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We report a simulation study of the gas-liquid critical point for the square-well potential, for values
of well width � as small as 0.005 times the particle diameter �. For small �, the reduced second
virial coefficient at the critical point B

2
*c

is found to depend linearly on �. The observed weak linear
dependence is not sufficient to produce any significant observable effect if the critical temperature
Tc is estimated via a constant B

2
*c

assumption, due to the highly nonlinear transformation between
B

2
*c

and Tc. This explains the previously observed validity of the law of corresponding states. The
critical density �c is also found to be constant when measured in units of the cube of the average
distance between two bonded particles �1+0.5���. The possibility of describing the �→0
dependence with precise functional forms provides improved accurate estimates of the critical
parameters of the adhesive hard-sphere model. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2883696�

I. INTRODUCTION

Investigation of protein and colloidal systems has fo-
cused the attention of the scientific community on the phase-
diagram behavior of short-ranged attractive potentials and of
the role of the range of interaction in controlling the thermo-
dynamic and dynamic properties of the system.1–5 Colloidal
particles, due to their nano- or microscopic size, are often
characterized by effective interactions6 whose range is sig-
nificantly smaller than the particle diameter. Under these
conditions, it has been argued that the actual shape of the
potential is irrelevant and that the thermodynamics,7 as well
as the dynamics,8 of different systems approximately satisfy
an extended law of corresponding states.9 This law allows for
a comparison between different systems, once the effective
diameter of the particle is known �i.e., when the repulsive
part of the interaction can be mapped into an equivalent
hard-sphere diameter10�. It has been proposed that the second
virial coefficient, normalized by the corresponding hard-
sphere second virial coefficient, B

2
*, may act as a proper scal-

ing variable. Therefore, systems with equal second virial co-
efficient and effective diameter should have similar
thermodynamical properties.

The adhesive hard-sphere �AHS� potential,11 the limiting
behavior of an infinitesimal interaction range coupled to in-
finite interaction strength such that B2 is finite, has also re-
ceived significant attention. For this potential B

2
*=1−1 /4�,

where �, which acts as an effective scaled temperature, is the
so-called stickiness parameter. Despite the known thermody-
namic anomalies,12 an analytic evaluation of the �metastable�

critical point within the Percus–Yevick closure with both
the energy and the compressibility routes is available11,13 for
this potential. In the energy route the critical point is located
at B

2
*c

=−1.1097 ��c=0.1185� and reduced number density
�=0.609.

The availability of analytic predictions for this model
has favored its application in the interpretation of experimen-
tal data for several disparate colloid �and protein�
systems,2–5,14–16 an application whose validity has been rein-
forced by the extended law of corresponding states. For this
reason, it is important to try to accurately estimate the prop-
erties of the AHS model as a reference, to support existing
predictions, or to suggest improvements to available theoret-
ical approaches. Numerical simulations of the AHS model
have been attempted in the past.17–19 A recent effort in the
direction of evaluating the phase diagram of the model has
been provided by Miller and Frenkel,20 based on an inge-
nious identification of the appropriate Monte Carlo �MC�
moves for this potential.17,18 Their study provides an estimate
of the location of the critical point at B

2
*c

=−1.21�1� ��c

=0.1133�5�� and �c=0.508�10�.
In this article, we propose a different approach to the

numerical evaluation of the critical properties of the AHS
model, based on extrapolation of standard grand canonical
MC simulation results for a sequence of square-well �SW�
potentials with progressively smaller attraction ranges �
�down to �=0.005, in units of the hard-sphere diameter ��.

The SW potential is defined as

U�r� = �� if r � �

− � if � � r � � + ��

0 if r 	 � + �� .
� �1�

The SW fluid has been profusely studied21–27 for �	0.1. It
has been shown24,25 that for �
0.25 gas-liquid separation
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becomes metastable with respect to the fluid-solid equilib-
rium. Despite its metastable character, investigation of
smaller � values retains its importance, since the crystalliza-
tion time is often much longer than the experimental one and
gas-liquid phase separation is readily accessed �an effect fa-
cilitated by the large difference between the fluid density and
the crystal density and, in experiments, by the intrinsic
sample polydispersity�.

Despite the importance of the SW model in relation to
the AHS potential, no studies of the � dependence of the
critical point location have been previously reported for very
small �. This is in large part due to the fact that for smaller
and smaller �, the critical temperature significantly de-
creases. Indeed, according to the constant B

2
*c

prediction of
Noro and Frenkel,7 it should vary as

kBTc

�
= �ln�1 +

1 − B2
*c

�1 + ��3 − 1
	
−1

, �2�

making bond-breaking �changes of the particle energy of or-
der �� events rarer and rarer in the simulation. Moreover, the
size of the translational step in the MC code is of the order of
�. On the other hand, the location of the critical point be-
comes more and more metastable which, in principle, poses a
limit to the smallest � which can be studied.

Despite these numerical difficulties, we have been able
to estimate the location of the critical point down to �
=0.005. We present here the � dependence of the critical
temperature and density and the values of the second virial
coefficient and energy at the critical point. In all cases, a
short linear extrapolation to �=0 provides novel accurate
estimates of the corresponding quantities for the AHS model.

II. MONTE CARLO SIMULATIONS

We have simulated the SW system in the grand canoni-
cal �GC� ensemble in order to locate the gas-liquid critical
point for different � values. The critical point is identified by
mapping the GC density distribution onto the universal Ising
model distribution, following the method described by Bruce
and Wilding.28 Histogram rewighting29 was used to achieve
an accurate estimate of the critical point, and the field mixing
parameter was always found to be negligible. We define a
MC step as 100 trial moves, with an average of 95% trans-
lation and 5% trial insertions or removals of one particle in
the system. A translational move is defined as a displacement
in a random direction by a random amount between �� /2.
We simulate different realizations of the same system �at the
same chemical potential and temperature� to improve statis-
tics. Simulations lasted more than 107 MC steps. We have
studied cubic boxes of side 5� and/or 8� to estimate the
importance of finite-size effects. Additionally, for �=0.05 we
have studied several other box sizes to estimate the deviation
of the value of the critical parameter for the bulk limit case.
Proper finite size studies for ��0.05 are at this moment
computationally prohibitive.

We have occasionally observed a transition to a denser
stable phase, signaling that indeed the values of the chemical
potential studied admit metastable fluid solutions. In all cases

where a transition to a denser phase was observed, the simu-
lation was interrupted and the 10% of configurations saved
just before the transition were disregarded. This procedure is
shown graphically in Fig. 1.

III. RESULTS

Figures 2�a� and 2�b� show the � dependence of the criti-
cal temperature and the corresponding critical second virial
coefficient B

2
*c �see also Table I�. For SW, the virial can be

calculated as

B2
*�T� = 1 − ��� + 1�3 − 1��e1/T − 1� . �3�

For small �, a clear linear dependence of B
2
*c

is ob-
served. The data are well represented by a functional form
B

2
*c���=−1.174–1.774�. The extrapolated value of B

2
*c

for
�=0 �B

2
*c

=−1.174� is slightly higher than the value −1.21�1�
estimated by Miller and Frenkel for the AHS potential. The �
dependence of B

2
*c

formally violates the idea that B
2
*c

is the
correct scaling variable for collapsing the phase diagram of
different short-ranged attractive potentials onto a single mas-
ter curve. Nevertheless, the constant B

2
*c

approximation is
sufficiently good to explain the Tc dependence, due to the
nonlinearity of the transformation �Eq. �2��. To prove this
point we show in Fig. 2�a� Tc predicted according to B

2
*c

=−1.174. In this representation, the assumption of constant
B

2
*c

is sufficient to describe the � dependence of Tc up to
�=0.05, with an error less than 1% �growing with ��.

Next we compare the energy per particle of the system at
the critical point in Fig. 2�c�, to provide a measure of the
number of contacts per particle. This quantity also shows a
linear dependence on �.

The study of the � dependence of the critical density �c

has received considerably less attention than the � depen-
dence of Tc. Recently, Ref. 30 suggested a plausible relation
for the � dependence of �c in the limit of small well width:

FIG. 1. �Color online� Density evolution for a single run of a SW fluid with
�=0.01, T*=0.233, and � /kT=−2.41 �close to the critical point�. At long
time, a transition to a dense phase is observed and consequently the simu-
lation on the right side of the vertical line is disregarded.
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�c��� =
�c�0�

�1 + �/2�3 . �4�

The relation is based on the hypothesis that �c should be
constant if measured using the average distance between two
bonded particles �1+� /2�� as the unit of length. The relation
was also supported by a potential energy landscape interpre-
tation of the generalized law of corresponding states31 which
shows that configurations with the same Boltzmann weight
are generated under an isotropic scaling �to change the inter-
particle distances preserving the same bonding pattern� and a
simultaneous change of both � and T such that the bond free
energy remains constant.

Figure 3�a� shows the calculated evolution of the critical
density with the range of the interaction �see also Table I�. It
also reports previous estimates for the same system4 as well
as the critical density for the AHS model from Ref. 20. As
the range of the SW potential is reduced, the critical density
becomes higher, since a bonding now requires a closer inter-
particle distance. Data for ��0.1 are properly represented by
Eq. �4�, with a resulting fitting parameter ��0�=0.552. This
value is significantly higher than the AHS critical density
�c=0.508 reported in Ref. 20.

For completeness we show in Fig. 3�b� the � dependence
of �c /kBTc, where �c is the value of the chemical potential at
the critical point. �c /kBTc also shows a linear dependence,

FIG. 2. �Color online� Dependence of the critical temperature �a�, of the
second virial coefficient �b�, and of the potential energy �c� on the range of
the potential �. The circles and crosses label simulation data of this work
with box sides 5� and 8�, respectively. The line in �a� is the theoretical
prediction for the critical temperature provided by Eq. �2�. The line in �b�
corresponds to the best linear fit of the simulation data for ��0.10 �−1.174
to 1.774��. The open squares correspond to the simulation data from Ref. 4.
The filled squares are the AHS B

2
*c

results from Ref. 20. The inset presents
the whole range of � values studied.

TABLE I. Critical point parameters for the SW fluid for width �, resulting
from simulations of boxes of side L=5 �top part of the table� and 8�
�bottom part of the table�, respectively.

� T
c
* �c �c

0.005 0.2007 0.542 −0.4817
0.01 0.2328 0.540 −0.5614
0.02 0.2769 0.538 −0.6693
0.03 0.3106 0.530 −0.7575
0.04 0.3398 0.522 −0.8333
0.05 0.3660 0.516 −0.9042
0.10 0.4780 0.478 −1.2120

0.05 0.3658 0.513 −0.9062
0.10 0.4780 0.478 −1.2138
0.20 0.667 0.421 −1.7812
0.30 0.847 0.376 −2.3505
0.40 1.029 0.339 −2.9525
0.50 1.220 0.310 −3.6002
0.60 1.430 0.287 −4.3051
0.70 1.665 0.272 −5.0890
0.80 1.940 0.263 −5.9636

FIG. 3. �Color online� Evolution of the critical density �a� and chemical
potential �b� with the range of the potential �. The circles and crosses cor-
respond to box sides L=5� and L=8�, respectively. The empty squares in
�a� are data from Ref. 4. The lines correspond to the best fit of �a� �c for
��0.10 �0.5519 / �1+� /2�3� and �b� �c /kBTc for ��0.10 �−2.394 to
1.431��. The filled squares represent AHS results from Ref. 20. The inset
presents the whole range of � values studied in this work.
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with an intercept at −2.394, corresponding to a critical activ-
ity exp��c /kBTc�=0.091, to be compared with the corre-
sponding value of 0.087 of Miller and Frenkel.

It is known that the finite size of the system modifies the
position of the critical point.32 A precise estimate of the criti-
cal point requires a complete finite-size scaling study to ex-
trapolate the results to an infinite system. We have not at-
tempted to perform such a careful study since it would be
computationally prohibitive for the small ranges studied here
and we have limited ourselves to four different box sizes
�L=5, 6, 8, and 10� for �=0.05 only. The results are reported
in Table II. As already suggested by the minor differences in
the L=5 and L=8 data shown in the previous figures, no
significant changes in the critical parameters are observed.
From the scatter in the data �similar to that found by Miller
and Frenkel20�, it is possible to estimate errors in the critical
parameters. The resulting values of and errors in the critical
parameters at �=0.05 are Tc=0.3658�0.0005, �c=0.513
�0.008, and �c=0.9064�0.0008.

IV. DISCUSSION

Our study provides a set of values for the limiting AHS
case, based on an accurate extrapolation of the critical pa-
rameters of the SW potential to �→0. These values are out-
side the error bars of Miller and Frenkel’s investigation. In
particular, both the critical density and the critical virial ap-
pear to be higher than the previous estimates.

The special techniques employed in the simulation of the
AHS system18,20,33 only consider moves that make or break
up to three contacts. A particle can readily gain more than
three contacts, since higher coordination states are estab-
lished by a succession of such moves. Apparently, however,
the constraint on the possible moves disfavors the formation
of small nuclei of solid phases, since crystallization was ex-
tremely rarely observed with this algorithm, and then only in
fluids with a very high mean reduced density �greater than
0.9�. In the SW simulation, the transient solidlike nuclei are
more readily formed �and indeed we do occasionally observe
crystallization during the simulation� suggesting that the SW
simulations sample a larger region of configuration space
than that accessible with the AHS algorithm. This could in-
deed explain why the critical density extrapolated from the
SW simulations is significantly higher than that calculated
previously.

To support this interpretation we have compared the dis-
tribution of the number of contacts per particle �proportional
to the energy of the particle� for the AHS and a SW with

�=0.01 at the same virial coefficient �slightly above the criti-
cal one� and same density for three different state points. The
results of MC simulations in the NVT canonical ensemble for
different densities are reported in Fig. 4. The distributions of
the number of contacts per particle are coincident for low
densities, but discrepancies appear as the density is in-
creased, confirming that the algorithm used in Ref. 20 ex-
plores configurations with a somewhat smaller coordination
number than does the standard MC SW simulation. Figure 4
nevertheless confirms that the AHS algorithm permits the
formation of high coordination states. To avoid any potential
artifact due to the a priori unknown mapping in the density
between the AHS and the SW potential, we have also re-
peated the calculation at a lower density, scaled according to
Eq. �4�. However, as shown in Fig. 4, even when the density
is scaled to account for the different bond distances in the
AHS and SW models, at high density the disagreement be-
tween the two set of simulations remains.

V. CONCLUSIONS

We have reported a simulation study aimed at evaluating
the dependence of the critical parameters of the short-ranged
SW potential for interaction ranges approaching zero down
to �=0.005. The resulting values for B

2
*c

and 
c�c in the
range 0.005���0.1 are very well described by a linear de-
pendence on �, providing an estimate for the �→0 limit.
From the resulting value of B

2
*c

at �=0, it is possible to
evaluate also the corresponding critical value of the AHS
model via the relation B

2
*=1−1 /4�. In the same range, the

critical density is well represented by the previously pro-
posed functional form of Eq. �4�. More precisely, our ex-
trapolation for the AHS limit is

TABLE II. Critical parameters for the SW system of �=0.05 obtained with
four different boxes of side L=5,6 ,8 ,10.

L Tc �c �c

5 0.3660 0.516 −0.9042
6 0.3660 0.516 −0.9051
8 0.3658 0.513 −0.9062

10 0.3657 0.511 −0.9069

FIG. 4. �Color online� Probability distribution of the number of contacts per
particle for the AHS system and the SW with �=0.01, for different densities.
The comparison has been made at a slightly supercritical stickiness param-
eter �=0.120, in the case of the AHS, and the corresponding temperature
provided by Eq. �2� for the SW of �=0.01. The simulations were performed
in the NVT canonical ensemble with volume V=512�3. The symbols corre-
spond to AHS simulation data, for �=0.195 �circles�, 0.488 �squares�, and
0.781 �diamonds�. The dashed lines correspond to SW simulation data and
the dotted lines to SW simulations at the rescaled densities of �see Eq. �4��
0.192, 0.481, and 0.770, respectively.
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B2
*c�� = 0� = − 1.174 � 0.002, �5�

�c = 0.1150 � 0.0001, �6�

�c�� = 0� = 0.552 � 0.001, �7�


c�c�� = 0� = − 2.394 � 0.001, �8�

where the error bars are based on the spread of results from
the different box sizes in this study.

Three important observations are in order.

�i� Even for short-range interactions, B
2
*c

shows a slight
linear dependence on �, apparently contradicting the
law of corresponding states. While this is technically
correct, one must also remember that the small
changes of B

2
*c

with �, in the range 0���0.05, are
not sufficient to produce any significant observable
effect in the critical temperature estimated using a
constant B

2
*c

assumption via Eq. �2�. This is due to the
highly nonlinear relationship between the two quanti-
ties, explaining the success of the law of correspond-
ing states in the interpretation of simulation and ex-
perimental data of short-ranged attractive potentials.
From a more academic point of view, the law of cor-
responding states may still hold but with a scaling
variable more complicated than the reduced virial co-
efficient itself and with a proper scaling of the density.

�ii� The “best” critical parameters of the �=0 case are
found to be different from those reported by Miller
and Frenkel.20 We believe that this discrepancy is re-
lated to an incomplete mapping of the configuration
space in Ref. 20 which manifests itself in a less com-
plete sampling of the dense region. The extreme rarity
of any hint of crystallization in the simulations of
Miller and Frenkel is consistent with this proposed
explanation.

�iii� The higher critical temperature and density estab-
lished by the SW extrapolation suggest that the
Percus–Yevick energy route offers a more accurate
estimate of the AHS critical point than the Percus–
Yevick compressibility route.
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