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Abstract
We investigate theoretically the phase behavior of particles with limited valence in two
dimensions, by solving the first-order Wertheim theory form. As previously found for three
dimensions, in two dimensions also the valence has a strong impact on the phase diagram,
controlling the location of the gas–liquid coexistence. On decreasing the valence, the critical
density and temperature decrease while the region of gas–liquid instability shrinks and
vanishes. At low temperatures, the system reaches its ground state with particles forming a fully
bonded network which spans the system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, there has been considerable interest in
investigating the phase behavior (both ordered and disordered
arrangements) of colloidal particles in two dimensions [1–5].
This investigation is facilitated both by the possibility of
confining colloidal particles at interfaces [6], and by the often
non-negligible role of gravity that forces particles to sediment
at the bottom of the sample holder [7]. The possibility of
imaging the location of the particles in a large space window
allows for an accurate reconstruction of the structure of the
colloidal two-dimensional state, providing an ideal reference
system for numerical and theoretical modeling. Most of the
work has been devoted to the determination of the possible
crystal structures and to the investigation of disordered dense
states, in order to provide a fully resolved (and visual)
description of the onset of slow dynamics and glass formation.

Less effort has been expended in the direction of
investigating two-dimensional low density states and the
possibility of forming arrested states at low density, with
mechanisms different from packing. In the three-dimensional
case, a series of articles have shown that arrested states at
low density—not mediated by a precursive phase separation
process [8]—are possible if the valence of the interacting
particles is limited to small numbers [9–11]. In other words,
particles able to form only a limited number of attractive

contacts with their neighbors are characterized by a gas–liquid
instability. The latter becomes more and more suppressed
(in temperature and density) on decreasing valence, opening
a large window of densities where the system forms a
network structure in which the bond lifetime becomes the
leading element in controlling the dynamics. Support for this
picture has been provided by theoretical studies based on the
Wertheim theory [12, 13] and supported by accurate numerical
investigations [14, 11, 15].

In this paper we generalize the Wertheim theory to patchy
colloidal particles in two dimensions. Particles are able to
form a limited number of bonds with their neighbors, via
localized (or specific) interactions. We show that even in
two dimensions, the width of the gas–liquid unstable region is
controlled by the value of the valence, progressively shrinking
and moving to vanishing temperatures and densities when the
average valence approaches 2. As for the three-dimensional
case, it should be thus possible to observe equilibrium
gels [16, 17] in small-valence systems in two dimensions.

2. The model

We focus on a system of particles modeled as hard disks of
diameter σ , whose circular contour is decorated by f bonding
sites at fixed locations, the 2D version of the model previously
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studied in 3D [10, 14]. Sites on different particles interact
via a square-well potential. The interaction V (1, 2) between
particles 1 and 2 is

V (1, 2) = VHD(r12) +
fi∑

i=1

f j∑

j=1

VSW(ri j
12) (1)

where the individual sites are denoted by i and j , VHD is the
hard-disk potential, VSW(x) is a square-well interaction (of
depth −u0 for x ! δσ , 0 otherwise) and r12 and ri j

12 are
respectively the vectors joining the particle centers and the site
(on different particles) centers, with site i belonging to particle
1 and site j to particle 2.

For geometric reasons, if

δ <

√
5 − 2

√
3 − 1

2
≈ 0.1196, (2)

then each site is engaged at most in one bond. Hence, with
this choice of δ, each particle can form only up to f bonds.
Moreover, the hypothesis of sterical incompatibilities and site
blocking assumed in the Wertheim theory are satisfied. We note
that in this model bonding is properly defined: two particles are
bonded when their pair interaction energy is −u0. Distances
are measured in units of σ . Temperature is measured in units
of the potential depth u0 (i.e. the Boltzmann constant kB = 1)
and, as usual, β = 1/kBT .

3. The theory

The first-order thermodynamic perturbation Wertheim the-
ory [12, 13, 18] provides an expression for the free energy of
particles with a number f of attractive sticky sites on their sur-
face, independently of the specific geometric arrangement of
the sites. The theory assumes that all identical sites have the
same probability of forming bonds and that the correlation be-
tween adjacent sites is missing. The fundamental assumption
of the Wertheim theory is that the conditions of steric incom-
patibilities are satisfied: (i) no site can be engaged in more than
one bond and (ii) no pair of particles can be double bonded.
These steric incompatibilities are satisfied in the model thanks
to the value of δ chosen for the short-ranged square-well attrac-
tion.

In the formulation of [19], the bond free energy density of
a system of f -functional particles is

β Fbond

S
= ρ ln(1 − pb)

f + 1
2
ρ f pb (3)

where S is the surface, ρ = N/S is the particle number
density and pb is the bond probability. Since we assume equal
reactivity for all sites, the bonding process can be seen as a
chemical reaction between two unsaturated sites in equilibrium
with a pair of bonded sites [20]. In this respect one can write

pb

(1 − pb)2
= ρσ 2e−βFb (4)

where Fb is the site–site bond free energy, i.e. the free energy
difference between the bonded and the unbonded state.

The Wertheim theory predicts an expression for Fb in
terms of liquid state correlation functions and spherically
averaged Mayer functions. The Mayer factor averaged over
the particle orientations (for a pair of sites) can be written as

〈 f (12)〉ω1,ω2 = (eβu0−1)

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
θ(δ − r i j

12)

= (eβu0−1)S(x), (5)

where the angles θ1 and θ2 identify the locations of the two
active sites with respect to the line joining the centers of the
particles. The double integral defining the function S(x) can
be partially performed and turns out to be

S(x) = 1
π2

∫ 1

x− δ(1+δ)
x

du arccos
(

0.5 − δ2 + x2 − xu√
0.25 + x2 − xu

)
, (6)

where x = r12/σ is the scaled distance.
According to Wertheim, βFb can be written as

σ 2e−βFb = f (, (7)

where (—which refers to a single site–site interaction (since
all bonding sites are identical)—is given by

( = 2πσ 2
∫ 1+δ/σ

1
(eβu0 − 1)xgHD(x)S(x) dx . (8)

The two-dimensional radial distribution function gHD(x)

has been evaluated using a model for hard disks proposed
by Yuste and Santos [21]. The theory uses a scheme of
interpolation between the hard rod and hard sphere Percus–
Yevick radial distribution functions gHD(x), and it has been
shown to provide an accurate modeling of the HD behavior
in the region of densities of interest for the present work. To
numerically solve equation (8), we have expanded to second
order in x the Yuste and Santos [21] expression, in the x
region (1, 1 + δ). The resulting η dependence of (—where
η = πρσ 2/4 is the covered surface fraction—arising from the
η dependence of the hard-disk radial distribution function is
shown in figure 1. We note that for ρσ 2 < 0.05, the ideal gas
expression gHD(x) ≈ 1 can be confidently used. Finally, pb is

pb = 1 − 2

1 +
√

1 + 4 fρσ 2(
. (9)

The pressure can be obtained by summing the hard-disk
and the bonding contributions. The hard-disk pressure has been
calculated as suggested in [22]:

P(v, T ) = Tρ
1 + (1 − 2a)η2

(1 − η)2
(10)

where the parameter a is given by

a = 2
√

3
π

− 2
3
. (11)

The total pressure can be obtained by summing, to the
HD contribution, the surface derivative of the bond free energy
(equation (3)).
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Figure 1. Dependence of the bonding surface (/(exp[βu0] − 1)
versus η calculated according to equation (8) (full line) and the low η
expansion (dashed line) 0.004 372 00 + 0.006 421 99η +
0.008 105 84η2. Assuming an ideal gas as reference system (instead
of the hard-disk case) corresponds to selecting the η = 0 value for (.

4. Results

We start by evaluating the role of the valence in the phase
diagram of the system, to confirm the behavior which has been
observed in the three-dimensional case.

Figure 2(a) shows the phase diagrams for disks with
various functionality f values, from 5 down to the binary
mixture case of tri-functional and bi-functional particles with
average functionality f = 2.1. For valence strictly equal to
2, the system forms chains and does not phase separate into
a gas and a liquid phase at any finite T [23]. Figure 2(b)
shows the corresponding P–T projection, clarifying that the
critical pressure approaches zero on reducing the valence.
For valence 5, the phase separation region encompasses the
entire range of densities accessible to hard two-dimensional
systems. Indeed, in 2D, random packing of disks in a
disordered configuration can reach packing of the order of
0.84 [24]. Hence, according to the Wertheim theory, for
valence 5 (or more, i.e. in the isotropic limit) the entire low
T region is dominated by phase-separated states, and it is

impossible to generate arrested states at low densities without
the intervention of a decomposition kinetics which creates
locally high density regions. Such results are consistent with
the expectations, since in two dimensions, the most packed
local arrangements are characterized by six neighbors. In this
respect, the five-patch case does not differ too much from a
spherical potential case.

For smaller valences the case is different since the
liquid branch of the coexistence curve progressively moves
to smaller densities, opening up a wider and wider region of
packing where a homogeneous liquid phase is found. Data
clearly show that the region of gas–liquid phase separation is
progressively reduced and shifted toward the left on decreasing
the valence. If crystallization is avoided (kinetically or
thermodynamically), then the liquid can exist in a stable or
metastable state down to very small temperatures, where the
lifetime of the bonds becomes so long that no bond-breaking
processes are encountered in any finite observation time, and
the system becomes non-ergodic. For very small average
valences, the liquid branch has moved to very small density
and at low T , arrested non-ergodic states can be found also
for small densities. Hence, small-valence systems provide
a case in which arrest can be progressively reached without
the intervention of phase separation, even at small densities.
Note that these arrested states are different from ‘jammed’
states in granular matter, or ‘glass’ states, where the motion
of the particles is severely constrained to localization lengths
significantly smaller than the particle size.

Figure 2(a) also shows the percolation line evaluated
according to the mean-field Flory–Stockmayer predictions,
which has been shown to be based on the same assumptions
as the Wertheim theory (i.e. closed loops of bonds are
neglected) [11]. For particles with integer functionality,
percolation is expected at pp

b = 1/( f − 1) [25], while
for mixtures of tri-functional and bi-functional particles (with
relative composition x3 and x2) it is expected at pp

b = 1/(1 +
p3), with p3 = 3x3/(2x2 + 3x3). As in previously investigated
cases, the percolation line is located above the gas–liquid
coexistence region (so percolation is a prerequisite for phase
separation [26]) and tends to become tangent to the low density
spinodal when temperature approaches zero. The observed

Figure 2. (a) The critical points, and the spinodal, binodal and percolation lines for various values of the (average) functionality f = 5, 4, 3,
2.1 from high to low temperatures. (b) The binodal lines and critical points for various values of f in the pressure–temperature plane.
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Figure 3. Bond probability pb versus temperature for two different
surface packings.

location of the percolation line confirms that in 2D also, the
liquid state (defined as usual as all state points with T less
than the critical temperature) is well inside the percolation
region, where the fraction of particles in the infinite cluster has
almost reached its asymptotic value of 1. This suggests that, in
these patchy models, the liquid is composed of one infinite size
cluster to which essentially all the particles are connected.

Figure 3 shows the T dependence of the probability
of forming a bond pb, for two different densities. The
probability has a sigmoidal shape, converging to unity at small
temperatures. Since the bond probability in this model is
proportional to the number of bonds formed, and hence to the
potential energy of the system, the sigmoidal shape indicates
that in two dimensions also, a specific heat peak at constant V
will be found, confirming that this feature can be considered
a clear signature of an underlying bonding process. The
approach to pb = 1 at low T indicates that all the possible
bonds that can be formed in the system are indeed saturated.
The system essentially reaches its (disordered) ground state
at a finite temperature. At these low temperatures, the bond
lifetime, which can be reasonably estimated as ∼ exp (−βu0),
becomes extremely long, conferring to the system the typical
character of a dynamically arrested material. This suggests, in
agreement with the three-dimensional case, that in these low
valence systems, dynamic arrest is not connected to difficulties
in the exploration of a complex landscape.

5. Conclusions

In this paper we have presented an application of the Wertheim
theory to a two-dimensional assembly of patchy particles,
modeled analogously to the previously investigated three-
dimensional case. The theoretical results reproduce the effects
which have been predicted and confirmed in simulations in
3D. The sensitivity of the phase diagram to the valence is
confirmed, together with the possibility of forming, when
the valence is small, equilibrium fully bonded structures
(gels), the existence of a specific heat peak being the
hallmark of the bond-driven assembly in the system. Hence,
a two-dimensional system can provide an interesting case

for experimentally testing the possibility of creating empty
liquids [10] and their structure.

The present results also call for a numerical verification of
the quality of the Wertheim predictions in two dimensions and,
in particular, the role of the loops of bonds in the self-assembly
of these low valence systems. Indeed, it is well known that
rings of bonds (analogous to the probability of return to the
origin of a random walker) are significantly enhanced in low
dimensions. Simulations in this direction are under way, to
estimate the significance of the bond loops at low dimensions
as well as the dynamic properties of the two-dimensional gel,
in both limits of finite and infinite lifetimes of the bonds.
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