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UniVersità di Roma La Sapienza, P.le A. Moro 2, 00185 Roma, Italy

ReceiVed: NoVember 4, 2005; In Final Form: January 26, 2006

We report extensive Monte Carlo and event-driven molecular dynamics simulations of a liquid composed of
particles interacting via hard-sphere interactions complemented by four tetrahedrally coordinated short-range
attractive (“sticky”) spots, a model introduced several years ago by Kolafa and Nezbeda (Kolafa, J.; Nezbeda,
I. Mol. Phys.1987, 87, 161). To access the dynamic properties of the model, we introduce and implement a
new event-driven molecular dynamics algorithm suited to study the evolution of hard bodies interacting,
beside the repulsive hard-core, with a short-ranged interpatch square well potential. We evaluate the
thermodynamic properties of the model in deep supercooled states, where the bond network is fully developed,
providing evidence of density anomalies. Different from models of spherically symmetric interacting particles,
the liquid can be supercooled without encountering the gas-liquid spinodal in a wide region of packing
fractionsφ. Around an optimalφ, a stable fully connected tetrahedral network of bonds develops. By analyzing
the dynamics of the model we find evidence of anomalous behavior: around the optimal packing, dynamics
accelerate on both increasing and decreasingφ. We locate the shape of the isodiffusivity lines in the (φ - T)
plane and establish the shape of the dynamic arrest line in the phase diagram of the model. Results are
discussed in connection with colloidal dispersions of sticky particles and gel-forming proteins and their ability
to form dynamically arrested states.

I. Introduction

This paper presents a detailed numerical study of the
thermodynamics and the dynamics of a model introduced several
years ago by Kolafa and Nezbeda1 as a primitive model for
water (PMW). The model envisions a water molecule as a hard
sphere (HS) having a surface decorated by four short-ranged
“sticky” spots, arranged according to a tetrahedral geometry,
two of which mimic the protons and two the lone-pairs. Despite
its original motivation, the Kolafa and Nezbeda model is
representative of the larger class of particles interacting via
localized and directional interactions, a class of systems that
includes, besides network-forming molecular systems, also
proteins2-4 and newly designed colloidal particles.5 Indeed,
recent developments in colloidal science are starting to provide
particles with specific directional interactions.6 In the same way
as sterically stabilized colloids have become the ideal experi-
mental model for realizing the hard-sphere fluid, novel physical
chemical techniques will soon make available to the community
colloidal analogues of several molecular systems. A colloidal
water is probably not far from being realized.

Recent work7 has focused on the dynamics of colloidal
particles interacting with a restricted number of nearest neigh-
bors. In refs 7 and 8 particles are interacting via a limited-
valency square well model,9-11 imposing a many-body constraint
on the maximum numbernmax of bonded interactions. It has
been found that whennmax < 6, a significant shrinking of the
liquid-gas (or colloidal rich-colloidal poor) spinodal takes
place. A window of packing fraction values opens up in which
it is possible to reach very low temperature (and hence states
with extremely long bond lifetimes) without encountering phase

separation. This favors the establishment of a spanning network
of long-living bonds, which in the colloidal community provides
indication of gel formation but which, in the field of network-
forming liquids, would be rather classified as glass formation.
The study of the dynamics of the PMW provides a test of the
nmax ) 4 results, in the absence of many-body interactions and
in the presence of a geometric correlation between the bonding
sites, retaining the maximum valency. This paper, by reporting
results on a model that can be at the same time considered to
be a simple model for the new generation of patchy colloids or
for network forming liquids, starts to bridge the gap between
these two fields.

Thermodynamic and structural properties of several primitive
models for water (and other bonded systems) have been studied
in detail during the past 30 years,1,12-15 because this type of
primitive model has become one of the landmarks for testing
theories of association.16-22 In particular, the theory of Wer-
theim16,17 has been carefully compared to early numerical
studies, suggesting a good agreement between theoretical
predictions and numerical data in the temperature and packing
fraction regions where it was possible to achieve numerical
equilibration.15 Recently, the increased numerical facilities,
extending the range of studied state points, have clarified that
deviations from the theoretical predictions start to take place
as soon as the number of bonds (between different patches) per
molecule increases and a network of bonded particles ap-
pears.20,23Geometric correlations between different bonds, not
included in the theory, are responsible for the breakdown of
the theoretical and numerical agreement. Attempts to extend
the perturbation theory beyond first order do not appear to be
able to solve the problem.23 The PMW is a good candidate for
testing new theories of association and, for this reason, it is
important to clearly establish numerically the lowT behavior
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of the supercooled liquid state. The equilibrium PMW phase
diagram, recently calculated,15 includes two crystal regions and
a metastable fluid-gas coexistence.

All previous studies of primitive models for sticky directional
interactions have focused on thermodynamic and static proper-
ties of the model. However, the ability to fully exploit the fast
developments taking place in colloidal physics24,25 requires
understanding of not only the equilibrium phases of systems of
patchy particles and their modifications with the external fields
but also the kinetic phase diagram,26 that is, the regions in phase
space where disordered arrested states can be expected, and
when and how these states are kinetically stabilized with respect
to the ordered lowest free energy phases. In this respect, it is
worth starting to establish the dynamic properties of simple
models of patchy interactions, because the simplicity of these
models (based on hard-sphere and square well interactions) have
the potential to provide us with an important reference frame
and may play a relevant role in deepening our understanding
of the dynamic arrest in network-forming liquids. Questions
concerning arrest phenomena associated with gel formation7,27

(i.e., the establishment of a percolating network of long-lived
bonds), arrest related to excluded volume effects, and the
dependence of the general dynamic and thermodynamic features
on the number and spatial location of patchy interactions can
be properly addressed. The case of the PMW reported here is
a good starting point. In this paper we report thermodynamic
data, extending the previously available information to lower
temperatures, and, for the first time, dynamic information
obtained solving the Newton equations using a new algorithm
based on event-driven propagation.

II. Model and Numerical Details

In the PMW, each particle is composed of a hard sphere of
diameterσ (defining the length scale) and by four additional
sites located along the direction of a tetrahedral geometry. Two
of the sites (the proton sites H) are located on the surface of
the hard sphere, that is, at a distance 0.5σ from the center. The
two remaining sites (the lone-pair sites LP) are located at a
distance of 0.45σ. Besides the hard-sphere interaction, prevent-
ing different particles from sample distances smaller thanσ,
only the H and LP sites of distinct particles interact via a square
well (SW) potentialuSW of width δ ) 0.15σ and depthu0, that
is

wherer is the distance between H and LP sites. The choice of
δ ) 0.15σ guarantees that multiple bonding cannot take place
at the same site. The depth of the square well potentialu0 defines
the energy scale. Bonding between different particles is thus
possible only for specific orientations and distances. In the linear
geometry, the maximum center-to-center distance at which
bonding is possible is 1.1σ because the LP site is buried 0.05σ
within the hard core, a value typical of short-range colloid-
colloid interactions.

We have studied a system ofN ) 350 particles with periodic
boundary conditions in a wide range of packing fractionφ ≡
π/6nσ3 (wheren is the number density) and temperaturesT,
whereT is measured in units ofu0 (kB ) 1). We perform both
Monte Carlo (MC) and event-driven (ED) molecular dynamics.
In MC, a move is defined as a displacement in each direction
of a random quantity distributed uniformly between(0.05σ and
a rotation around a random axis of a random angle distributed

uniformly between(0.5 radiant. Equilibration was performed
with MC and monitored via the evolution of the potential energy
(a direct measure of the number of bonds in the system). The
mean square displacement (MSD) was also calculated to
guarantee that each particle has diffused on average more than
its diameter. In evaluating the MSD we have taken care to
subtract the center of mass displacement, an important correction
in the low T long MC calculations. At lowT simulations
required>109 MC steps, corresponding to several months of
CPU time. Here a MC step is defined asN attempts to move
(translation and rotation) a randomly selected particle.

We have also performed ED molecular dynamic simulations
of the same system, modeling particles as constant density
spheres of diameterσ and massm. The momentum of inertia is
diagonal and equal tomσ2/10. The algorithm implemented to
propagate the Newtonian trajectory in the presence of patchy
square well interaction is described in detail in Appendix VII.
In ED dynamics, time is measured in units ofσxm/u0.
Assuming asm the mass of the water molecule, asu0 a typical
value for hydrogen bond (≈20 kJ/mol), and asσ the nearest-
neighbor distance in water (0.28 nm), the unit of time corre-
sponds to≈0.3 ps. All static quantities have been evaluated
with both MC and MD configurations with no differences found.

Pressure, measured in units ofu0/σ3, has been calculate as
sum of three contributions. A trivial kinetic contribution, equal
to nkBT. A positive HS contribution and a negative contribution
arising from the SW interaction. Details of the calculation ofP
in both MC and ED simulations is provided in the Appendix
VIII.

III. Results: Static

A. Potential Energy E. Because in the PMW each site can
take part in only one bond, due to geometric constraints fixed
by the small value ofδ, the lowest energy configuration is
defined by four bonds per particles, corresponding to a ground-
state energy per particleEgs ) -2 (in units ofu0). Of course,
this absolute ground-state value may not be accessible at allφ,
due to the strong constraints introduced by the bonding
geometry. According to Wertheim’s first-order thermodynamic
perturbation theory, complemented by an appropriate choice of
the shape of the radial distribution function of the reference
hard-sphere system, theT and φ dependence of the potential
energy per particleE is given by1,13-15

where

with c1 ) 2.375× 10-5 andc2 ) 2.820-6.14,15 The Wertheim
theory, which assumes uncorrelated independent bonds, predicts
as lowT limit of eq 2 an ArrheniusT dependence

that is, with an activation energy of half bond energy. It is worth
observing that such an Arrhenius law, with an activation energy
equal to 0.5u0, characterizes the lowT dependence of the energy
in thenmax model7,8 (a model of particles interacting via a SW

uSW ) -u0 r < δ (1)

) 0 r > δ
E - Egs ) 2

1 + c
(2)

c ) 0.5[1+ 192(e1/T - 1)φJ]0.5 - 1 (3)

J )
c1(1 - φ/2) - c2φ(1 + φ)

(1 - φ)3
(4)

lim
Tf0

E - Egs ) 4

x192φJ
e-0.5/T (5)
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potential with an additional constraint on the maximum number
of bonds), where no geometric correlation between bonds is
imposed.

Figure 1 shows theT dependence of the potential energy for
different isochores. As discussed in detail in the following, for
φ j 0.24 a phase separation is encountered on cooling,
preventing the possibility of equilibrating one-phase states below
T ≈ 0.11. Forφ > 0.24 the system remains homogeneous down
to the lowest investigatedT. The low T behavior is expanded
in Figure 1 (bottom). With the extremely long equilibration runs
performed, proper equilibration is reached only forT J 0.09.
The enlargement of the lowT region shows that the absolute
ground-state value of-2u0 is closely approached atφ ≈ 0.3.
At higher or smallerφ, the potential energy appears to approach
a constant value larger than-2u0. Consistent with previous
claims,15 high T data are very well represented by first-order
thermodynamic perturbation theory. Systematic deviations
between theory and simulation data appear as soon as the
number of bonds per particle becomes>1. Comparison of the
simulation data with the Wertheim theory confirms that the
physics of the network formation is completely missing in the
first-order perturbation theory.

Figure 2 shows theF dependence ofE along isochores. At
high T (T > 0.13), a monotonic decrease ofE is observed,
caused by the increased bonding probability induced by packing.
In this T region, the number of bonds is at most of the order of
two per particle. Completely different is the situation for lower
T. Theφ dependence becomes nonmonotonic. There is a specific
value of the packing fraction (φ ≈ 0.3) at which the lowest
energy states are sampled. In the following we define the optimal

network packing fractions as the range of packing fractions for
which it is possible to fully satisfy the bonds in a disordered
homogeneous structure. Atφ ≈ 0.3, the number of bonds at
the lowest investigatedT (the lowestT at which equilibration
is feasible with several months of computation time) is about
3.8 per particle; that is, about 95% of the bonds are satisfied.
The range of optimalφ values appears to be rather small. Indeed,
for packing fractions lower or higher than this optimalφ ≈
0.314, the formation of a fully connected network is hampered
by geometric constraints: at lowerφ, the large interparticle
distance acts against the possibility of forming a fully connected
network, whereas at largeφ, packing constraints, promoting
close packing configurations, are inconsistent with the tetrahe-
dral bonding geometry. Not surprisingly,φ ) 0.314 is within
the range ofφ values that allow for a stable open diamond
crystal phase (0.255< φ < 0.34).15 A reduction of the geometric
constraints (as in thenmax model7,28) increases the range of
optimal φ. It is worth also noting that the liquid side of the
spinodal curve is close to the region of optimal networkφ.

The existence of a convex form for the potential energy (here
for φ J 0.3) has been observed in several other models for
tetrahedral networks, including models for water (and water
itself29). It has been pointed out that a negatively convexφ

dependence is indicative of a destabilization of the free energy29

and a precursor of a possible liquid-liquid critical point (in
addition to the lowerφ gas-liquid one). Liquid-liquid critical
points have been observed in several models for water.30-35

Indeed, the Helmholtz free energyA is related toU (the sum of
the kinetic and potential energy) viaA ) U - TS, whereS is
the entropy. The curvature of an isotherm ofA must be positive
for a homogeneous phase of a specified volumeV to be
thermodynamically stable. The curvature ofA can be expressed
as

BecauseP ) -(∂A/∂V)T, the inverse compressibilityKT ) -1/
V(∂V/∂P)T is related to the curvature ofA by

The curvature ofA is thus proportional to 1/KT for fixed V.
Because 1/KT must be positive for a thermodynamically stable
state, for the range ofV in which (∂2U/∂V2)T < 0, the

Figure 1. Potential energy for the PMW: (a) data for all studied
isochores as a function ofT; (b) enlargement of the lowT region, where
the network is fully developed. Note that for this model, the lowest
possible energy isEgs ) -2.

Figure 2. Potential energy versusφ along isotherms: (symbols)
simulation data; (lines) Wertheim’s theory.

(∂2A

∂V2)
T

) (∂2U

∂V2)
T

- T(∂2S

∂V2)
T

(6)

1
KT

) V[((∂2U

∂V2)
T

- T(∂2S

∂V2)
T
)] (7)

8066 J. Phys. Chem. B, Vol. 110, No. 15, 2006 De Michele et al.



contribution of the internal energy reduces the thermodynamic
stability of the liquid phase. The liquid remains stable whereU
has negative curvature only because the contribution of the
entropic term in eq 6 is large enough to dominate. Yet entropic
contributions to these thermodynamic quantities are suppressed
asT decreases, due to the occurrence of the factor ofT in the
second term on the right-hand side of eq 6. Hence, theU - V
data suggest that at lowerT a single homogeneous phase of the
liquid will not be stable for certain values ofV, leading to a
separation into two distinct liquid phases of higher and lower
volume. Due to the predominant role ofE in the free energy at
low T, the possibility of a phase separation of the PMW liquid
into two liquid phases of differentφ, for φ > 0.3 andT lower
that we are currently able to equilibrate should be considered.

Figure 3 shows ln(E - Egs) versus 1/T. At the optimalφ, the
energy of the fully connected state is approached with an
Arrhenius law, characterized by an activation energy of≈1u0,
clearly different from the 0.5 value predicted by the Wertheim
theory. For largerφ values, data suggest that the lowest
reachable state has an energy different from-2u0, consistent
with the expectation that on increasingφ, geometric constraints
forbid the development of a fully connected network even at
the lowestT.

B. P. The Wertheim prediction for theT andφ dependence
of the PMW pressure (the equation of state, EOS) is

wherePHS is the pressure of the HS fluid at the same packing
fraction. PHS can be very well represented by the Carnahan-
Starling EOS36

The Wertheim EOS predicts a vapor-liquid critical point atTc

) 0.1031 andφc ) 0.085.15 The vapor-liquid spinodals
calculated according to the Wertheim theory and from simulation
data are reported in Figure 4. The numerical estimate is provided
by locating, along isochores, the highestT state point in which
phase separation is observed and theT at which the smallq
limit of the structure factor is<5. These two state points bracket
the spinodal locus. It is interesting to compare the liquid-gas

spinodal of the PMW with the corresponding spinodal of the
symmetric spherical square well potential with the same depth
and well widthδ ) 0.15. In that case, the critical point is located
at Tc ≈ 0.56 andφc ≈ 0.21237 and the high packing fraction
(the liquid) side of the spinodal extends beyondφ ) 0.6. The
net result of decreasing the surface available to bonding and of
limiting to four the maximum number of nearest neighbors that
can form bonds is the opening of a wide region ofφ values
where (in the absence of crystallization) a homogeneous fluid
phase is stable (or metastable). This finding is in full agreement
with the recent work of ref 7, in which a saturated square well
model was studied for different values of the maximum valency.
Indeed, it was found that when the number of bonds becomes
<6, the unstable region [the surface in the (φ - T) plane
encompassed by the spinodal line] significantly shrinks, making
it possible to access lowT states under single-phase conditions.

Figure 5 showsP(T) for different isochores. In agreement
with previous analysis,P is well represented by the Wertheim
theory only at high temperature. At lowT several interesting
features are observed: (i) Forφ < 0.25, isochores end in the
spinodal line. (ii) In the simulation data, a clear difference in
the low T behavior is observed between the two studied
isochoresφ ) 0.288 andφ ) 0.314. Whereas in theφ ) 0.288
caseP(T) decreases continuously on cooling, in theφ ) 0.314
case the lowT behavior ofP is reversed andP approaches a
positive finite value on cooling. This different lowT trend
indicated that forφ j 0.3, on cooling, the network becomes
stretched (negative pressures), in an attempt to preserve the
connected bonded state. This implies that at lowT there is a
driving force for phase separation into a fully connected
unstressed network and a gas phase. This also suggests that the
spinodal curve ends atT ) 0 aroundφ ) 0.3. At φ ≈ 0.3, the
packing fraction is optimal for the formation of an unstressed
fully connected network at lowT. The bond formation on
cooling does not require any stretching, and it reverses theT
dependence ofP. (iii) At 0.3 j φ j 0.38 a minimum ofP
appears. The existence of a minimum inP(T) along isochores
demonstrates the presence of density anomalies (i.e., expansion
on cooling along isobars) because points in which (∂P/∂T)V )
0 coincide with points in whichR ≡ (∂V/∂T)P ) 0, that is, with
points in which density anomalies are present. Indeed, by using
the rules for derivatives of implicit functions (∂V/∂T)P ) -(∂P/
∂T)V(∂V/∂P)T, and mechanical stability guarantees that (∂V/∂P)T

> 0.

Figure 3. Arrhenius representation (E - Egs vs 1/T) of the potential
energy around the optimal network density. The dashed line, shown as
a reference, has an activation energy of 1u0.

P ) PHS-

nkBT
96(e1/T - 1)

(1 + c)2

c1φ(1 + φ - 0.5φ2) - 2c2φ
2(1+2φ)

(1 - φ)4
(8)

PHS ) nkBT
(1 + φ + φ

2 - φ
3)

(1 - φ)3
(9)

Figure 4. Thermodynamic phase diagram for the PMW. The theoretical
Wertheim prediction for the locus at which (∂P/∂V)T ) 0 is compared
with numerical estimates of the spinodal, calculated by bracketing it
via the locus of point at whichS(0) ≈ 5 and the locus of points where
a clear phase separation is detected. The location of the bond percolation
line is also reported.
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The simplicity of the model allows us to access the different
contributions toP and investigate the origin of the increase of
P on cooling (Figure 6). In the PMW, apart from the trivial
kinetic component contribution, the only positive component
to P arises from the HS interaction. Interestingly enough, the
HS component increases on cooling. Such an increase in the
HS repulsion, indirectly induced by the formation of the bonding
pattern, in the range 0.30j φ j 0.36, appears to be able to
compensate for the decrease in the bonding component ofP.

To confirm the presence of density anomalies, it is instructive
to look at theV dependence ofP along isotherms, shown in

Figure 7. Again, the simulation data are consistent with the
Wertheim theory predictions only at largeT, and indeed it was
already noted that no density anomalies are found within the
theory1. The simulation data also show a clear crossing of the
isotherms around a volume per particleV ) 1.4 and 1.7,
corresponding toφ ) 0.314 andφ ) 0.38. Again, crossing is
indicative of the presence of density anomalies. The increase
of P on cooling, betweenφ ) 0.314 andφ ) 0.38, suggests
also a possible emergence of a second van der Waal-type loop
(in addition to the gas-liquid one) forT lower than the one we
are currently able to equilibrate. The possibility of a second
critical point between two liquid phases of different densities
has been discussed at length in the past,38 following the
discovery of it30 in one of the first models for water.39

C. g(r). The PMW radial distribution functions forT > 0.15
have been reported previously.1 Here we focus on the interesting
structural changes observed during the development of the bond
network ingOO andgH-LP, a T region that was not possible to
access in the previous simulations.gOO provides information
on the center to center particle correlation, whereasgH-LP(r)
contains information on the bonding and on the attractive
component of the pressure.

Figure 8 showsgOO(r) at three different packing fractions.
In the interval 1< r < 1.1 the function is highly peaked, a
consequence of the distance imposed by bonding. Outside the
bonding distance (r > 1.1),gOO(r) shows significant oscillations
only at low T. A peak, beside the bonding one, is observed at
r ≈ 1.7 corresponding to the characteristic distance between

Figure 5. Isochores ofP according to the Wertheim theory (a) and as
calculated from the simulation data (b). Symbols refer to simulation
data. The same sequence ofφ values is shown in both panels.

Figure 6. Components of the pressure atφ ) 0.314. The totalP is
decomposed in ideal gas, HS, and bonding components. Note the
isochoric minimum inP and T ) 0.105, a signature of an isobaric
density maximum.

Figure 7. Isotherms ofP according to the Wertheim theory [full
continuous lines in (a)] and as calculated from the simulation data
[symbols in both (a) and (b)] as a function of the volume per particle
V ≡ n-1. Note the crossing of the different isotherms atV ) 1.4 and
1.7.
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two particles bonded to the same central particle in a tetrahedral
geometry. The absence of information about the geometry of
the bonding sites in the theory of Wertheim is responsible for
the absence of the peak at 1.7σ and the breakdown of the
predictive ability of the Wertheim theory as soon as a particle
is engaged in more than two bonds. A few observations are in
order when theφ dependence ofgOO(r) is analyzed: At lowφ,
the tetrahedral peak atr ≈ 1.7 is the only peak ingOO(r). When
φ approaches the optimal network density, a clear tetrahedral
pattern develops andgOO(r ) 1.7) becomes>2. The tetrahedral
peak at≈1.7 is followed by oscillations extending up to 4σ. At
even largerφ, there is still a residual signature of tetrahedral
bonding at 1.7σ, but the depletion region forr > 1.1σ is not
developed any longer, signaling a competition between the HS
packing (which favors peaks at positions multiple ofσ) and
the local low density required by bonding.

Figure 9 compares, atφ ) 0.314, the OO, HH, and H-LP
radial distribution functions in linear scale. In all three functions,
the progressive structuring induced by the bonding is clearly

evident. EvengHH(r) shows very clear signs of spatial correla-
tions, which are induced by the tetrahedral geometry of the
bonding and by the geometry by which the bonding between H
and LP propagates. Indeed, in the PMW model the interaction
between differentH sites is zero.

D. S(q). The structure factor of the system, defined in terms
of the particle’s center coordinatesrbi as

provides information on the wave vector dependence of the
density fluctuations. In isotropic systems,S(q) is a function of
the modulusq. The behavior ofS(q) at smallq provides an
indication on the phase behavior, because an increase ofS(q)

Figure 8. Particle-particle radial distribution function atφ ) 0.105
(a), φ ) 0.288 (b), andφ ) 0.380 (c).

Figure 9. Radial distribution functions for OO (a), HH (b), and H-LP
(c) pairs at the optimal network densityφ ) 0.314. Insets ingOO and
gH-LP provide enlargements of the contact region. On cooling, a
significant structure appears, associated with the intense bonding.

S(qb) ) 〈1

N
∑
i)1

N

∑
j)1

N

eiqb‚( rbi- rbj)〉 (10)
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at smallq indicates the development of inhomogeneities with
length scale comparable to the system size studied. As an
indicator of the location of the phase boundaries (of the liquid-
gas spinodal line), we estimate the locus of points in (T,φ), where
S(q) for the particle centers becomes>5 at smallq. This locus
is reported in Figure 4. Forφ J 0.28S(q) does not show any
sign of growth at smallq in the region ofT where equilibration
is feasible, being characterized by values ofS(q) at smallq of
the order of 0.1. This confirms that, at this packing fraction,
there is no driving force for phase separation, because the
average density has reached a value such that the formation of
a fully connected network of bonds does not require a local
increase of the packing fraction. It is also important to stress
that atφ ) 0.288, at the lowest studiedT, the average number
of bonds per particle is 3.8, and hence the system is rather close
to its ground state and no more significant structural changes
are expected on further cooling.

Figure 10 showsS(q) at φ ) 0.105,φ ) 0.288, andφ )
0.385. Theφ ) 0.105 case has been chosen to show the
significant increase inS(q) associated with the approach of the
spinodal curve. The caseφ ) 0.288 shows both the absence of
a smallq-vector divergence and the clear development of the
typical q-pattern of tetrahedral networks. On cooling, the peak
atqσ ) 2π characteristic of excluded volume interactions splits
in two parts: a prepeak aroundqσ ≈ 5 and an intense peak
aroundqσ ≈ 8. The caseφ ) 0.385 confirms that the packing
fraction is now so high that a full tetrahedral network cannot
develop, and the splitting of the main peak in two distinct
components is very weak and visible only at the lowest
investigatedT.

E. Percolation.The PMW, as all other models based on HS
and SW interactions, is particularly suited for calculation of bond
properties, because a bond between particlesi and j can be
unambiguously defined when the pair interaction energy be-
tweeni and j is -u0. In the case of continuous potentials such
a clear-cut bond definition is not possible and several alternative
propositions have been put forward.40,41 We focus here on the
connectivity properties of the equilibrium configurations. We
use first standard algorithms to partition particles into distinct
clusters and then check for the spanning properties of each of
these clusters. To implement a strict definition of percolation,
we do not limit ourselves to the comparison of the largest
intracluster distance with the simulation box length, but make
sure that the cluster is spanning in the infinite system limit.
More explicitly, to test for percolation, the simulation box is
duplicated in all directions, and the ability of the largest cluster
to span the replicated system is controlled. If the cluster in the
simulation box does not connect with its copy in the duplicated
system, then the configuration is assumed to be nonpercolating.
The boundary between a percolating and a nonpercolating state
point has been defined by the probability of observing infinite
clusters in 50% of the configurations. The resulting percolation
line is reported in Figure 4. State points on the right side of the
line are characterized by the presence of an infinite cluster in
>50% of the configurations. This definition of percolation locus
is strictly a geometric measure and does not provide any
information on the lifetime of the spanning cluster. Along the
percolation line, about 1.5 bonds per particle are observed, with
a small trend toward an increase of this number on decreasing
φ. In terms of bond probabilitypb, this corresponds topb ≈
0.375, not too different from the bond percolation value of the
diamond lattice, known to be 0.388.42

As previously found in short-range SW potentials,43 in the
Baxter potential44 and in other simple models,7 the percolation

line crosses the spinodal curve close to the critical point, on
the left side of the spinodal curve. In this respect, the equilibrium
gas phase atφ smaller than this crossing point is always
nonpercolating. Percolation at very smallφ can be achieved only
as a result of an out-of-equilibrium process, quenching the
system inside the spinodal curve.

The highφ side of the percolation locussdifferent from the
SW casesdoes not extend to infiniteT, because at highT, even
at largeφ, the reduced particle surface available for bonding
prevents the possibility of forming a spanning network with a
random distribution of particle orientations.

IV. Dynamics

Thermodynamic and static properties of the PMW presented
in the previous section clarify the location of the regions in

Figure 10. Particle-particle structure factor atφ ) 0.105 (a),φ )
0.288 (b), andφ ) 0.385 (c). Note that atφ ) 0.105, an intense signal
develops at smallq, related to the approach to the spinodal instability.
Small q intensity is completely missing at the higherφ shown.
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which the bond network forms, the region where the liquid-
gas phase separation takes place and the region at highφ where
packing phenomena start to be dominant. In the following we
present a study of the diffusion properties of the model in the
phase diagram, with the aim of locating the limit of stability of
the liquid state imposed by kinetic (as opposed to thermody-
namic) constraints.

A. MSD. We focus on the mean square displacement〈r2(t)〉
of the particle centers, as a function ofT andφ, calculated from
the Newtonian dynamic trajectories. Figure 11 shows〈r2(t)〉 for
a few selected isochores. For short time〈r2(t)〉 ) 〈VT

2〉t2, where
〈VT

2〉 ) 3/2kBT is the thermal velocity. At highT, the short-time
ballistic behavior crosses over to a diffusion process (〈r2〉 ∼ t)
directly. At low T, the ballistic short-time and the diffusive long-
time laws are separated by an intermediate time window in

which 〈r2(t)〉 is approximatively constant, an indication of
particle caging.

Several features of〈r2(t)〉 are worth pointing out: (i) Forφ
j 0.209, the spinodals are encountered on cooling before the
caging process is visible. The phase separation process sets in
well before particles start to feel the caging process. (ii) The
static percolation curve reported in Figure 4 has no effect on
dynamics. There is no dynamic arrest at the static percolation
transition. (iii) For φ such that a well-developed tetrahedral
network can form, it is possible to cool the system to
temperatures at which, on the scale of simulation, arrest is
observed, in the absence of any phase separation.〈r2(t)〉 develops
a clear intermediate region where only the dynamic inside the
cage is left. At thisφ, the caging is not associated with excluded
volume interactions, but with the formation of energetic bonds.45

(iv) The plateau value in〈r2(t)〉 is a measure of the localization
length induced by the cage. To visualize theφ dependence of
the localization length, we show in Figure 12〈r2(t)〉 for three
different state points (φ - T) with the same long-time diffusivity.
The cage length is always significantly larger than the typical
HS value (〈r2(t)〉 ∼ 0.01) and grows on decreasingφ.

B. Diffusion Coefficient. The long-time limit of 〈r2(t)〉 is,
by definition, 6Dt, whereD is the diffusion coefficient. Theφ
andT dependence ofD is shown in Figure 13. We show log-
(D) both versusT and versus 1/T. Again, a few considerations
are in order: (i) The range ofD data covers about 5 orders of
magnitude. The data forφ < 0.24 are limited inT by the phase
separation process, whereas the data forφ > 0.26 are limited
by computational resources, because equilibration cannot be
reached within several months of calculations. (ii) Data forφ

> 0.26 cross aroundT ≈ 0.105, suggesting a nonmonotonic
behavior of theφ dependence of the dynamics. (iii) The early
decay ofD with T can be described with a power law,|T -
TMCT|γ. Power law fits, limited to the region ofT betweenT )
0.11 andT ) 0.15, cover the first 2-3 orders of magnitude in
D, in agreement with previous studies of more detailed models
for water45-47 and with the previously proposed MCT inter-
pretation of them.47-50 (iv) A crossover to an Arrhenius activated
dynamics is observed at lowT. Activated processes become
dominant in controlling the slowing of the dynamics. The
activation energy is≈4u0, close to the optimal networkφ,
suggesting that at lowT diffusion requires breaking of four
bonds. The crossover from an apparent power-law dependence
to an Arrhenius dependence has also been observed in simula-
tions of other network-forming liquids, including silica51,52and
more recently water.53 The low T Arrhenius dependence also

Figure 11. Mean square displacement for differentT values, at
three differentφ values: (a)φ ) 0.131; (b) φ ) 0.314; (c) φ )
0.450.

Figure 12. Mean square displacement along a constantD path. Note
theφ dependence of the plateau at intermediate times, which provides
an estimate of the caging length.
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suggests that in the region where bonding is responsible for
caging, the vanishingD locus coincides with theT ) 0 line.

Particularly interesting is the behavior ofD(φ) along iso-
therms. An almost linear dependence at smallφ (up to φ )
0.235) is followed by a nonmonotonic behavior. BelowT )
0.11 (Figure 14), a diffusion anomaly is observed in theT and
φ region, where the tetrahedral network develops. Aroundφ )
0.34 an isothermal compression of the system generates an
acceleration of the dynamics. Aboveφ ≈ 0.35, D starts to
decrease again on increasing packing. Diffusivity anomalies of
the type observed in the PMW are found in several tetrahedral
network-forming liquids, including water.54 The explanation for

this counterintuitiveφ dependence of the dynamics is to be
found in the geometric constraints requested by the tetrahedral
bonding requiring an open local structure. Increasingφ destroys
the local bonding order with a resulting acceleration of the
dynamics.

C. Isodiffusivity (and Arrest) Lines. A global view of the
dynamics in the (T - φ) plane is offered by the isochronic lines,
that is, the locus of state points with the same characteristic
time.55 In the present case we focus on the isodiffusivity lines.
The shape of the isodiffusivity lines, extrapolated toD f 0,
provides a useful indication of the shape of the glass transition
line.56-58 Figure 15 shows the isodiffusivity lines for several
different values ofD, separated from each other by 1 order of
magnitude. The slowest isodiffusivity lines are only weaklyT
dependent at lowφ. For small values ofD, isodiffusivity lines
start from the right side of the spinodal, confirming that slow
dynamics is only possible for states withφ > φc. At largeφ the
isodiffusivity lines bend and become parallel to theT axis,
signaling the crossover to the hard-sphere case. Extrapolation
to 0 of theT (or φ) dependence ofD provides estimates of the
dynamic arrest line. In the present model, the lowT dependence
of D along isochores is well modeled by the Arrhenius law,
and hence technically arrest is expected atT ) 0. The shape of
the isodiffusivity lines suggests that the vertical repulsive glass
line (controlled by excluded volume effects) starting at highT
from the HS glass packing fraction meets at a well-definedφ

the T ) 0 bond glass line.
The shape of the PMW isodiffusivity lines is very similar to

the short-range square well case, for which a flatT-independent
“attractive” glass line crosses (discontinuously) into a perpen-
dicularφ independent “repulsive” glass line.58,59Differently from
the SW case, in the PMW the equivalent of the attractive glass
line extends to much smallerφ values, because the reduced
valency has effectively reduced the space in which phase
separation is observed.7 It is also worth pointing out that the
shape of the isodiffusivity lines at lowφ is similar to the shape
of the percolation line. As in all previously studied models,7,58

crossing the percolation line does not coincide with dynamics
arrest, because the bond lifetime is sufficiently short that each
particle is able to break and re-form its bonds.

D. D versusE - Egs. At the optimal network density, the
low T behavior of bothD and E - Egs (which, as discussed

Figure 13. Temperature dependence of the diffusion coefficient along
isochores. The dashed line is an Arrhenius dependence with activation
energy equal to 4u0.

Figure 14. Diffusion coefficient along isotherms. Note the nonmono-
tonic behavior that develops forT < 0.11.

Figure 15. Isodiffusivity lines in the (T - φ) plane. An excursion of
5 orders of magnitude inD values is explored. All lines start from the
spinodal and end at infiniteT at the corresponding HS location. At
small D, lines cannot be continued aboveφ ) 0.5 because there the
HS interaction is dominant and the system crystallizes. Extrapolating
along isochores the observed Arrhenius functional form suggests an
ideal D ) 0 arrest line atT ) 0.
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above, is also a measure of the number of broken bonds) is
Arrhenius. This suggests the need for a more careful look into
the relationship between the activation energy of the two
processes. One possibility is offered by a parametric plot ofD
versusE - Egs in log-log scale, so that the slope of the straight
line provides the ratio of the two activation energies. Such a
plot is shown in Figure 16. We find the remarkable result that,
close to the optimal networkφ, the slope of the curve has
exponent four, that is,D ∼ (E - Egs).4 Because the fraction of
broken bonds in the system is exactly (E - Egs)/Egs, the previous
relationship suggests thatD is proportional to the fourth power
of the fraction of broken bonds, that is, to the fraction of particles
with no bonds, and that the elementary diffusive process requires
the breaking of four bonds. A functional law for diffusion in a
tetrahedral model of this type was proposed by Teixera60 to
interpret theT dependence ofD in water in the context of the
percolation model developed in ref 61. A similar dependence
has been recently reported for a model of gel-forming four-
armed DNA dendrimers.62

E. D - MD versus MC. All dynamic data presented above
refer to ED Newtonian dynamics. Indeed, MC simulations
intrinsically miss dynamic information, being based, in their
simpler formulations, on random displacements of the individual
particles. Still, if the random displacement in the trial move is
small compared to the particle size, the sequence of MC steps
can be considered a possible trajectory in configuration space.
When this is the case, the number of MC steps (each step being
defined as an attempted move per each particle) plays the role
of time in the evolution of the configurations in configuration
space. In the absence of interactions, a particle evolved
according to the MC scheme diffuses with a bare diffusion
coefficient DMC

0 fixed by the varianceδMC
2 of the chosen

random displacement along each direction [in our calculations
we have used a uniform distribution of displacements with a
variance ofδMC

2 ) (0.1)2/12, corresponding toDMC
0 ) 3δMC

2 /6
in units of σ2/MC step]. If needed,DMC

0 provides a means to
associate a physical time to the MC step. At lowT, when slow
dynamic processes set in (favored by bonding or by packing),
it is expected that the microscopic dynamics becomes irrelevant
(except for a trivial scaling of time). The escape from the cage
created by neighboring particles is indeed a much rarer event
as compared to the rattling of the particles in the cage. Under
these conditions, the slow dynamic processes become indepen-
dent of the microscopic dynamics, and hence Newtonian,
Brownian, and MC show the same trends. Figure 17 shows that
this is the case for threeφ values. In all cases, at lowT, theT

dependencies ofDMC andD are identical. Moreover, the scaling
factor between MC and MD dynamics is independent ofφ,
suggesting that at lowT, with the chosen units, the relationship
DMC/DMC

0 ) ê holds. From comparing MC and MD data we
find that the proportionality constantê ≈ 10 and shows no state-
point dependence. To confirm that caging is fundamental to the
observance of independence of the slow dynamics from the
microscopic one, we look at the shape of〈r2(t)〉 (Figure 11),
finding that at theT at which MC and MD dynamics start to
coincide a significant caging is present.

Because the microscopic time of the MC dynamics is not
affected by temperature (being always fixed by the variance of
the random displacements), it is interesting to consider the
relationship betweenD and E - Egs also for DMC, shown in
Figure 18 at the optimal network densityφ ) 0.314. Again,
the slope of the curve has exponent four, but compared to the
MD case, the region of validity of the power law covers the
entire range ofT studied, from very highT (where the number
of bonds is negligible) to the lowest equilibrated temperature,

Figure 16. Diffusion coefficient versusE - Egs for differentφ values.
The dashed line is a power law with exponent four.

Figure 17. Comparison between the MD and MC diffusion coefficients
at three differentφ values. The MC data are also shown multiplied (by
a common factor of 0.1) to better visualize the lowT overlap.
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covering more than 4 orders of magnitude. The validity of the
relationshipD ∼ (E - Egs)4 extends to highT, when the system
is well above percolation and there is no evidence of a
tetrahedral network (as shown in the structural data reported in
Figures 10 and 8). The extended validity of the power law, with
an exponent exactly equal to the valence of the model, is highly
suggestive and, in principle, very important for theoretical
considerations, because it appears to cover either the region of
temperature where liquid dynamics is observed or the lowT
states where signatures of slow dynamics (see Figure 11) are
very well developed. The limit of validity of this finding needs
to be carefully checked in other primitive models with different
valence and with more realistic models of network-forming
liquids.

V. Conclusions

Results presented in this paper cover several apparently
distinct fields. To start with, results presented here can be
discussed in relation to the dynamic and thermodynamic
properties of water. We have shown that the thermodynamics
of the PMW includes, besides the compressibility anomalies
reported before,1 also density anomalies (at much lowerT). The
source of the density anomalies is shown to be associated with
the establishment of the bond network in the tetrahedral
geometry. On cooling (along isochores) the energetic driving
force that favors the formation of the bond, due to geometric
constraints associated with the formation of the open tetrahedral
structure, forces the pressure to increase, hence generating a
density maximum state point. The simplicity of the PMW allows
us also to clearly detect an optimal network density, at which
the ground state of the system (i.e., the state in which each
particle is involved in four bonds) can be closely approached.
At this packing fractionφ the T dependence of the potential
energy is the most pronounced, generating a minimum in the
isothermalφ dependence. The presence of a minimum inE(φ)|T
is highly suggestive because it indicates63 the possibility of a
liquid-liquid phase separation atT lower than the one we have
been able to equilibrate. We have also shown that at this optimal
φ, low T dynamics slows with the fourth power of the probability
of broken bonds; that is, the dominant component to dynamics
arises from single-particle motions and, specifically, from the
particles that happen to have all four bonds broken at the same
time. We have also shown that, as in real water, diffusion
anomalies are observed. At lowT, the decrease of the diffusivity
on increasingφ is reversed once the optimal network density is

reached. For higherφ, the progressive destruction of the bond
network due to the increased packing accelerates the dynamics.
For even higherφ, D(φ) resumes its standard decreasing
behavior associated with the approach of the excluded volume
glass transition. Diffusion and density anomalies in the PMW
models are thus strongly related, similarly to what has been
observed in more realistic models for water.64 The simplicity
of the model is crucial in clarifying these aspects because the
hard-core and square well interactions guarantee the absence
of volumetric effects related to theT dependence of the
vibrational amplitudes.

A second interesting aspect of the presented results concerns
the dynamics in network-forming systems. The present study
provides a complete characterization of the dynamics in the
entire (φ - T) plane, from the smallest possibleφ liquid state
points to the close-packed state. From the reported data, the
relative role of the energy and of the packing in controlling the
dynamics stands out clearly. The isodiffusivity lines are es-
sentially parallel to theφ-axis (i.e.,T controlled) in the network
low φ region and are essentially parallel to theT-axis (i.e.,φ
controlled) at largerφ. Interestingly enough, along isochores,
low T dynamics follows an Arrhenius law, the landmark of
strong glass-forming behavior.65,66The Arrhenius law is foreseen
by a T region where dynamics has a strongT dependence,
compatible with a power-law dependence. In this power-law
region the first signatures of caging in the mean square
displacement are observed. Similar changes in the dynamics
have been observed in previous studies of silica,51,52,67water,53

and silicon.68 In particular, for the cases of silica and water, it
has been suggested that the region where dynamics starts to
feel the presence of energetic cages can be interpreted in terms
of mode coupling theory.45,52,67,69-73

The dynamics at the optimal networkφ is particularly
suggestive. Although in the present model slowing of the
dynamics prevents equilibration of the supercooled liquid to very
low T, at the lowestT simulations the average number of bonds
has gone up to 3.8 per particle. In this respect, further structural
and dynamic changes are hard to foresee. This suggests that
the Arrhenius behavior is retained down toT ) 0. Such
speculation is reinforced by the numerical values of the
activation energy ofD, which is found to be≈ 4u0, that is,
corresponding to the breaking of four bonds. This suggests that
in network liquids, the limited valency imposed by the
directional forces fixes a well-defined energy of the local
configuration and a discrete change of it, which is reflected in
the Arrhenius behavior. The presence of a limited valency and
a well-defined bond energy scale appears to be the key
ingredient of the strong liquids behavior.8 It is also worth
exploring in future works the possibility that the optimal network
density plays, in studies of one-component systems, the same
role as the reversibility window74 in bulk alloy glasses.
Connections with the concept of self-organization in network
glasses75 should also be pursued.

A further aspect of this work concerns the relative location
between the liquid-gas spinodal and the kinetics arrest lines,
the shapes of which are inferred by the study of the isodiffusivity
lines. As in the short-range SW model,43,76 the kinetics arrest
lines end in the right side of the spinodal, that is, in the liquid
phase. However, differently from the SW case, the limited
valency has shifted the right side of the spinodal to very small
φ values,φ j 0.25. Indeed, the limited valency effectively
disfavors condensation of the liquid phase, reducing the driving
force for phase separation and making it possible to generate
low packing fraction arrested states in the absence of phase

Figure 18. Relationship betweenDMC, normalized by the bare MD
diffusion constantDMC

0 andE - Egs for MC dynamics. Note that the
MC data follow over 5 orders of magnitude a simple fourth-power law
(full red line).
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separation, that is, homogeneous single phase stable in equi-
librium, at lowT.77 The possibility to access lowT homogeneous
supercooled states forφ > 0.25 characterized by a glassy
dynamics, driven by the bonding energy as opposed to packing,
confirms the findings of the zeroth-order model with limited
valency reported in ref 7. The absence of geometric correlation
between the bonding sites, the key ingredient of the maximum
valency model,7 is thus not crucial for the stabilization of the
network. The role of the geometric constraint appears to be the
reduction in the range ofφ values where the fully bonded
disordered state can be reached. Two different arrest mechanisms
characterize the dynamics of network systems: arrest due to
the formation of energetic cages, with an arrest line that runs
almost parallel to theφ-axis, and arrest due to excluded volume
effects, with an arrest line parallel to theT-axis. These two lines
are reminiscent of the attractive and repulsive glass lines
observed in short-range attractive colloids.26,58,59,70,78Connecting
the results presented in this paper with previous studies of
network-forming liquids,45,52 it is tempting to speculate that
mode-coupling theory predicts satisfactorily the shape in the
(φ - T) plane of the dynamics arrest lines. Still, although in
the region where excluded volume controls caging the relative
error in the location of the glass line is limited, in the case in
which the bonding mechanism is dominant in generating arrest,
the location of the MCT line can be significantly distant from
the actual dynamic arrest line (technically located atT ) 0,
being dynamics Arrhenius), due to the role of activated bond-
breaking processes, which offer a faster channel for the decay
of the correlations. The evaluation of the MCT lines for the
present model, in principle feasible within the site-site approach
developed by Chong and Goetze79,80 or within the molecular
approach developed by Schilling,48,81 can help to clarify this
issue.

The possibility of an intersection between the excluded
volume arrest line (starting at highT from the HS glass-packing
fraction) and the bond-controlledT ) 0 arrest line is particularly
suggestive. The shape of the isodiffusivity lines supports the
possibility that the vertical repulsive glass line meets at a well-
definedφ theT ) 0 bond-controlled glass line. If this scenario
is correct and general, one would conclude that the fragile and
strong kinetic behavior is intimately connected to the dominant
mechanism of arrest (fragile for excluded volume and strong
for bonding) and, more interestingly, that strong behavior can
be observed only when the interaction potential is such that
fewer than six neighbors are present (i.e., in network-forming
systems). Indeed, only under these circumstances does the
suppression of the liquid-gas phase separation make it possible
to approach theT ) 0 bond-controlled glass line.

An additional comment concerns the relationship between
gel and glass arrest states. Results reported in this paper confirm,
once more, that in this class of models the geometric percolation
line does not have any impact on the dynamic arrest, because
at percolation the lifetime of the bond is still rather small. Only
when the system is well inside the percolation region has the
bond lifetime slowed significantly to affect all measure-
ments of global connectivity with an intrinsic time scale shorter
than the bond lifetime (as, for example, finite frequency shear
viscosity). Indeed, already long ago it was noted for the case
of water61 that bond percolation is irrelevant to any thermody-
namic or dynamic anomaly. More sophisticated models, incor-
porating bond cooperativity or significant entropy contribu-
tions to bonding (as in the case of polymeric gels), may reduce
the distance between dynamic arrest states and percola-
tion.62

Despite the difference between percolation and arrest lines,
if one considers the present model as a system of colloidal
particles with sticky interactions, one would be led to call the
arrested state at 0.3j φ j 0.5 a gel, led by the fact that the
arrested state has a lowφ open connected structure. Similarly,
if one considers the PMW to be a model for a network liquid,
one would be led to name the same arrested state a network
glass. Although we cannot offer any resolution to this paradox
with the present set of data, future work focusing on the shape
of the wavevector dependence correlation functions and the
resulting nonergodicity parameters can help to clarify this issue
and confirm/dispute the hypothesis on the differences between
gels and glasses recently proposed.7,78,82 At the present time,
we can only call attention to the fact that a continuous change
from energetic cages to excluded volume cages takes place on
increasingφ.

A final comment refers to the propensity of the system to
form disordered arrested states. Despite the relevant amount of
supercooling,15 in all studied state points where a network
structure is present, we have not observed any sign of crystal-
lization. The kinetic suppression of the crystallization phenom-
enon can be traced to the similar energy characterizing the
crystal state and the fully bonded disordered state, fading the
energetic driving force toward crystallization. The observed
propensity to form gel states as opposed to crystalline states
manifested by the studied model (which can be seen also as a
model for short-range sticky colloidal particles as well as
globular proteins with aeolotopic interactions2) may well explain
the difficulty of crystallizing some class of proteins. It also warns
us about the relevance of the dynamic arrest phenomenon in
the future attempts to build a colloidal diamond photonic crystal
made of particles with short-ranged patchy interactions.
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VII. Appendix: Event-Driven Algorithm for Hard
Spheres with Patches

In an ED algorithm, events such as times of collisions
between particles and cell crossing have to be taken into account.
All of these events have to be ordered. Code must be written in
such a way that locating the next event and insertion/deletion
of new events have to be performed efficiently. In the literature,
several ED algorithms for simulating hard-sphere systems exist,
and several propositions on how to handle such events efficiently
have been reported. One elegant approach, proposed 20 years
ago by Rapaport,83 arranges events into an ordered binary tree
(calendar of events) so that insertion, deletion, and retrieving
of events can be done with efficiencies ofO(log N), O(1), and
O(log N), respectively, whereN is the number of events in the
calendar. We adopted this solution to handle the events calendar
in our simulation, adding only a redefinition of event time to
avoid round-off problems that are found when extremely long
simulation runs are performed.

A. Motion of Rigid Bodies. The orientation of a rigid body
can be conveniently represented by the three column eigenvec-
tors ui (with i ) 1, 2, 3) of the inertia tensor expressed in the
laboratory reference system. These vectors form an orthogonal
set and can be arranged in a matrixR, that is

wheretA indicates the transpose of the matrixA. This matrix is

R ) t(u0u1u2) (11)
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such that ifx are the coordinates of the laboratory reference
system andx′ are the coordinates of the rigid body reference
system, it turns out that

In what follows, we assume that the three eigenvalues of the
inertia tensor are all equal toI. Namingw ) (wx, wy, wz) the
angular velocity of a free rigid body, the matrixΩ is defined
as

Knowing the orientation at timet ) 0, the orientationR(t) at
time t is84,85

whereM is the matrix

andw ) ||w||. Note that ifw ) 0 thenR(t) ) R(0). To derive
eq 14, consider that

where we remember thatui are column vectors. Hence, ifw )
wn̂, we have after some algebra

that is the so-called Rodriguez’s formula or rotation formula,
that is, a rotation of an anglewt around the axisn̂. To con-
clude if one has to update position and orientation of a
rigid body, which is freely moving, this can be accomplished
doing

wherex(t) is the position of the center of mass of the rigid body
at time t andv is its velocity.

B. Hard Sphere with Interacting Patches.In the present
model, each particle is modeled as a hard sphere withn spherical
patches arranged in fixed site locations. In the present case, the
site-site interaction is a SW potential

whereδ andu0 are the width and the depth of the SW. For the
following discussion, the SW interaction can be visualized as
a sphere of diameterδ centered on the site location. Sim-
ilarly, one can visualize the particle as a rigid body composed
by the hard sphere joined to the spheres located on the sites. In
what follows, we identify a particle with the resulting surface.
The distancedAB between two particlesA andB is defined as
the shortest line connecting two points on distinct particles, that
is

whereiA, iB ∈ {0, ...,n} and 0 labels the hard sphere, 1...n labels
the n spherical patches, anddiAiB is the distance between the
two spherical patchesiA and iB.

C. Prediction of Time of Collision. 1. Finding the Contact
Time.We separate the collisions between two particles in the
hard-sphere part of the potential and the site-site interaction
part. The time of collisionths between the hard-sphere cores
can be evaluated as usual.83 The smallest time of collision among
all n2 spherical patch pairs istst. The time of collision of the
two particles is

To find the time of collision of two interacting patches,
we assume that it is possible to bracket it. That is, we assume
(see further subsections) that the time of collisiontst is such
that t1 < tst < t2, where the product d(t1)d(t2) < 0. Thus, the
“exact” time of collision is provided by the root of the equa-
tion

whereriA and riB are the two site locations.
2. Linked Lists and Centroids.As described in ref 83 to speed

an ED molecular dynamics of hard spheres, one can use linked
lists. For a system ofN identical particles inside a cubic box
of edgeL, we define the “centroid”86,87 as the smallest sphere
that contains the particle (the HS and the spherical patches).
Linked lists of centroids may be quite useful to reduce the
number of objects to check for possible collisions; in addition
they can be used to restrict the time interval within which
searching for the collision is performed. We divide the box into
M3 cells so that each cell contains at most one centroid. After
that, we build the linked lists of these centroids and handle these
lists as done in a usual ED molecular dynamics of hard
spheres.83 This means that whenever an object crosses a cell
boundary, one has to remove such object from the cell the
particle is coming from and add this object to the cell it is going
to.

Now consider that one has to predict all of the possible
collisions of a given particle, which is inside a certain cellm.
As for the hard spheres case we take into account only the
particles inside the adjacent cells (see ref 83 for more details),
and we predict the times of collisions with these objects.
Consider now two particlesA and B at time t ) 0 and their
centroidsCA andCB. Three possible cases arise:

1. CA andCB do not overlap and, from an evaluation of their
trajectory, no collision between the two centroids is predicted.
In this caseA andB will not collide either.

2. CA andCB do not overlap, but they will collide: in this
case, we calculate two timest1 and t2, bracketing the possible
collision betweenA andB: t1 is defined as the time when the
two centroids collide and start overlapping, andt2 is the time
when the two spheres have completely crossed each other and
do not overlap any longer.

3. CA andCB overlap: in this caset1 ≡ 0 andt2 is defined as
the time at which the two centroids stop overlapping.

3. Fine Temporal Bracketing of the Contact Time.Here we
show how a refined bracketing of solution of eq 22 can be
accomplished. First of all, we give an overestimate of the rate
of variation of the distance between two patchesiA andiB, that
is

x′ ) Rx (12)

Ω ) (0 -wz wy

wz 0 -wx

-wy wx 0 ) (13)

R(t) ) R(0)(I + M ) (14)

M ) -
sin(wt)

w
Ω +

1 - cos(wt)

w2
Ω2 (15)

tR(t) ) [u1(t)u2(t)u3(t)] (16)

) [t(I + M )u1
t(I + M )u2

t(I + M )u3)

ui(t) ) ui ‚ n̂n̂ + cos(wt)(ui - n̂ ‚ uin̂) + sin(wt) n̂ × ui

(17)

x(t) ) x(0) + vt (18a)

R(t) ) R(0)(I + M ) (18b)

uSW ) {-u0 if r < δ
0 otherwise

(19)

dAB ) min
iA,iB

diAiB
(20)

tc ) min{ths, tst} (21)

||riA
(t) - riB

(t)|| ) δ (22)
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where the dot indicates the derivation with respect to time,r iA
and r iB are the positions of the two sites with respect to a
laboratory reference system,viAiB is the relative velocity of the
two sites,VAB is the relative velocity between the centers of
mass of the two particles, andRA andRB are the positions of
their centers of mass and

Having calculated an overestimate ofḋiAiB(t), we can evaluate
an overestimate ofḋAB that we callḋmax:

Using eq 25 we can easily find an efficient strategy to bracket
the solution. In fact, the following algorithm can be used:

1. Evaluate the distances between all sites that may interact
{diAiB(t)}iAiB at time t (starting the first time fromt1).

2. Choose a time increment∆t as

where the two arbitrary parametersεd andεf satisfyεd < εf ,
min{LA, LB}.

3. Evaluate the distances at timet + ∆t.
4. If for at least one pair of patches (iA, iB) we find that the

productdiAiB(t + ∆t)diAiB(t) < 0, we have bracketed a solution.
We then find the collision times and the collision points solving
eq 22 for all pairs. Choose the smallest collision time and
terminate.

5. If pairs of patches are such that 0< |diAiB(t + ∆t)| < εd

and 0 < |diAiB(t)| < εd, for each of these pairs evaluate the
distancediAiB(t + ∆t/2), perform a quadratic interpolation of these
three points [t, diAiB(t); t + ∆t/2, diAiB(t + ∆t/2); t + ∆t, diAiB(t +
∆t)], and find if the resulting parabolas have zeros. If yes, refine
the smallest zero, solving again eq 22 for all of these pairs.

6. Increment time by∆t, that is

7. Go to step 1 ift < t2.
If two spherical patches of two particles undergo a “grazing”

collision, that is, a collision in which the modulus of the distance
stays smaller thanεd during the collision, the collision could
not be located by the previous algorithm due to failure of the
quadratic interpolation. If during the grazing collision no further
collisions involving one of the two particles are scheduled, the
collision will pass unnoticed. Instead, if during the grazing
collision a collision with other particles is scheduled, then energy

may not be conserved and the grazing collision can be detected.
This event is so rare withεd ≈ 10-6 that it has never been
observed in our simulations.

The basic algorithm can be improved with simple optimiza-
tions. For example, one can calculateḋiAiB

max as

where

and if dAB(t) > εf, the time increment can be evaluated in the
following optimized way:

D. Collision of Two Particles. At the collision time, one
has to evaluate the new velocities of centers of mass and the
new angular velocities. IfxC is the contact point, then the
velocities after the collision can be evaluated as

wheren̂ is a unit vector perpendicular to both surfaces at the
contact pointxC, IA and IB are the moments of inertia of the
two colliding sticky particles,mA andmB are their masses, and
the quantity∆pAB depends on the type of the collision. If we
define

If the collision occurring between particles is a hard-core
collision, one has

if the collision occurred between two spherical patches already
bonded (i.e., if prior to the collision the distance between the
two sites is<δ, one has

where

Finally, if the collision occurs between two patches that are
not bonded (i.e., the distance between the two sites is> δ prior
to the collision), we have

VIII. Appendix: Evaluating the Pressure

A. Evaluating the Pressure in the ED Code.We define
the quantity

ḋiAiB
(t) ) d

dt
(||r iA

- r iB
|| - δ)

e
r iAiB

‚ r iAiB

||r iAiB
|| e ||viAiB

||

) ||VAB + ωA × (r iA
- RA) - ωB × (r iB

- RB)||

e ||VAB|| + ||ωA||LA + ||ωB||LB ) ḋiAiB

max (23)

LA g max
r ′ ∈ A

{||r ′ - RA|} (24a)

LB g max
r ′ ∈ B

{|r ′ - RB|} (24b)

ḋmax ) max
iAiB

{ḋiAiB

max} (25)

∆t ) {dAB(t)

ḋmax

if dAB(t) > εf

εd

ḋmax
otherwise

(26)

t f t + ∆t (27)

ḋiAiB

max ) ||VAB|| + ||ωA||LiA
+ ||ωB||LiB

(28)

LiA
) ||r iA

′ - RA|| (29a)

LiB
) ||r iB

′ - RB|| (29b)

∆t ) min
iAiB

{diAiB
(t)/diAiB

max} (30)

vA f vA + mA
-1∆pABn̂ (31a)

vB f vB - mB
-1∆pABn̂ (31b)

wA f wA + ∆pABIA
-1(rA - xC) × n̂ (31c)

wB f wB - ∆pABIB
-1(rB - xC) × n̂ (31d)

Vc ) (vA + wA × (xC - rA) - vB - wB × (xC - rB))‚n̂ (32)

∆pAB ) -2Vc (33)

∆pAB ) {-2Vc if Vc
2 < 2u0/Mred

-Vc + xVc
2 - 2u0/Mred

otherwise
(34)

Mred
-1 ) mA

-1 + mB
-1 + IA

-1||(rA - xC) × n̂|| +

IB
-1||(rB - xC) × n̂|| (35)

∆pAB ) -Vc + xVc
2 - 2u0/Mred (36)
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wherePRâ is the molecular pressure tensor

The sums in the previous expression involve components
(denoted by Greek letters),VBi, RBi, andFBij, which are the velocity,
the position of center of mass of theith particle (massMi), and
the total force acting between particlesi and j, respectively.

In the presence of impulsive forces, the stress tensor defined
in eq 38 is not well-defined, whereas the integral in eq 37 is
well-defined. Consider the time interval (t, t + ∆t). During this
interval the quantity∆ARâ(t) will vary due to the collisions
occurring between particles. The variationδA(t) of ∆A(t) is

whereδt is the time elapsed from the last collision occurring
in the system andδPi is the variation of momentum of particle
i after the collision, that is

where∆pAB is the quantity defined in eq 32.
From ∆ARâ(t) and ∆ARâ(t + ∆t) the average pressure over

the interval∆t can be evaluated as follows:

B. Evaluating P in MC. In the analysis of MC configura-
tions, pressure has been calculated as the sum of three
contributions: a trivial kinetic contribution, equal tonkBT; a
positive HS contribution, which requires the evaluation of the
hard-sphere radial distribution functiongHS(r) at distanceσ; and
a negative contribution arising from the SW interaction, which
requires the evaluation of the H-LP radial distribution function
gH-LP(r) at distanceδ as well as the evaluation of〈RH-LP(r)〉.
For a pair of H and LP sites whose distance isr, the quantity
RH-LP is defined as the projection of the vector joining the
centers of the two particles associated with the two sites along
the direction of the unitary vector joining the two sites. The
ensemble average〈‚‚‚〉 is performed over all pairs of H and LP
sites at relative distancer1.

The resulting expression forP is
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