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We compare simulations and theoretical predictions based on Wertheim’s thermodynamic
perturbation theory (TPT) for spheres that interact through an isotropic square well interaction
coupled to patchy attractions. Following a proposal of Foffi and Sciortino [J. Phys. Chem. B 111,
9702 (2007)], we show that, if we use the second virial coefficient as a scaling parameter, a
generalized law of corresponding states holds not only for the critical point but also for the
vapor-liquid coexistence curve of patchy hard sphere fluids with the same numbers of single-bonded
patches. The predictions for patchy square well fluids from Wertheim’s TPT are in good agreement
with Monte Carlo simulation data, although no aspects of universality were found. Instead, we find
a crossover from the behavior of isotropically short-ranged attractive fluids to that of patchy hard
sphere fluids as the strength of patchy interaction increases. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3063096]

I. INTRODUCTION

The idea of modeling proteins as spherical particles with
anisotropic, as opposed to isotropic, short-ranged attractions
has received considerable attention recently.l_9 Although
models equipped with isotropic pair potentials have been
successful in predicting the thermodynamic and dynamical
properties of many systems, intermolecular interactions be-
tween proteins are intrinsically directional. The highly direc-
tional attraction has many nonbiological precedents, e.g., in
network forming systemslo_14 such as water,ls_19 silica, and
for many associating fluids® (alcohols and amines). When
patchy sites or domains are distributed on the particle sur-
face, extended networks can result. Further, it has been
shown that the number of patches (or the valence) is a key
ingredient in controlling the phase diagram of patchy par-
ticles. Through adjusting the valence, low-density or
“empty” liquids are accessible.”' The patchy model is also
related to the self-assembly of functionalized colloidal par-
ticles. There has been increasing interest in the synthesis of
colloidal molecules,”** which might be used as building
blocks of specifically designed structures. One ambitious tar-
get is to assemble the particles with tetrahedral symmetry
into a diamond structure.**

Wertheim’s ~ thermodynamic  perturbation  theory
(TPT)*" is a graph-theoretic approach that describes par-
ticles with short-ranged highly directional forces. The inter-
action spots can bond with at most one other spot on a
nearby molecule. In the simplest form of TPT, the interaction
spots are located randomly on the surface on the particle:
Hence the geometry of the clusters formed via an application
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of TPT will not be correct. However, the resultant predicted
single-bonded networks have been useful for studying the
statics of polymer chains, as evidenced in comparisons of
theory with simulation.*®

The conical reactive spot is a good model for protein-
protein interaction."*~® The choice of the conical representa-
tion is motivated by the fact that the angular and radial mo-
tion can be independently modified. Patch size (hence
surface coverage of patches) turns out to be an important
parameter missing in spherical site models. Of course, both
models are equal for sufficiently narrow patches. This dis-
tinction is to a large extent subsumed in Wertheim’s TPT by
a strength parameter in the Mayer f-function.

Since the work of Sezur,1 involving Wertheim’s TPT, and
its application to protein phase diagram, there has been sig-
nificant activity. Recently, Gogelein et al’ provided a histori-
cal summary of models for patchy proteins and took the
route of a thermodynamic high temperature perturbation
theory to accommodate the Yukawa interactions between the
sticky spots exterior to the hard sphere (HS) surface. More
along the lines of Wertheim’s theory, Bianchi et al”?' re-
cently considered the phase behavior of sticky colloids inter-
acting by means of HS and patchy attraction. Wentzel and
Gunton® accommodated solvent, again via a Wertheim TPT,
using a HS potential and patchy interactions that include
solvent effects.

In previous work, we used simulations to show that the
addition of patchy interactions to a square well (SW) fluid
served to “broaden” the vapor-liquid coexistence curve. This
helped to better acknowledge experimental protein phase be-
havior curves, and we were able to remedy the underesti-
mated width of vapor-liquid coexistence curve.® To investi-
gate this problem analytically in a broader parameter space,
we apply Wertheim’s TPT, more specifically, the statistical
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associating fluid theory for potentials of variable range
(SAFT-VR).” Two variations in patchy models are studied
here: one a HS fluid with conical patchy interactions and the
other an isotropic SW fluid with patchy interactions. One of
the recent applications of SAFT-VR to such a system is due
to Docherty and Galindo,” yet only one patchy site was
considered. In contrast to the spherical site model, our results
show that both the number of patches and the patchy surface
coverage, rather than the number of single bond patches
alone, are needed to locate the critical point. We further show
that patchy HS fluids with the same number of single-bonded
patches obey a law of corresponding states. There is no such
a law for patchy SW fluids. Rather, they show a crossover
from the behavior characteristic of fluids with isotropic
short-ranged attractions to that of the patchy HS fluids when
the strength of patchy interactions increases.

Il. PATCHY MODEL

Our model system consists of spherical particles with
circular patches arranged on the particle surface. No patches
overlap. Particles interact with each other through a combi-
nation of an isotropic attraction and strong anisotropic patch-
patch interactions. Both interactions are described by SW
potentials. The isotropic part is

o, r<o
u(r)=\-¢ee, o=r<\o (1)
0, r= N0,

where g;e is the well depth, o is the particle diameter, \;
controls the attraction range, and r is the distance between
the centers of mass of the particles. For the patchy part, the
potential has both a radial and an angular dependence. Fol-
lowing Kern and Frenkel,* we define the interpatch interac-
tion as a product of a SW potential and an angular modula-
tion

up(eri"Q’j) =uSW(r) X f(Qi»‘Q'j)' (2)

The SW part is defined analogous to Eq. (1) but with a dif-
ferent well width N, and well depth €,&. The angular part is
defined following:

I 6,<6 and 6,<0
0 otherwise.

f(Qist) = { (3)
Here 6; is the angle between the line joining the centers of
particles and the line connecting the center of particle i to the
center of a patch on its surface. § is the maximum bond-
forming angle, which essentially determines the size of
patches. The size of patches is further defined in terms of the
surface patch coverage,

X =M sin*(8/2). (4)

Model parameters include M (the number of patches), x, \,,,
€,, \;, and g;, and can be varied as long as the values satisfy
the single bond per patch condition, consistent with two of
Wertheim’s assumptions: No patch can be engaged in more
than one bond and no pair of particles can be double bonded.
It has been suggested that for a meaningful comparison be-
tween theory and simulation care must be taken to ensure the
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satisfaction of these assumptions.30 When we turn on all in-
teractions, we obtain the patchy SW fluid. When we turn off
the isotropic SW attraction, the model is reduced to the
patchy HS fluid.

lll. HELMHOLTZ ENERGY

For the patchy fluid, the SAFT Helmholtz energy is a
sum

A =Aid+ASW+Ap (5)
of the ideal (id), the isotropic SW (sw), and the patchy (p)
interactions. The ideal part is

% = In(pwle). 6)

with vr the thermal de Broglie volume, N the number of
particles, p=N/V the number density, V the volume of sys-
tem, e the base of the natural log, and 8 the inverse tempera-
ture. Throughout the manuscript, all quantities are reduced
by the corresponding energy scale or length scale. For in-
stance, T*=kzT/e, U*=U/e, Cy=Cy/ky, and p*=po°. For
simplicity, the asterisk is omitted from here on.

A. Square well contribution

The Barker and Henderson®' perturbation theory for
hard-core system expresses the Helmholtz energy as a series
expansion in the inverse temperature [,

A A
—'BNSW = —'BN*‘S + BAY + BPASY, (7)

where AT and A5 are the first two perturbation terms. The
HS term is obtained from the Carnahan—Starling32 expres-
sion,

BAw _44=3¢
N o (1-¢)?*°

where ¢ is the volume fraction, 7/6p. For 1.1 =\,=1.8 the
first perturbation term is?

(8)

AT = =4\ = Dgng(07 degr) )
DN 3 Pt

ghs(o-9 ¢eff) - (1 _ ¢eff)3 B (]0)

besr=c1d+ 2" + 307, (11)

where ¢’s are given by the matrix

¢ 225855 —150349 0249434 \[1

¢y |=|-0.66927 1.40049 -0.827739 || \;

e 10.1576  —15.0427 530827 /\\2
(12)

The fluctuation term A3" is given directly by the first density
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derivative of A}" wusing the local compressibility
approximation,33
1 dAY”
A = —e.x, p——, (13
2 2 i hs¢ ﬂqb )
where ki, is the HS isothermal compressibility,
(1-¢)*

Khs=m. (14)

B. Patchy contribution

From Wertheim’s TPT,”** the patch-patch interaction
contributes A, to the Helmholtz energy

A X,\ M
B—E=E <lnXA——A)+—, (15)
N 5 2 2

where X, is the fraction of molecules not bonded at site A
and M is the number of the bonding sites. Equation (15)
sums over all sites A in the set I' (M in all). Wertheim’s
theory assumes that each patch acts as an independent inter-
acting unit. In addition, the theory does not account for the
contribution of closed loop of bonds. X, can be solved by the

mass action equation
X ! (16)
AT T < v A -
1+ 25 rpXpAsp

For our present model, the expression for X,=X can be sim-
plified since the patchy sites are indistinguishable and only
AA bonds are allowed,20

A X\ M
B—E=M(1nX——)+—, (17)
N 2 2
with
1
X=——"""-. (18)
1+ MpXA
It follows that X is
-1+ V1+4MpA 2 (19)
N 2MpA 1+ V1 +4MpA”
The patchy interaction strength A is defined by
)\po
A= 47Tf gsw(r12)<f(]2)>w|,w2r%2dr12’ (20)

where g, (r) is the reference fluid (SW fluid) pair correlation
function, the Mayer f function f(12)=e#%\"12-1  and
Of(12)>u,l,w2 is an angle average over all orientations. For our
conical site potential

p% 2
(F12)),, 4, = (ePor = ”(M) 1)

is constant over the interval rj, € [o,\,o]. For the short-
ranged patchy interaction, gSW(r]z)r%2 is assumed to be
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constant over o=r= )\pa'.35 Since TPT is extremely sensi-
tive to the pair distribution function of the reference ﬂuid,36
we use a realistic description of g, (c),” rather than the HS
approximation

TS R

gsw(o-)=ghs(0')+z adb - 3¢ PN

gns(0) can be approximated by the Carnahan—Starling32
equation,

1-1/2¢

ghs(o-) = (1 _ ¢)3 . (23)
Therefore,
¥\
A =470°g (o) (ePPr - ”(H) N\, = 1). (24)

A has a density dependence only in g,(o) and the tempera-
ture dependence explicitly in Be,. From the above expres-
sions, we see that the Helmholtz energy is independent of the
arrangement geometry of patches.

Combining the contributions from the ideal part, the iso-
tropic SW part and patchy part, we obtain the total Helm-
holtz energy of patchy fluid. Given BA/N, we find the pres-
sure and chemical potential through

By _ (a(,eA/N)> -

) ¢—a¢ v (25)
A

BM=%+@~ (26)

The vapor-liquid coexistence curve is determined from the
Gibbs equilibrium conditions, i.e., equality of chemical po-
tentials and pressures of coexisting phases. The spinodal is
derived from (dp/d¢);=0 and the critical point from the
conditions (dp/de)r=(FPp/d¢*)7=0.

Noro and Frenkel®’ suggested that the second virial co-
efficient can be used as a scaling parameter to query the
corresponding states behavior for fluids with isotropic short-
ranged attractions. Assuming that the patchy interaction
range is always shorter ranged than that of isotropic SW
interaction, the second virial coefficient of the patchy SW
fluids is given by

B
B_‘zi = 1=, = DDAEF™) = 1) + (1= ) (i - 1)]

— (N = M) (P 1), (27)

where BS® is the second virial coefficient of HS fluid. The
limits of B, for patchy HS fluids or pure SW fluids can be
recovered for \;=1 and g;=0 or A, =1, respectively.
Wertheim’s theory for the Helmholtz energy of patchy
HS fluids provides information about the mean potential en-
ergy, the heat capacity, cluster distributions, and the number
of bonds per particle. One can unambiguously define the
bond between two particles for the SW case. The probability
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FIG. 1. (Color online) Comparison of theoretical predictions and simulation
data for the vapor-liquid coexistence curves of pure SW fluids. The open
circles are from MC data of Vega et al. (Ref. 38) and of Liu er al. (Ref. 39).
The solid lines (binodal) and dashed lines (spinodal) are theoretical
predictions.

that an arbitrary patch is bonded is given by p,=1-X. So the
average number of bonds per particle is equal to

Np=M(1-X), (28)

which differs the total number of bonds divided by the num-
ber of particles by a factor of 2. The configurational energy
due to the patchy interaction is given by

U, (a(ﬁAW)) 29)
N\ )Y

that is,
zgzM<1_1>(£f) __ Va5 (30)
N X 2/\aB/, 2 1-eP

We note that bonding usually takes place when e Per<1,
hence one should expect that U,/N =—N3/28p, which is ex-
actly the fraction of bonds times —M/2g,,.

Likewise, the heat capacity at constant volume due to
bonding can be obtained through

<8 ( ﬁ(UE/N)) a31)
N\ oar )

S0,

RS IE

—e P, 32
N 2 \i—efs) \ax ¢ p) (32)

To account for the ideal part contribution, the Cy/N of the
patchy HS fluid should be a sum of C{,/N and 3 (translational
and rotational degrees of freedom). Based on the fact that the
number of clusters present at equilibrium is decreased by 1
for every bond formed, Chapman et al.®® obtained the den-
sity of clusters

pcluster=p<1 _%2 (1 _XA)>- (33)
A

For our model with indistinguishable patches, the equation
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0.1+ -

0.16 - -

(©) 0

FIG. 2. (Color online) Vapor-liquid coexistence curves of patchy HS fluids
from predictions of Wertheim’s theory (solid lines for binodals and dashed
lines for spinodals). (a) Effect of the surface coverage (y) with M=6, \,
=1.05. (b) Effect of the potential range of patchy interactions (\,) with M
=4, x=0.15. (c) Effect of the number of patches (M) with x=0.1, \,
=1.05.

becomes

pclusler=p<1 _%(1 _X)>’ (34)

and the average cluster size is approximated by
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TABLE I. Critical properties for patchy HS fluids with ;=1 and &;=0.
A, % B. &, BS/BY P
M=3 1.05 0.12 9.589 0.049 55 —32.14 0.634
1.07 0.12 9.252 0.049 55 —32.78 0.634
1.119 0.045 10.68 0.049 58 —34.49 0.634
1.119 0.075 9.665 0.049 52 —34.55 0.634
1.119 0.12 8.722 0.049 55 —34.44 0.634
1.119 0.1575 8.177 0.049 56 —34.40 0.634
M=4 1.01 0.16 9.301 0.0899 —7.492 0.493
1.05 0.1 8.63 0.09 —17.821 0.493
1.05 0.15 7.82 0.0896 —7.827 0.492
1.05 0.16 7.687 0.0899 —=7.792 0.492
1.07 0.16 7.353 0.090 —7.986 0.493
1.09 0.16 7.106 0.0899 —8.201 0.493
1.1 0.15 7.13 0.0898 —8.293 0.493
1.119 0.12 7.398 0.0899 —8.426 0.493
1.119 0.16 6.822 0.0899 —8.416 0.493
1.119 0.21 6.278 0.0899 —8.407 0.493
1.15 0.15 6.72 0.0899 —8.702 0.493
1.2 0.15 6.44 0.0899 —9.244 0.494
M=5 1.01 0.2 8.205 0.1242 —3.434 0.416
1.05 0.1 7.99 0.1245 —3.650 0.418
1.05 0.2 6.596 0.1242 —3.610 0.416
1.07 0.2 6.26 0.1242 —3.701 0.416
1.09 0.2 6.01 0.1242 —3.797 0.417
1.119 0.125 6.668 0.1242 —3.926 0.416
1.119 0.2 5.731 0.1242 —3.931 0.417
1.119 0.2625 5.189 0.1242 —3.928 0.418
M=6 1.05 0.05 8.97 0.1554 —2.098 0.370
1.05 0.1 7.578 0.155 —2.079 0.369
1.05 0.15 6.77 0.149 —2.087 0.360
1.05 0.2 6.2 0.1516 —2.100 0.365
p 1 IV. RESULTS AND DISCUSSION
Ncluster = = (35)

Pcluster 1- %(1 —X) ‘

A. Pure square well fluids

We first compare our perturbation scheme for the pure

From Wertheim theory we can also estimate the density of
particles with M patches bonded at n patches. The density of
monomers (that is, no patch is bonded)is given by
po=pX". (36)
Similarly, the density of particles with one bond is

p1=pMX"(1-X). (37)

Generalizing from above equations, the density of particles
with n bonds is

Pn=P(A:)XM_"(1 -X)", (38)

where ([g) is the binomial coefficient of M and n. Certainly,
E?ZOPFP-

SW fluids with Monte Carlo (MC) simulation data, as shown
in Fig. 1. The theoretical predictions are in good agreement
with simulation.*® Comparison has been shown by Gil-
Villegas et al. % and are presented here merely for complete-
ness.

B. Patchy hard sphere fluids

Shown in Fig. 2 are the binodals and spinodals from
Wertheim’s theory for different sets of parameters of patchy
HS fluids. Our results are broadly consistent with previous
data,l’3’8 except that in the previous work, the authors omit-
ted an M in the formula of X and this resulted in the under-
estimated critical temperatures. We also notice that the model
used by Bianchi et al.”! essentially predetermined patch
size through specifying the interaction range of patchy inter-
actions, so they found that critical properties only depend on
M. Our model allows us to independently vary the patch
size, the number of patches, and the interaction range of
patchy interaction.
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FIG. 3. (Color online) Law of the corresponding states of patchy HS fluids
with M=6, \,=1.05.

First, we vary y, essentially the patch size, for M=6 and
A,=1.05. The critical temperature increases with increasing
X, while the critical density remains intact. Second, we find
that with increasing A, the critical temperature increases
again, whereas the critical density is nearly constant. In con-
trast, the critical density of fluids with an isotropic attractive
potential is known to increase as the interaction range de-

0.14

0.13 -

Liquid branch

o012 -

Vapor branch

0.11- _

0.14

0.131-

—o0.12 Vapor branch

Liquid branch

| | |
10 15 20 25 30 35

(b) C/N

FIG. 4. (Color online) (a) Equilibrium potential energies and (b) heat ca-
pacities at constant volume for the coexisting vapor and liquid phases of
patchy HS fluid with M=6, \,=1.05, and x=0.1.
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FIG. 5. (Color online) (a) Inverse temperature dependence of fractions of
particles with n bonded patches and (b) the average number of bonds per
particle and the average cluster size of patchy HS fluids with M=4, x
=0.1, and \,=1.05.

creases (see Fig. 1). The results of TPT predict that the criti-
cal density of patchy HS fluids with constant M is insensitive
to the patch surface coverage and the patchy interaction
range, which is inconsistent with MC results that the critical
density does show y and A, dependence.40 Third, we present
phase diagrams for varying M and fixed x=0.1 and X\,
=1.05. The critical temperature shifts to lower ones with de-
creasing M, while the critical density decreases with decreas-
ing M. The coexistence region shrinks as we decrease M 2

Recently, Noro and Frenkel’’ proposed a generalized
law of corresponding states (GLCS) for variable range attrac-
tive fluids using the second virial coefficient (B,) as the scal-
ing parameter. Foffi and Sciortino™ extended this idea to
patchy fluids provided the one bond per patch constraint is
fulfilled. It is interesting to check GLCS for our theoretical
data. We present B, values at the critical points (B5) in Table
I for HS patchy fluids. We can see that each M is character-
ized by a specific BS value, that is, GLCS holds for each
number of patches—BS/B5 ~ f(M). Although a closer look
at B values shows that small variations exist, the differences
in B between different M are much larger than those at the
same M. Furthermore, our data show not only that the criti-
cal BS’s have constant values, but that the coexistence curves
of each M class fall onto universal curves (see Fig. 3). Our
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0.9F o,
]
O
O
| o M=4
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<
0.8 % |
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)
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4 5 ¢
(b) M

FIG. 6. (Color online) (a) Effect of the number of patches on the vapor-
liquid coexistence curves and (b) the critical properties of patchy SW fluids
with N,=1.05, ¢,=5, x=0.1, \;=1.15, and g=1. MC simulation data
(Ref. 6) are shown by symbols and theoretical binodals and spinodals are
shown by lines and dash lines in panel (a). MC simulation data (Ref. 6) are
shown by filled symbols and theoretical predictions by open symbols and all
lines serve as guides to eyes in panel (b).

data provide the theoretical evidence that the anisotropic HS
fluids with different sets of parameters obey a GLCS for the
same M. We also report p;, defined as the potential energy at
the critical point normalized by the energy of fully bonded
system in Table I.

tical )
. U;rmca 1= X¢
Pm= Ulfjully bonded — 1- e—,BL.sp .

(39)

A constant p¢, is observed for each M, which confirms the
existence of a GLCS for each M and suggests that p;, might
be the better scaling parameter.40

By means of TPT, we calculate the potential energy and
heat capacity for coexisting phases, as shown in Fig. 4. The
fraction of particles with varying number of attached bonds
is presented in Fig. 5(a). We also show the average number
of bonds per particle and the average cluster size N e 1N
Fig. 5(b). According to Eq. (35), the average cluster size
diverges when X=1-2/M, and as seen in Fig. 5(b), this
divergence occurs as 3 approaches 9.3.
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Patchy SW simulation

I 0.98- //’/ Patchy SW theory \\‘ 1
= | , ,
= K |

0.96~ ’/l Isotropic SW theory |
\/lsmropic SW simulation '
0.94 - / |

FIG. 7. (Color online) Comparison of Wertheim’s theory calculations
(dashed lines) and simulations (Refs. 6 and 39) (solid lines) in reduced
temperature and reduced density plane. Model parameters are the same as
those in Fig. 6. Note that the width of binodals of patchy SW fluids is much
broader than that of isotropic fluids in both cases.

C. Patchy square well fluids

Next, consider the patchy SW model with a SW fluid as
the reference fluid. We compare the TPT predictions and MC
calculations® of the binodals in Fig. 6(a), the critical param-
eters in Fig. 6(b) and in the reduced temperature and reduced
density plane in Fig. 7. Theory overestimates the critical
temperatures for the M=4 and M =5 models, whereas it un-
derestimates those of the M =7 model. The source of the
discrepancies are myriad: Wertheim theory is accurate in the
low bonding regime, it ignores the directionality of the bond-
ing interactions (no steric blocking allowed, no geometric
considerations), and it is pe1rturbative.4’41 However, given the
complexity of the fluid, Wertheim’s TPT gives at least quali-
tative agreement with simulation, and more importantly, it
gives the right M dependence of critical parameters. Wer-
theim’s theory confirms that there exists a universal coexist-
ence curve for patchy SW fluids with the same set of model
parameters used in our previous MC simulations® that is
much broader than those of SW fluids if we use the critical

2.5 -

M

FIG. 8. (Color online) Critical second virial coefficients for patchy SW
fluids. Circles are data points. The mean is shown by a square and the
standard deviation is shown by the bar. Patchy SW fluids share the same set
of parameters as those in Fig. 6.
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TABLE II. Critical properties for patchy SW fluids where g;=1.

A, e, X N T, &, BS/BY (BS)/BY (BS)?1BY
M=4 1.03 5 0.1 1.15 0.8038 0.2529 —1.901 —0.2864 —0.4654
1.05 5 0.1 1.15 0.8358 0.2342 —2.264 —0.2024 —0.6232
1.1 5 0.1 1.15 0.8878 0.2209 —2.926 —0.0857 —0.9208
1.15 5 0.1 1.15 0.9247 0.192 —3.425 —-0.0151 —1.156
M=5 1.05 5 0.05 1.15 0.7711 0.2773 —1.327 —0.3843 —0.2576
1.05 5 0.1 1.15 0.8629 0.2386 —1.783 —0.1388 —0.5162
1.05 5 0.15 1.15 0.9382 0.2273 —2.105 0.0086 —0.7281
1.05 5 0.2 1.15 1.008 0.2021 —2.292 0.1162 —0.8930
1.05 1 0.15 1.15 0.6738 0.3395 —0.8301 —0.7767 —0.0121
1.05 3 0.15 1.15 0.7474 0.2878 —1.199 —0.4643 —-0.1928
1.05 5 0.15 1.15 0.9382 0.2273 —2.105 0.0086 —0.7281
1.05 7 0.15 1.15 1.183 0.1719 —2.751 0.3079 —1.313
M=6 1.05 5 0.1 1.1 0.8306 0.2284 -1.929 0.2277 —0.6470
1.05 5 0.1 1.15 0.8822 0.2433 —1.509 —-0.0973 —0.4545
1.05 5 0.1 12 0.9378 0.2435 —1.329 —0.3866 —0.3243
1.05 5 0.1 1.25 0.996 0.234 —1.295 —0.6482 —0.2371
M=17 1.05 5 0.1 1.15 0.8967 0.2482 -1.332 —-0.0679 —0.4146

09+

0.8

0.7+

=09+

0.8
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| | | | | | | |
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(b) ) (d) 0

FIG. 9. (Color online) Vapor-liquid coexistence curves of patchy SW fluids from predictions of Wertheim’s theory (solid lines for binodals and dashed lines
for spinodals). (a) Effect of the surface coverage of patches with \,=1.05, &,=5, M=5, \;=1.15, and &;=1. (b) Effect of the potential range of patchy
interactions with sp=5, M=4, x=0.1, \;=1.15, and &;=1. (c) Effect of the strength of patchy interactions with )\p=1.05, x=0.15, M=5, \;=1.15, and
g;=1. (d) Effect of the potential range of isotropic SW interactions with \,=1.05, £,=5, x=0.1, M=6, and &;=1.
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FIG. 10. (Color online) Critical second virial coefficients of patchy SW
fluids with different sets of parameters studied in Fig. 9. The analytical data
are shown by open symbols. The means and standard deviations for each M
are shown by asterisks and bars.

properties as the scaling parameters (see Fig. 7). We further
check B, as the scaling variable in Fig. 8 and Table II. The
data show that B5/BY* is not constant for fixed M, much less
for the whole coexistence curves. We also note that the criti-
cal density displays less sensitivity to M as compared with
that of the patchy HS fluids.

We explore patchy SW fluids in the broader parameter
space and vary Y, N, €ps and \; shown in Fig. 9. With in-
creasing x, N, €,, and \;, the critical temperature increases,
reflecting stronger association. The critical density decreases
with increasing Y, )\p, and &ps while the critical density
shows a nonmonotonic trend that first increases then de-
creases with increasing \;. The second virial coefficient B, at
critical points for patchy SW fluids (see Table II and Fig. 10),
when reduced by B}Z‘S, is scattered for each M class for all
patchy SW fluids. A law of corresponding states is not ob-
served. We also tried the critical properties as scaling vari-
ables, and no master curve is observed. It is not unexpected
since the patchy SW fluid can be reduced to the two extreme
cases, each governed by a different energy scale. One is the
spherical short-ranged attractive fluid that should behave in
the same way, irrespective of the specific potential form and
interaction range; the other is the patchy HS fluid that behave
similarly only if the number of patches is the same and the
single-bonded condition is satisfied. Through the competition
of these two components, we would expect that the patchy
SW fluid should show the crossover from the class domi-
nated by the isotropic short-ranged attraction to the class
completely controlled by the patchy HS potential. It is
clearly shown for the M=5 case in Table II that as &, in-
creases, the increasing (B5)"° denotes the weaker contribu-
tion of the isotropic part to the total B,, while the decreasing
(BS)? demonstrates the stronger contribution of patchy part to
the total B,. The patchy SW fluid with M =5 shifts to the
patchy HS behavior, when the relative weight of patchy in-
teraction increases and essentially recovers the patchy HS
value of B; when g,=7.

V. CONCLUSION

Wertheim’s TPT has been applied to a study of the
vapor-liquid equilibrium of fluids with strong patchy interac-

p

J. Chem. Phys. 130, 044902 (2009)

tion regions. The agreement between the theory and the MC
simulation suggests that Wertheim’s theory is a promising
tool for capturing the broad outlines of phase behavior. We
provide theoretical evidence that different patchy HS fluids
with the same number of single-bonded patches obey a
GLCS. Furthermore, we have demonstrated that the patchy
SW fluid illustrates a crossover from the behavior of the
isotropic short-ranged attractive fluid to that of the patchy
HS fluid.
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