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Abstract. We study lattice gas models with the imposition of a constraint on
the maximum number of bonds (nearest-neighbour interactions) that particles
can participate in. The critical parameters, as well as the coexistence region, are
studied using the mean field approximation and the Bethe—Peierls approximation.
We find that the reduction of the number of interactions suppresses the
temperature—density region where the liquid and gas phases coexist. We confirm
these results from simulations using the histogram reweighting method employing
grand canonical Monte Carlo simulations.
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1. Introduction

The study of the gel state of matter in colloidal systems is receiving significant attention
in recent years [1]-[4]. At the heart of this interest lies the hope that these studies
will help in understanding differences and similarities in the processes of formation of
arrested states of matter at low packing fraction ¢ and, in particular, the inter-relations
between gels and glasses. A similarly ambitious additional goal is to provide a new route
for understanding the intrinsic properties of the process of formation of physical gels in
systems more complicated than colloids, such as gels formed by reversible cross-linking of
polymeric chains [5] and gelation in protein solutions [6]. The full comprehension of both
these aggregation processes are of extreme importance in the food industry, in the protein
crystallization process and in the design of novel biomaterials [7].

One of the key questions of interest concerns the interplay between the process of
formation of a long-living network and the process of phase separation into colloid-rich and
colloid-poor regions [8]-[12]. Indeed, the increase of the bond interaction strength (relative
to the thermal energy) controls both the increase of the inter-particle bond lifetime (and
as a consequence the lifetime of the spanning network) and the increase of the driving
force of formation of locally dense packed states, which progressively favour nucleation of
the ‘liquid’ (colloid-rich) phase [4]. As a result, the establishment of conditions such that
a connected percolating structure able to sustain stress survives for times longer than
the observation time is often preempted by phase separation. For spherical attractive
interaction potentials, it has been found that phase separation is always dominant at
low densities and arrested states at low packing fractions ¢ can be reached only in a non-
homogeneous state, whose morphology is determined by the phase separation process [13]-
[19].

A possible mechanism to generate arrested states of low packing fraction in the
absence of phase separation has been recently proposed and supported by off-lattice
simulations [20,21]. It has been shown that the region in the 7—¢ plane in which a two-
phase coexistence is thermodynamically preferred as compared to the homogeneous fluid
state can be progressively reduced (both in 7" and ¢) by decreasing the maximum number
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of possible pairwise bonded interactions. In an equivalent language, the reduction—
at fixed interaction potential range—of the colloid surface allowing for inter-particle
bonding progressively suppresses phase separation [22,23]. According to these ideas,
colloidal particles with a limited number of attractive spots are the best candidates for
gel formation. Interestingly enough, these ideas also carry over to the case of protein
solutions, where the character of the amino acids on the surface of the protein controls
the strength and the directionality of the inter-protein interaction [6].

In this paper, we present a lattice gas model, which we solve in the Bragg—Williams
mean field approximation and in the Bethe—Peierls quasi-chemical approximation, and
which allows us to visualize in a clear way the relation between the limitation of the
maximum number of interactions and the amplitude of the phase-separated region in the
T—¢ phase diagram. We complement these calculations with Monte Carlo simulations
of the liquid—gas phase coexistence, to assess the reliability of the mean field solutions.
The reported results confirm that the reduction of the maximum number of interactions is
indeed an efficient mechanism for generating thermodynamically stable states at extremely
low temperatures.

2. The model

The system we consider is a nearest-neighbour lattice gas, with occupancy variables n; at
each node of a lattice with v nearest-neighbour sites.

The Hamiltonian for the system is written in the usual form, with the occupancy
variables n; that can take values 0 or 1, and € being the interaction strength, as

H = —¢ Z nin; (1)
(i)

but with the * indicating that the sum is only over such bond configurations that have, at
each vertex, a maximum of 7, bonds, although there is no restriction on the number of
nearest-neighbour occupied sites which can have any value from 0 to 7. In other words,
a ‘bond’ exists between a pair of occupied neighbours ¢ and j, and correspondingly an
interaction energy of —e is counted for if and only if neither 7 nor j has greater than ~,
bonds, including the 75 bond.

For concreteness, in the following, we consider the lattice on which the Hamiltonian
above is defined to be the FCC lattice, with v = 12. The interaction strength ¢ = 1 is
shown in all calculations.

For the purposes of mean field theory, we can write this as

i _ﬁznf(zn) @)

where the first sum ¢ runs over all lattice sites, and the second sum j runs over all ~
nearest neighbours of site 7, and with

f@) =z, =< m (3)

= Ym, T > Ym (4)
dOi:10.1088/1742—5468/2006/12/P12010 3
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where 7, denotes the maximum number of interactions, or valency, allowed for a particle
at any site. When ~,,, = =, one recovers the simple lattice gas. In the following, we consider
the behaviour of the system when the parameter v, is varied between the limits v, = 0
(when one has a non-interacting paramagnetic lattice gas) and v, = v (when one has the
simple nearest-neighbour lattice gas). Note that the Hamiltonian defined in equation (1)
is not the same in detail as that defined in equation (2). This can be most easily seen
by considering, for example, a simple cubic lattice with 7 = 6 and the maximum valency
Ym = 3. If one considers a configuration where a given site has all v neighbouring sites
occupied, and the neighbours have no other neighbouring sites occupied, the interaction
energies as calculated from equation (1) and equation (2) differ. Nevertheless, we use
equation (2) for the Bragg—Williams mean field approximation since in the mean field
approximation they are equivalent, using the exact equation (1) for the Bethe—Peierls
approximation and for the simulations.

3. Bragg—Williams mean field approximation

In order to perform the mean field calculation, we approximate the function f as
f() = Y tanh(z /) (5)

which has the desired linear behaviour for small x and a constant value of v, at large x.
Further, the mean field approximation amounts to writing » 37" n; = v(n) where (n) is the
average occupancy, given by (n) = >, n;/N where N is the total number of sites. With
this approximation, the thermodynamic potential 2 in the grand canonical ensemble may
be written as

V(n)

0/ = =)t (1) — o + a0 o) + (1= () o1 )] (0

m

where g is the chemical potential, T" is the temperature, kg is the Boltzmann constant
and (n) is the occupancy, given p and T', that minimizes 2. Imposing the minimization
condition,

o

O(n)
allows one to eliminate p and write the thermodynamic potential ) in terms of T" and
(n). Further, since Q = —PV = —PN (where P is the pressure, and the system volume
for the lattice gas V' = N the number of sites) one obtains in this way the equation of
state of the system:

€ 2 o (1(n)
P = —§7<n) sech (—

-, ) — kgTlog(1 — (n)). (7)
The condition for the critical point is given by
oP
tal—
9(n)

and
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Figure 1. Critical density, critical temperature and chemical potential as a
function of parameter v, for the Bragg—Williams mean field approximation.
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Figure 2. The mean field spinodals in the ((n),T) plane (top panel) and in the
((n), P) plane (lower panel) for different values of the parameter 7,,. Calculated
for y =12 and € = 1.

From these, one obtains the critical density and the critical temperature, which
depend on the parameter 7, /v and are plotted in figure 1. From the figure, it is clear
that both the critical density and the critical temperature go to zero as the variable ~,, /v
goes to zero.

We next calculate the spinodals that demarcate the region of instability in the ({(n),T")
and in the ((n), P) planes, which are shown in figure 2. Consistent with expectations
based on the behaviour of the critical density and temperature, the region of instability
also shrinks with the reduction in the valency.

d0i:10.1088,/1742-5468,/2006/12/P12010 5
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4. Bethe—Peierls approximation

As an improvement over the mean field approximation, we next consider the Bethe-
Peierls approximation, which in the case of the simple lattice gas is equivalent to the
Bethe lattice. As in the standard treatment (see, e.g., [24]), we consider a ‘centre’ site,
and its surrounding neighbours. We write the probability that the centre site is occupied,
with n nearest neighbours also being occupied, as

P(1,n) = éexp(ﬁ,u)cg exp(fen) exp(LBun)z" 7 < Ym (8)

= éexp(ﬁu)(]l exp(fevm) exp(Bun)z" 1> (9)

where 3 = 1/kgT, q is the normalization, and z is introduced to account for the influence
of the rest of the lattice. The rest of the terms explicitly account for the interactions and
the chemical potential corresponding to the number of occupied sites present. Similarly,
the probability that the centre site is not occupied, with n neighbours occupied, is

1
P(0,n) = —C] exp(Bun)z". (10)
q
The normalization factor ¢ is given by the condition
v
> [P(1,n)+ P(0,n)] = 1. (11)
n=0

The average occupancy number (ng) for the centre site is the probability that the
centre is occupied regardless of the occupancy of the surrounding sites, that is:

(no) = 3" P(1,n). (12)

The average occupancy number (n,.) for a given neighbour site is given by
12
<n€> = §Zn[p(17n> +P(Oan)] (13)

n=0

The unknown parameter z is now determined by the condition that these two
occupancy numbers, (ng) and (n.), are equal to each other. Defining a function

g(z,,u,T) = <n0> - <n6>7

the solution is found by the condition g(z, u, T") = 0. Determining z in this way, and using
the expression for (ng) above, one obtains the probability of occupation as a function of 7'
and p. In addition, imposing the condition that the first and second derivatives of ¢ also
vanish yields the condition for the critical point, since this vanishing of the first and second
derivatives marks the change from the high temperature regime where only one solution
exists, to the presence of more than one solution at lower temperatures. In addition,
the condition that the first derivative vanishes is used to locate the spinodal points.
Figure 3 shows the dependence of the critical density, temperature and the chemical
potential on the parameter 7, which is varied in integer steps for v = 12. The case of

d0i:10.1088,/1742-5468,/2006/12/P12010 6
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Figure 3. Critical density, critical temperature and chemical potential as a
function of parameter 7, for the Bethe—Peierls approximation.
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Figure 4. The Bethe—Peierls spinodal line evaluated for the specific cases of
v =12 and vy, = 3, 6.

Ym = 7y reproduces the standard result for this approximation. It is seen that the critical
temperature decreases very slowly at first as vy, is reduced, but goes to zero for v, = 1.

We next calculate the spinodals that demarcate the region of instability in the ({(n),T")
phase diagram for the cases v, = 3, 6, which are shown in figure 4. As in the mean field
case the region of instability also shrinks with the reduction in the valency.

5. Simulations

In order to estimate the accuracy of the approximations above, we evaluate the critical
parameters and the coexistence lines for different values of v, using computer simulations,
employing the histogram reweighting technique [25]-[28]. In this method, histograms of

d0i:10.1088,/1742-5468,/2006/12/P12010 7
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Figure 5. The coexistence curves for v, = 12,9,6 from simulations, showing
that the coexistence region shrinks as 7, decreases.

sampled energies and number densities from simulations at different external parameters
are used to estimate composite probability distributions, which in turn may be used to
obtain information on phase equilibrium. To this end, we perform Monte Carlo simulations
in the constant temperature and constant chemical potential ensemble for a lattice of 256
sites arranged in an FCC lattice. The energy of the system depends not only on which
sites are occupied, but also which bonds exist in the system. Therefore, care must be taken
that the formation and deletion of bonds obeys detailed balance. In the grand canonical
simulations, it is sufficient, when a particle is inserted, to pick any of the possible bond
configurations at random, with equal probability. At each simulated temperature and
chemical potential, runs of length 2.5 million Monte Carlo cycles (MCS) are performed.
The energies and number of particles every 100 MCS, after an equilibration of 0.5 million
MCS, are used to build histograms f;(N, E') (where N is the number of particles and E
is the energy), where i = 1... R indexes the different runs at different p and 7" values.
As described in [26, 28], the composite probability distribution I'(N, E, p, (3) is obtained
with

S fi(N,E) exp(~BE + BuN)
2511 K;exp(=BiE + Bius N — Cy)

where K, is the total number of observations for each run, and the constants C; are
obtained iteratively from the relationship

exp(C;) = Z ZF(N, B, wi, B;). (15)

(N, E, i, 3) = (14)

Once the above equations are run to convergence, the probability distribution in
particle number can be obtained by summing I' over the energies. Phase coexistence
at any given temperature is obtained by requiring that the distribution with respect to
density has two distinct peaks, of equal height. Figure 5 shows the coexistence curves
obtained for the cases v, = 12,9,6. Studying phase coexistence at lower values of 7, is

d0i:10.1088,/1742-5468,/2006/12/P12010 8
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Figure 6. Comparison of the critical parameters from simulation with those
of the mean field and Bethe—Peierls approximations, indicating that the
critical parameters decrease more rapidly than suggested by the Bethe—Peierls
approximation.

severely hampered by the extremely slow equilibration in the temperature range of interest
and has not been attempted. In each of the cases studied, evaluating the coexisting phase
densities is limited by the ability to resolve the coexisting density peaks, which is difficult
as the critical point is approached. Nevertheless, it is clear from the data shown that the
simulations confirm the trend seen in the calculations above, that the critical temperature
and density decrease as vy, decreases. Figure 6 shows the critical parameters in comparison
with the mean field and Bethe—Peierls calculations. It is seen that the critical parameters
drop more rapidly than suggested by the Bethe—Peierls calculations. The values of the
critical parameters from the mean field calculation, surprisingly, compare somewhat better
than the Bethe-Peierls calculations. Unlike the v, = 12 case, where the coexistence
chemical potential and the mean of the coexisting densities are constant below the critical
temperature, both these quantities increase as one moves to lower temperatures below the
critical temperature.

In figure 7, we compare the spinodal locus from the mean field, Bethe—Peierls
calculations with the coexistence line from simulations, for the case v, = 6. While the
spinodal curve for the Bethe—Peierls calculation is nearly symmetric, we find that both
the mean field and simulation results display a skew towards lower densities.

6. Conclusions

We have presented results for lattice gas models with the imposition of a constraint on
the maximum number of bonds that particles can participate in. Mean field (Bragg—
Williams and Bethe—Peierls) calculations and computer simulations using the histogram
reweighting technique show that the critical temperature and density decrease as the
maximum number of bonds allowed for a given particle is reduced. Also, we find that the
density range of the coexistence region, where the liquid and gas phases coexist, shrinks

d0i:10.1088,/1742-5468,/2006/12/P12010 9
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Figure 7. The coexistence curve for 7, = 6 from simulations, compared with the
spinodal curves from the mean field and Bethe—Peierls approximations.

as the maximum valency of the particles is reduced. These results are consistent with the
results that have been obtained earlier for similarly defined continuum models [20, 21]. It
is thus confirmed that valency reduction is effective in opening a large region of densities
in which low temperature disordered states can be accessed in equilibrium. Studies of
models with controlled valency, both on the lattice and off-lattice, may make it possible
to disentangle gelation from phase separation.
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