eq 14, consider that

tR(t) = [uy(Du(tus(®)]
= [+ M)uy (1 + M)u, (1 + M)uy)

(16)

where we remember thaf are column vectors. Hence uf =
wi, we have after some algebra

u;(t) = u; » AR + cos@t)(u; — A+ u;N) + sinfwt) A x u;

17)
that is the so-called Rodriguez’s formula or rotation formula,
that is, a rotation of an anghlt around the axi. To con-
clude if one has to update position and orientation of a

rigid body, which is freely moving, this can be accomplished
doing

X(t) = x(0) + vt
R(t) = RO)(I + M)

(18a)
(18b)

wherex(t) is the position of the center of mass of the rigid body
at timet andv is its velocity.

B. Hard Sphere with Interacting Patches.In the present
model, each particle is modeled as a hard spherervggerical

De Michele et al.

(20)

Oag = min di,
whereia, ig € {0, ...,n} and 0 labels the hard sphere,rilabels

the n spherical patches, andl,, is the distance between the
two spherical patcheig andig.

C. Prediction of Time of Collision. 1. Finding the Contact
Time.We separate the collisions between two particles in the
hard-sphere part of the potential and the -sgie interaction
part. The time of collisiort,s between the hard-sphere cores
can be evaluated as us@&lhe smallest time of collision among
all n? spherical patch pairs ig. The time of collision of the
two particles is

tc = min{ ths1 tsr} (21)

To find the time of collision of two interacting patches,
we assume that it is possible to bracket it. That is, we assume
(see further subsections) that the time of collistaris such
thatt; < tst < tp, where the product ¢i)d(t;) < 0. Thus, the
“exact” time of collision is provided by the root of the equa-
tion

lIr, () = O1l =6 (22)
wherer;, andr;, are the two site locations.

2. Linked Lists and Centroidés described in ref 83 to speed
an ED molecular dynamics of hard spheres, one can use linked
lists. For a system ol identical particles inside a cubic box
of edgeL, we define the “centroid®8” as the smallest sphere
that contains the particle (the HS and the spherical patches).
Linked lists of centroids may be quite useful to reduce the
number of objects to check for possible collisions; in addition
they can be used to restrict the time interval within which
searching for the collision is performed. We divide the box into
M3 cells so that each cell contains at most one centroid. After
that, we build the linked lists of these centroids and handle these
lists as done in a usual ED molecular dynamics of hard
spheres$? This means that whenever an object crosses a cell
boundary, one has to remove such object from the cell the
particle is coming from and add this object to the cell it is going
to.

Now consider that one has to predict all of the possible
collisions of a given particle, which is inside a certain call
As for the hard spheres case we take into account only the
particles inside the adjacent cells (see ref 83 for more details),
and we predict the times of collisions with these objects.
Consider now two particled andB at timet = 0 and their
centroidsCa and Cg. Three possible cases arise:

1. Ca andCg do not overlap and, from an evaluation of their

patches arranged in fixed site locations. In the present case, thearajectory, no collision between the two centroids is predicted.

site—site interaction is a SW potential

—Uu
USW={0 °

whered andug are the width and the depth of the SW. For the

ifr<o

otherwise (19)

In this caseA andB will not collide either.

2. Ca and Cg do not overlap, but they will collide: in this
case, we calculate two timésandt,, bracketing the possible
collision betweerA andB: t; is defined as the time when the
two centroids collide and start overlapping, aads the time
when the two spheres have completely crossed each other and

following discussion, the SW interaction can be visualized as do not overlap any longer.

a sphere of diameted centered on the site location. Sim-

3.Ca andCg overlap: in this case = 0 andt; is defined as

ilarly, one can visualize the particle as a rigid body composed the time at which the two centroids stop overlapping.
by the hard sphere joined to the spheres located on the sites. In 3. Fine Temporal Bracketing of the Contact Tintere we

what follows, we identify a particle with the resulting surface.
The distancealag between two particled andB is defined as

show how a refined bracketing of solution of eq 22 can be
accomplished. First of all, we give an overestimate of the rate

the shortest line connecting two points on distinct particles, that of variation of the distance between two patcheandig, that

IS

IS
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8,0 =3qir, —r,J1 - 9)
IalB dtt'' 'a '

riAiB ) riAiB

Ir;

< vl
|AiB||

=1IVag T wa x (r, =Ry —wg x (I, — Ry)ll

= [IVagll + llwallLs + [|wg| LB = dr:éx (23)
where the dot indicates the derivation with respect to time,
andr;, are the positions of the two sites with respect to a
laboratory reference system,, is the relative velocity of the
two sites,Vag is the relative velocity between the centers of
mass of the two particles, ariRlh andRg are the positions of
their centers of mass and

La= max||r' — Ry} (24a)
rreA
Lg = meaé{ Ir' - Rgl} (24b)

Having calculated an overestimatedgjs(t), we can evaluate
an overestimate afiag that we calldmax

(25)

. . -ma
dmax - nilg){ diAiB

Using eq 25 we can easily find an efficient strategy to bracket
the solution. In fact, the following algorithm can be used:

1. Evaluate the distances between all sites that may interact

{diis(t)}ixis @t timet (starting the first time fronty).
2. Choose a time incremenit as

dAB(t)

max
€

d

if dag(t) > €

At= (26)

otherwise
max

where the two arbitrary parametesgande; satisfyeg < € <
mln{ La, LB} .

3. Evaluate the distances at tihe- At.

4. If for at least one pair of patcheg,(ig) we find that the
productdi i (t + At)di,is(t) < O, we have bracketed a solution.
We then find the collision times and the collision points solving
eq 22 for all pairs. Choose the smallest collision time and
terminate.

5. If pairs of patches are such that<0|d,(t + At)| < eq
and 0 < |dig(t)] < eq, for each of these pairs evaluate the
distancel,(t + At/2), perform a quadratic interpolation of these
three pointst, di(t); t + AU/2, diig(t + At/2); t + At, di et +
At)], and find if the resulting parabolas have zeros. If yes, refine
the smallest zero, solving again eq 22 for all of these pairs.

6. Increment time byt, that is

t—t+ At (27)

7. Goto step 1ift < t,.

If two spherical patches of two particles undergo a “grazing”
collision, that is, a collision in which the modulus of the distance
stays smaller thamq during the collision, the collision could
not be located by the previous algorithm due to failure of the
guadratic interpolation. If during the grazing collision no further
collisions involving one of the two particles are scheduled, the
collision will pass unnoticed. Instead, if during the grazing

J. Phys. Chem. B, Vol. 110, No. 15, 2008077

may not be conserved and the grazing collision can be detected.
This event is so rare withy ~ 1078 that it has never been
observed in our simulations.

The basic algorithm can be improved with simple optimiza-
tions. For example, one can calculziii%a;X as

daasx= [V agll + HwallL, + gL, (28)

where
L, = IIr, — Ryl (29a)
L, = IIr,’ — Rell (29b)

and if dag(t) > €1, the time increment can be evaluated in the
following optimized way:

At = min{d, , (t)/d"™ (30)
S Ale

Ialg
D. Collision of Two Particles. At the collision time, one
has to evaluate the new velocities of centers of mass and the
new angular velocities. Ikc is the contact point, then the
velocities after the collision can be evaluated as

Vo=V, + m, TApf (31a)
Vg™ Vg — My 'Apygf (31b)
Wy — W, + Appglp H(ry — Xo) x R (31c)
Wg = Wg — Apaglg (Fg = Xo) x (31d)

wherefi is a unit vector perpendicular to both surfaces at the
contact pointxc, 14 andlg are the moments of inertia of the
two colliding sticky particlesma andmg are their masses, and
the quantityApag depends on the type of the collision. If we
define

Vo= (Va+Wu X (Xc—Ta) — Vg — Wg X (Xc — Ig)N (32)

If the collision occurring between particles is a hard-core
collision, one has

APpg = ~20; (33)

if the collision occurred between two spherical patches already
bonded (i.e., if prior to the collision the distance between the
two sites is<d, one has

—2v, if 02 < 2Uy/M,eq

APpg = .
AB _Uc"‘m otherwise

where

(34)

Mg =Myt mg 1, 1 I(r, — Xo) x Al +

lg 1(rg — Xo) x Al (35)

re

Finally, if the collision occurs between two patches that are
not bonded (i.e., the distance between the two sitesdsprior
to the collision), we have

ApABZ U + \ Ucz - 2uOered

VIII. Appendix: Evaluating the Pressure

(36)

A. Evaluating the Pressure in the ED Code We define

collision a collision with other particles is scheduled, then energy the quantity
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ARG =V [ 7t (37)

where % is the molecular pressure tensor

N N N
SV = ) MV, Vg + zFija(Riﬁ —Rp (38)

= I=1]>T
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