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We analyze one thousand independent equilibrium trajectories of a system of 155 Lennard-Jones particles to
separate in a model-free approach the role of temperature and the role of the explored potential energy
landscape basin depth in the particle dynamics. We show that the diffusion coefficient D can be estimated as
a sum over contributions of the sampled basins, establishing a connection between thermodynamics and
dynamics in the potential energy landscape framework. We provide evidence that the observed nonlinearity in
the relation between local diffusion and basin depth is responsible for the peculiar dynamic behavior observed
in supercooled states and provide an interpretation for the presence of dynamic heterogeneities.
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Supercooled liquids are characterized by dynamics that
take place on at least two well-separated time scales: a fast
microscopic dynamics �associated with atomic or molecular
motions at fixed liquid structure� and a slow structural relax-
ation time �� �which requires structural changes and diffu-
sion processes� �1�. If one considers the trajectory of the
system in configuration space, such a separation of time
scales can be visualized as the exploration �on the micro-
scopic time� of a finite region of the potential energy land-
scape �a basin�, followed at a much slower pace by the ex-
ploration of distinct basins �2�. The potential energy
landscape �PEL� formalism introduced by Stillinger and We-
ber �3� provides a thermodynamic description that builds on
such a picture. The resulting expression for the liquid free
energy requires information on the number of basins, their
energy of the local minima �referred to as inherent struc-
tures�, eIS ��IS’ stands for inherent structures� and their
shape. Analysis of numerical simulations, recently reviewed
in Ref. �4�, has provided direct quantification of the statisti-
cal properties of the landscape of several models of glass-
forming liquids �5–10�. For the case of the Kob-Andersen
Lennard-Jones model �11,12�, the number ��eIS�deIS of dis-
tinct basins of energy depth between eIS and eIS+deIS follows
a Gaussian distribution �5,6�

��eIS�deIS = e�Ne−�eIS − Eo�2/2�2

�2��2
deIS, �1�

where e�N is the total number of distinct basins for a system
of N particles, Eo is the energy scale of the distribution, and
�2 is the variance; with �, Eo, and � dependent only on the
system number density. Often, it is convenient to define the
configurational entropy Sconf�eIS��kB log ��eIS�, which for
the Gaussian landscape becomes a quadratic function of eIS,

Sconf

kb
= �N −

�eIS − E0�2

2�2 . �2�

When ��eIS� is known, the system partition function can be
calculated �4� �under the assumption of the eIS independence
of the basin anharmonicities� and predictions can be pro-

vided for the T dependence of the explored basin depth
�eIS�T��, the probability P�eIS ,T� of sampling a basin of
depth eIS at temperature T, and the configurational entropy
Sconf�T�.

The application of the Stillinger-Weber formalism to the
analysis of numerical simulations provides an appealing pic-
ture of the T-dependent exploration of the landscape and a
convenient method to quantify the free energy of super-
cooled states. Several recent studies attempted, in different
ways, to relate landscape properties to dynamics �13–21�.
The outcome of these studies strongly supports the reason-
able hope that in supercooled states structural properties are
strongly connected to dynamic ones and motivate the present
detailed and essentially unbiased study of the connection be-
tween landscape properties and dynamics.

In this Rapid Communication, we study 1000 independent
runs of the well-characterized Kob-Andersen model �11�. We
limit ourselves to the smallest system that can be simulated
with periodic boundary conditions without changing the
model’s range of interaction, i.e., 155 particles at number
density 1.2 �22�. Due to the small system size, all quantities
show large fluctuations, which we exploit to probe wide
overlapping regions of eIS values under different T conditions
with the aim of disentangling the roles of eIS and T in the
dynamics. However, as discussed in previous work �23� and
as seen in our unpublished studies, no significant size effects
have been found for systems from about 100 particles up to
a few thousand particles in the range of temperatures we
study.

We simulate six different T between 0.446 and 0.65. In
this supercooled T window, the decay of correlation func-
tions clearly shows the presence of two time scales and the
diffusion coefficient D varies more than 2 orders of magni-
tude. For each T, we equilibrate each independent trajectory
in the canonical ensemble and estimate P�eIS ,T�, which is
found �see Fig. 1� to be described rather well by a Gaussian
distribution of T-independent variance �2=18±2, for the 155
particles system centered around a T-dependent mean �eIS�
��T�	�2 /T, in full agreement with the Gaussian landscape
model and with previous results �24�. The large �2 guaran-
tees a significant overlap of the landscape region sampled at
each T.
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Next we attempt to associate each of the 1000 indepen-
dent runs �indexed by i� an �eIS�i value characterizing the
location of the system in the PEL and to a Di value charac-
terizing its local diffusion coefficient. First we evaluate
the time t�MSD�=1, defined as the time at which the
type-A particles mean square displacement �MSD�, averaged
over all trajectories i and all A particles of the system,
reaches a value of 1. Then we evaluate Di as
MSDi�t�MSD�=1� / �6t�MSD�=1�. Different trajectories show very
different dynamical properties. As an example, Fig. 2�a� rep-
resents the MSD, as a function of t for two different trajec-
tories at the same T. Each trajectory i has a rather well de-
fined diffusion coefficient Di, which can be extracted from
the slope of the MSD vs time. Figure 2�b� shows the t evo-
lution of eIS for the same two trajectories. The more mobile
system is characterized by a larger and more fluctuating eIS.
Within t�MSD�=1, the set of eIS values explored is far from
covering the full range of values characteristic of that T. The
system retains memory of the starting configurations and this
behavior is enhanced at lower T. A quantification of the lo-
cation of the i configuration on the PEL can thus be provided
by �eIS�i, defined as the value of eIS averaged over the time
interval from zero to t�MSD�=1.

Figure 1 also show the probability distribution
Q��eIS�i ,T�. While P�eIS ,T� are well approximated by a
Gaussian distribution of average �eIS�T�� and constant vari-
ance �in agreement with Eq. �1��, Q��eIS�i� are symmetric and
well modeled by a Gaussian only at high T. At low T,
Q��eIS�i ,T� becomes strongly asymmetric, and its variance
increases on cooling. This originates in the different mobility
of the system depending on the initial eIS. Indeed, while sys-
tems with eIS associated with the high energy tail of P�eIS ,T�
manage to explore different basins, systems in the low en-
ergy tail hardly lose memory of the initial configuration

within t�MSD�=1. In this respect, the observed asymmetry con-
firms that there is a strong coupling between �eIS�i and Di,
which we now try to quantify.

Figure 3�a� shows Di as a function of �eIS�i at several T.
Data from different T overlap in a wide window of eIS values
Data show that the local diffusivity is a function of T not
only via the T dependence of eIS but also directly, since for
each chosen eIS value, data for higher T always lay above
data at lower T. The fact that basins of the same depth are
sampled at different T allows us to evaluate the T depen-
dence of D at fixed basin depth and sort out the relative
contribution of T and eIS to dynamics. To distinguish be-
tween the T and eIS dependence of D we hypothesize that the
law relating these two quantities has the form:

D�eIS,T� = D�e−f�eIS�/T, �3�

a form compatible both with the idea of activated dynamics
as well as with the Adam-Gibbs �AG� hypothesis ln�D /D��
=−B /TSconf �in which case 1/ f�eIS�=Sconf�eIS� /B�, with B be-
ing a coefficient related to the minimum size of a coopera-
tively rearranging region. Note that the Adam-Gibbs hypoth-
esis holds for average values, and Sconf�eIS� is the
configurational entropy evaluated over all the accessed ba-
sins at a given temperature. There are no a priori reasons for
this expression to be valid for subsets of the configuration
space accessed by a liquid.

According to Eq. �3�, a plot of T ln�D�eIS ,T� /D�� should
produce a collapse of all data, independently of T, onto a
master curve that can be identified as −f�eIS�. Figure 3�b�
confirms that indeed such a procedure generates an impres-
sive scaling of the data. We note that, in this procedure, we
use the value of D�=0.155 obtained independently from
high T simulations. If the resulting f�eIS� is interpreted ac-
cording to activated models, one has to conclude that the
height of the barriers increases significantly when the system

FIG. 1. �Color online� Probability distribution P�eIS ,T� of ex-
ploring an IS of depth eIS at temperature T. Black filled circles:
equilibrium data for the N=155 system. Green full line: Gaussian
distribution of variance �2=18/N. The figure also shows, with red
filled squares, the distribution Q��eIS�i ,T� �where �eIS�i is not the
instantaneous value but eIS averaged over time tMSD=1 for the tra-
jectory i and with a blue dashed line a Gaussian distribution with
the same variance as Q��eIS�i ,T�.

FIG. 2. �Color online� �a� MSD as a function of time for two
different equilibrated trajectories at the same thermodynamical state
point �T=0.446, �=1.2�. The MSD is here averaged over all type-A
particles of the system as well as over several starting times within
the interval 0	 t	 t�MSD�=1. The dashed line represents the MSD
averaged over all trajectories and it provides the definition of
t�MSD�=1. �b� Inherent structure energies as a function of time for the
same trajectories shown in �a�.
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accesses basins with lower eIS. Thus, the extrapolated activa-
tion energies for temperatures below the studied range would
be different from those arising from the analysis of Doliwa
and Heuer �19�. If f�eIS� is interpreted according to the AG
equation, then 1/ f�eIS� has to be proportional to Sconf�eIS�, a
quantity that has been previously calculated for this model
using thermodynamic integration techniques �5,25,26�.

The test between the two different estimates of Sconf can
be made even more stringent, if one realizes that, by fitting
f�eIS� according to the relation f�eIS�=1/ �a0−a1�eIS−a2�2�
the fitting coefficients a0, a1, and a2 can be associated, com-
paring with Eq. �2�, to

a0 = ��N�/B ,

a1 = 1/�2�2B� ,

a2 = E0. �4�

Interestingly enough, since �2 is known independently from
the �T-independent� width of P�eIS ,T�, a1 provides B, a0, �,
and a2 provide E0 �yielding, respectively, B=1.85, �=0.78,
E0=−1140�. Thus, an estimate of Sconf in absolute units is
provided by the fit parameters. The comparison between Sconf
obtained via thermodynamic integration �from Ref. �25�� and
Sconf obtained here from f�eIS� is shown in Fig. 4. The agree-
ment between the two independent estimates of Sconf con-
firms the previously observed possibility of describing the
dynamics in this model according to the AG equation �5� and
to the interpretation of the landscape basins as states �27�.

The combined use of the PEL thermodynamic formalism
and of the relation between thermodynamic and dynamics
provided by Eq. �3� makes it possible to evaluate the T de-
pendence of D for the present model—independently from
the interpretation in terms of activated processes with eIS
dependent barrier or in term of AG—according to

D�T� =
 D�eIS,T�P�eIS,T�deIS. �5�

Note that in our approach we do not consider the possi-
bility of a distribution of D values for basins with the same
depth. In this respect D�eIS ,T� can be considered as the av-
erage diffusion coefficient of typical basins of depth eIS. Fig.
5 shows D evaluated directly from the MSD long time limit
and from Eq. �3� and �5�. The agreement between the two
sets of independent data strongly supports the possibility of
representing D as a sum over the local diffusivity of different
parts of the landscape. This representation is very intriguing
and offers an alternative way, within the landscape frame-
work, to look at dynamic heterogeneities, which have been
widely studied theoretically in simulations and experiments
in recent years �28–41�. Indeed, the nonlinear relation be-
tween D and eIS �Eq. �3�� implies that at low T, in equilib-
rium, the system can be represented by coexisting regions in
space with very different local mobility. As seen in Fig. 3, at
the lowest investigated T, the Di values cover about three
different orders of magnitude. It is important to stress that

FIG. 3. �Color online� �a� Diffusivity Di as a function of the
corresponding average �eIS�i. Different symbols indicate the six dif-
ferent simulated T. The lines are the fitting curves for each set
according to Eq. �3�. �b� T ln�D�eIS ,T� /D�� as a function of eIS. The
solid line represents the fitting function −1/ �a0−a1�eIS−a2�2a�. All
the different fitting curves to individual data sets in panel �a� col-
lapse on to it.

FIG. 4. �Color online� Comparison between Sconf evaluated from
Eqs. �2� and �4� �solid line� and Sconf from Ref. �25� �dot-dashed
line�. The symbols are the values obtained for each trajectory i.

FIG. 5. �Color online� �a� Diffusivity constant as from data com-
pared with the diffusivity constant evaluated from Eq. �5�. �b� Prod-
uct �D��1/D� from data as a function of T. The dashed line is a
guide for the eye.
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the inhomogeneities in the dynamics are, in the present case,
strongly associated with structural properties and in particu-
lar to the depth of the IS locally sampled.

This extremely average distribution of Di values suggests
also a possible explanation of the T dependence of the prod-
uct D�� upon supercooling, analyzed with reference to het-
erogeneous dynamics in, e.g., Ref. �28,29,32–34�, along the
lines proposed in Ref. �28�. Indeed, when a distribution is
wide, the mean and the inverse of the average of its inverse
can be rather different, since they weigh different parts of the
distribution. To evaluate this effect in the present case we
compare in Fig. 5 the T dependence of the product �D�
��1/D�. On cooling, the product starts to deviate from one,
consistently with the observations for the model liquid stud-
ied here that the product D
 /T �40� and D�� �41� starts to
increase on cooling.

In summary, by considering large numbers of realizations

of the trajectory of a small system of particles, we have
shown that the dependence of the diffusion coefficients for
each such trajectory on the depth of the potential energy
minima explored can be extracted in a model-free manner,
and that the average diffusion coefficient for the system can
be estimated as a sum over contributions of the sampled
basins, establishing a connection between thermodynamics
and dynamics in the potential energy landscape framework.
We provide evidence that the observed nonlinearity in the
relation between local diffusion and basin depth is respon-
sible for the peculiar dynamic behavior observed in super-
cooled states and provide an interpretation within the energy
landscape picture for the presence of dynamic heterogene-
ities.
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