
PAPER www.rsc.org/softmatter | Soft Matter

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

 S
tu

di
 L

a 
Sa

pi
en

za
  o

n 
26

 S
ep

te
m

be
r 

20
10

Pu
bl

is
he

d 
on

 0
8 

Ju
ly

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
09

1D
View Online
Association of limited valence patchy particles in two dimensions
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We report simulations of a simple model of particles with limited valence in two dimensions and

compare the numerical results with recent predictions based on the application of the Wertheim theory.

The predictions for the fraction of formed bonds are rather accurate, except at low densities and

temperatures, where enhanced bonding is found. Such differences are traced-back to the break-down of

the approximation of absence of intra-cluster bonding. The enhanced bonding is thus attributed to the

growing entropic cost of merging different clusters when the density is low, compared to the free-energy

gain of forming an intra-cluster bond. The presence of closed bond loops in finite size clusters affects the

location of the percolation locus, which is located at temperature lower than expected on the basis of

the Flory–Stockmayer theory. Similarly, the critical region is shifted to temperatures smaller than the

ones accessible with present time numerical resources, despite the implementation of efficient cluster

moves. Only a weak evidence of a low-T gas–liquid phase separation between a very dilute gas phase

and a low-density percolating liquid phase is found.
I. Introduction

Self-assembly of colloidal particles in two dimensions1–6 is

receiving considerable interest, facilitated by the possibility of

confining particles at interfaces7 or, playing with the different

density of the particles as compared to the solvent, at the bottom

of the sample holder.8 The study of two-dimensional self-

assembly is facilitated by the possibility of imaging the surface on

which particles aggregate, providing accurate time resolved

information on the growth process and on the structure (equi-

librium or arrested) of the system. Both amorphous and ordered

structures have been observed, experimentally and/or via theo-

retical investigations.

While most previous work focused on aggregation properties

of spherically interacting colloids (or mixtures of them), several

efforts are now concentrating on the synthesis and self-assembly

properties of patchy particles,9 in which patchiness results either

from an anisotropic interaction potential (e.g. dipolar10–14 or

quadrupolar15) or from different chemical composition of

selected areas on the particle surface.16,17 The hope is to be able to

build complex structures with a bottom up process, encoding the

desired properties of the resulting material in the chemical-

physical properties of the particles. Providing valence to

colloids18–21 may result in a reconstruction of the molecular world

on the nano and micro scale, as well as in the formation of new

materials with novel and still unexplored possibilities.

In recent years, we have started a systematic theoretical and

numerical study of the role of valence on the phase diagram and

on the equilibrium and non-equilibrium dynamic properties of

three-dimensional systems.19,22–27 We have shown that arrested

states at low density—not mediated by a precursory phase
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separation process28—are possible if the valence of the interact-

ing particles is limited to small numbers.29,30 In other words,

particles able to form only a limited number of attractive

contacts with their neighbors are characterized by a gas–liquid

instability which becomes more and more suppressed (in

temperature T and density r) on decreasing valence. This opens

a large window of densities where the system forms a network

structure in which the bond-lifetime becomes the leading element

in controlling the dynamics. The possibility of forming equilib-

rium gels is intimately connected to the small valence. Support to

this picture results from theoretical studies based on the

Wertheim theory31–33 compared to accurate numerical investi-

gations. Connections with the atomic and molecular network

forming systems have also been provided.34

In this article we numerically investigate, implementing the

‘‘virtual-move’’ Monte Carlo algorithm,35 the aggregation

properties of small valence particles in two dimensions (2d), with

the aim of comparing with recently published 2d theoretical

predictions.4 With respect to the three-dimensional case, despite

the small valence, a significant fraction of particles participate in

close loops of bonds, invalidating one of the basic assumptions of

the first order thermodynamic perturbation theory of Wertheim.

This results in a underestimation of the extent of bonding, which

reveals essentially at low T and densities. As a consequence, the

percolation line is not accurately predicted by the Flory–Stock-

mayer (FS) theory (as it was the case in three dimensions) and the

gas-liquid phase separation is significantly suppressed compared

to the Wertheim predictions.
II. The model

We focus on a system of particles modeled as hard-disks of

diameter s, whose circular contour is decorated by f bonding

sites at fixed locations. Sites on different particles interact via

a square-well potential. The interaction V(1, 2) between particles

1 and 2 is
Soft Matter, 2010, 6, 4229–4236 | 4229
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Fig. 1 The bond probability as a function of T for various occupied

surface fractions h. Lines are evaluated with the Wertheim theory and the

symbols refer to numerical simulations of a system with 4500 particles of

functionality 2 and 500 particles of functionality 3, corresponding to f ¼
2.1. The dashed lines refer to the approximation D ¼ 0.004372 (corre-

sponding to assuming for the radial distribution function of the hard-

disks its ideal gas limit gHD(r) ¼ 1). The inset highlights the low T region,

where deviations between the theoretical curves and the simulation

results appear.
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Vð1; 2Þ ¼ VHDðr12Þ þ
Xf

i¼1

Xf

j¼1

VSW ðrij
12Þ (1)

where the individual sites are denoted by i and j, VHD is the hard-

disk potential, VSW(x) is a square-well interaction (of depth – u0

for x # d, 0 otherwise) and r12 and rij
12 are respectively the vectors

joining the particle–particle and the site–site (on different parti-

cles) centers. The parameter d has the value

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2

ffiffiffi
3
pp
� 1

2
z 0:119, the largest value which guarantees

that each site is engaged at most in one bond. Hence, with this

choice of d, each particle can form only up to f bonds. We note

that in this model bonding is properly defined: two particles are

bonded when their pair interaction energy is –u0. Distances are

measured in units of s. Temperature is measured in units of u0/kB.

We study this model for an average valence f ¼ 2.1, by simu-

lating via MC a system composed of N2 ¼ 4500 bi-functional

particles (with sites located at the poles) and N3 ¼ 500 three-

functional ones (with sites symmetrically located on the equator).

With this choice of the average valence the Wertheim prediction

for the critical point lies in a temperature and density region

accessible to simulations. Note also that mole fractions of three-

coordinate particles of around 5% are typical in thin films of

dipolar fluids.

We implement the so-called ‘‘virtual move’’ Monte Carlo

(VMMC) scheme,35 which facilitates collective motion of clus-

ters, allowing for faster equilibration times over standard single

particle Monte Carlo moves. The algorithm starts by selecting

a seed particle and proposing a virtual move to it (displacement

or rotation). It then recruits all neighbours for which the virtual

move of the seed particle is energetically disadvantageous. Every

time a particle is added to the cluster, it adopts the virtual move

and the recruitment algorithm is recursively extended to its

neighbours. Once the cluster is identified, the virtual move is

applied to all of its particles, and accepted with a rate that

ensures detailed balance.
III Results

A. Bond probability

The key element in the Wertheim theory is the bond probability,

i.e. the (normalized) number of bonds Nbonds present in the

system, as a function of T and r. The normalization is performed

by counting the maximum number of bonds Nmax which can be

formed in principle, equal to Nmax ¼
2N2 þ 3N3

2
. In this model,

where the attractive interaction is of a square-well type, the

number of bonds is directly proportional to the system potential

energy, Epot ¼ �u0Nbonds ¼ �u0pbNmax, where pb is the bond

probability.

Fig. 1 shows the T-dependence of pb for all investigated

densities for both numerical and theoretical results (from ref. 4).

Theoretical curves are based on the expression

pb

ð1� pbÞ2
¼ f rD (2)

where at low surface fraction h, the h dependence of D is given

by4 D ¼ 0.00437200 + 0.00642199 h + 0.00810584 h2. Such
4230 | Soft Matter, 2010, 6, 4229–4236
h dependence arises from the density dependence of the structure

of the reference system (hard disk).

The bond probability continuously varies between zero, at

large T, to a fully bonded state (pb ¼ 1), at low T. This suggests

that the system essentially reaches its disordered ground state at

a finite T, in equilibrium conditions. With ‘‘ground state’’ we

indicate any fully bonded network, i.e. any lowest-energy

configuration. The ground state is represented by highly degen-

erate network states (since there are many ways the network can

assemble) and it is characterized by a high configurational

entropy. The possibility to reach the ground state arises by the

concomitant effect of the suppression of the phase separation

induced by the small valence and by the absence of packing

phenomena.30,23 The ability to reach a state very close to the

disordered ground state at a finite T and in equilibrium condition

(for example, in the simulation at T ¼ 0.055 and h ¼ 0.1, we

observe the formation of more than 99.5 per cent of the bonds

and their breaking and reforming processes) has important

consequences for the formation of arrested states at low densi-

ties. Any further cooling does not alter the structure of the system

and has the only effect of increasing the lifetime of the bonds

(which can become permanent on the time scale of the experi-

ment or of the simulation). No structural or bonding rear-

rangements (i.e. no aging) is expected, since the final ground state

configuration has essentially been reached. This feature is similar

to the one observed in chalcogenide glasses in the so-called

reversibility window.36

Comparing the theoretical predictions with the numerical

results, we note that for T > 0.07 the parameter-free Wertheim

theoretical predictions perfectly describe the simulation data. We

note that the approximation D ¼ 0.004372 is indistinguishable

from the density dependent solution up to h ¼ 0.05, and even at

h¼ 0.1 the effect of hard-disk structure is negligible. For lower T,

when the system approaches a state in which all bonds are

formed, deviations between numerical and theoretical results

start to appear, and become more and more relevant on

decreasing h. Interestingly, these deviations are in the direction
This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 Gyration radius of the aggregates as a function of their size. The

data for h ¼ 0.01 has been multiplied by a factor of 10 to avoid overlap

with other sets and improve readability. Two distinct regimes are

apparent: for s ( 10 the gyration radius has a slope corresponding to

df ¼ 1 (i.e. linear chains) while for larger clusters (sT10) the fractal

dimension is df ¼ 1.82.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

 S
tu

di
 L

a 
Sa

pi
en

za
  o

n 
26

 S
ep

te
m

be
r 

20
10

Pu
bl

is
he

d 
on

 0
8 

Ju
ly

 2
01

0 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
09

1D
View Online
of increasing the number of bonds as compared to the theoretical

predictions of Wertheim. Since these deviations are more evident

at low packing, these cannot be attributed to an approximated

evaluation of the neighbors in the reference system (since, at

these low densities, the hard-disk radial distribution function

which enters in the expression for D is essentially exact). Hence,

the other main assumption of the theory, i.e. the absence of bond

loops in the clusters, must break at low temperatures.

B. Structure in real space

To provide a direct evidence of a non negligible presence of bond

loops in the system, we show in Fig. 2 the evolution of the 2d

structure and the progressive clustering which takes place on

increasing h and/or decreasing T. The system progressively forms

larger and larger clusters which eventually span the entire

simulated surface. Interestingly enough, larger clusters show an

extensive intra-cluster bonding, a phenomenon which is not

accounted for neither in the Wertheim32 nor in the Flory–

Stockmayer37 theories. Such intra-cluster bonding is not present

when the same model is investigated in three dimensions,22,24

pointing to a different role of the entropy of closing a loop in

different dimensions. This is in close analogy with quasi-two-

dimensional dipolar fluids38 where ring formation is clearly

observed, as opposed to the analog 3D systems. At the lowest

investigated T, where pb z 1, only for h T 0.05 the largest cluster

percolates, i.e. spans the simulation box.

C. Cluster structure

The structure of the clusters can be quantified by means of their

fractal dimension.39 To this aim, we evaluate the radius of
Fig. 2 Snapshots of an equilibrium typical configuration for a 5000

particles system at three different temperatures kBT/u0 ¼ 0.1, 0.06, 0.05

and three different surface fractions h ¼ 0.01, 0.05, 0.1. The two shaded

area (dark and light) offer a pictorial indication of the percolating and

phase separated configurations respectively (for the more precise

numerical phase diagram see Fig. 10).

This journal is ª The Royal Society of Chemistry 2010
gyration R2
g(s) of a cluster composed by s particles, averaged over

all clusters with the same size, defined as

R2
gðsÞ ¼

*
1

2s2

X
i;j;isj

��ri � rj

��2+
s

(3)

For clusters of fractal dimension df, hR2
g(s)i � s2/df. Fig. 3 shows

this quantity along a constant h path and along a constant T

path. For clusters of size less than 10, df z 1, consistent with

a linear chain structure of small clusters (or, equivalently,

consistent with the small amount of three-functional particles in

the system). For larger clusters, branching becomes relevant and

the fractal dimension increases toward two. The best fit exponent

suggest that df z 1.8 on increasing pb (close to the percolation

universality class value40 of df ¼ 91/48). The fractal dimension df

is close to the embedding space dimension d¼ 2 which, thanks to

the large fraction of loops, makes the clusters very compact as

compared to ideal (i.e. loop-less) branched polymers.

The structure of the cluster is found to be slightly dependent on

pb, as can be noticed comparing the data at constant T around

cluster sizes of the order 100. A systematic effect is observed in

the direction of smaller Rg(s) values (i.e. more compact clusters)

for smaller h, and hence smaller pb. This is due to the fact that the

structure of the cluster depends on the relative fraction of bi- and

three- functional particles. For smaller pb values, large clusters

contain a larger fraction of three-functional particles as

compared to the bulk concentration. At fixed cluster size s, on

increasing pb, the relative concentration of bi-functional particles

increases and Rg(s) grows.
D. Structure in wave-vector space

The structure of the system can be quantified by evaluating the

structure factor S(q). In associating systems, S(q) increases

significantly at small wavevectors q, due to the coherent scat-

tering signal of the particles aggregated into clusters. In the case
Soft Matter, 2010, 6, 4229–4236 | 4231
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of highly polydisperse systems, in the limit of small concentra-

tions (i.e. in the limit of an ideal gas of clusters of different size, as

in the present case) the behavior of S(q) at very small q (such that

the inverse scattering vector is significantly larger than the largest

cluster size) satisfies the Guinier law.41 Since the system is poly-

disperse, summing over all cluster sizes, one recovers

SðqÞ ¼

P
s nss

2
�

1� q2RgðsÞ2

2

�
P

s sns

(4)

Here the scattering for q / 0, Sð0Þ ¼ hs
2i
hsi , depends only on the

second moment of the cluster size distribution ns. For q�1 of the

order of the typical cluster size one expects S(q) � q�df instead.

Fig. 4 shows the calculated two-dimensional structure factor

along two different isochores. At small h, the ideal gas approx-

imation is rather well satisfied, as can be seen from the

comparison with the expected low q theoretical expression. At

larger q [inset of Fig. 4(a)] it is possible to clearly detect the two

regions of fractal scaling, one associated to the branched clusters

and one associated to the chain region. At larger h, the excluded

volume interaction between the cluster does not allow us to

observe the Guinier law. The small q regime reflects now the

cluster–cluster interaction more than the form factor. It is

interesting to observe that S(q) increases with cooling but then it

saturates to a constant T independent behavior. The saturation

of S(q) reflects the fact that the structure of the system does not

change any longer with T, due to the fact that pb/1 and all

particles are connected in one large spanning cluster. The system
Fig. 4 Structure factor for different T at h ¼ 0.001 (a) and h ¼ 0.05 (b).

The full line in (a) is SðqÞ ¼ hs
2i
hsi ð1� q2R2

g=2Þ, with the appropriate mean

cluster size and average gyration radius. The inset shows that the region

0.1 < qs < 1 can be well represented with the law S(q)� q�df with df¼ 1.8,

while df ¼ 1 for larger q. Note that in (b), no changes in the structure

factor are visible at low T, a signature that most of the bonds have been

formed and no further structural changes take place on further cooling.

4232 | Soft Matter, 2010, 6, 4229–4236
has reached an almost fully bonded (disordered ground state)

configuration and further cooling does not modify the structure.

This fully bonded equilibrium state is what has been referred to

as an equilibrium gel.29

We note on passing that accurate S(q) data require the equil-

ibration of the diffusional processes on distances of the order of

q�1. For small q, this requires waiting for clusters diffusing over

distances comparable to the size of the simulation box, which in

two dimensions and for small densities may become a prohibi-

tively long time. Indeed, if one follows the evolution of S(q) in

time with a standard MC algorithm, one observes that a peak,

similar to the one observed in spinodal decomposition, develops

and grows. Then, the signal at small q progressively grows

generating the correct equilibrium Guinier law for very long

times. The virtual move algorithm, by displacing clusters of

particles over longer distances, facilitates the formation of the

equilibrium density fluctuations at small q. While the finite q

peaks are not an equilibrium property, they may have a signifi-

cance in kinetic studies when the system is quenched to rather

low temperature so that the system behaves similarly to an

irreversibly aggregating system.42–44 It is interesting to observe

that these transient peaks are observed also in regions where, at

long time, the system is in the stable fluid phase.
E. Loops

According to the Flory–Stockmayer theory, bond loops are only

contained in the infinite spanning cluster, and can be calculated

as the difference between the number of bonds and the number of

particles in the spanning cluster:

Nloops
N ¼ Nbonds

N � NPN + 1 (5)

where the subscript N referes to quantities in the spanning

cluster, and PN is the fraction of particles belonging to the

infinite cluster. In the Flory postgel assumption, the terms in eqn

(5) can be calculated from the knowledge of the number density

of finite size clusters containing n three-functional particles and l

bifunctional ones

rnl ¼ r3

ð1� pbÞ2

p3pb

½ p3pbð1� pbÞ�n½ð1� p3Þpb�lwnl (6)

wnl ¼ 3
ðl þ 3n� nÞ!
l!n!ðnþ 2Þ!

where wnl is a combinatorial contribution,37 r3 is the number

density of three-functionalized particles and p3 ¼ 3N3/(2N2 +

3N3) ¼ 0.1428 is the probability that a randomly chosen binding

site belongs to a three-functional particle. We then have

Nbonds
N ¼ Nbonds �

P
ln;lþn . 0

ðl þ n� 1ÞSrnl

NPN ¼ N �
P

ln;lþn . 0

ðl þ nÞSrnl :

where S is the total surface. In Fig. 5 we show the average

number of bond loops per particle for all the simulated state

points (symbols), together with the prediction of eqn (5) (full

line). The results show that a non-negligible number of loops
This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 Average number of loops per particle. The same symbol is used

for simulations at equal temperature, while dashed lines connect simu-

lations at equal density. The full line is the Flory-Stockmayer prediction

for the number of loops in the percolating cluster (for pb > pc¼ 0.875) and

the arrow marks the predicted number of loops per particle in the ground

state (pb ¼ 1). The results clearly show that the number of loops always

exceeds the FS prediction, and that more loops are formed as the density

is lowered.

Fig. 7 Cluster size distribution for h ¼ 0.01 at several T. Full lines are

predictions of the FS theory evaluated according to eqn (7) with the same pb.
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forms in finite size clusters, and that more loops are formed as h

is lowered, suggesting that intra-cluster bonding is indeed

promoted by the low density. This is consistent with the

consideration that the entropic cost of merging two distinct

clusters by forming a bond increases on decreasing h.

We also evaluate the distribution of primitive rings in the

network, employing the definition and algorithm reported in ref.

45. By this definition, a primitive ring is a ring that cannot be

decomposed into two smaller rings, that is, given any two

particles of the primitive ring, the shortest path between the two

particles is on that ring. Fig. 6 shows the number of rings

observed in the simulations at T ¼ 0.07 as a function of h. We

note that the most abundant rings are composed of about 10

particles. Within the numerical error, the large ring-size tail of

the distribution appears to converge at large h to a density

invariant distribution which can be described by an exponential

tail with a characteristic ring length of about 14 particles.
Fig. 6 Distribution of bond loops (rings) at T ¼ 0.07 for different

densities. As the density increases the distribution can be described by an

exponential tail with a characteristic ring length of about 14 particles.

This journal is ª The Royal Society of Chemistry 2010
To better quantify the connectivity of the system we calculate

the cluster size distribution rs (expressed as number density of

clusters of size s, so that
P

ssrs ¼ r), defined as

rs ¼
X

ln; lþn . 0

rnlds;nþl (7)

where rnl are the cluster densities given by eqn (6).

In the analysis of the configurations, particles are considered

to be members of the same cluster if there is a sequence of bonds

joining them. The results are reported in Fig. 7, together with the

Flory–Stockmayer (FS) predictions (at the same bond proba-

bility).37

Consistent with the ring statistic results, only at high T (where

rings are missing) the FS predictions agree with the numerical

results. The agreement between FS predictions and simulations

also improves at higher h (results not shown). When the system

starts to form clusters with size larger than 10–20, the number of

large size clusters observed significantly overshoots the FS

predictions.

Close to percolation (see Fig. 8), data follow a power-law with

an apparent exponent s z 1.66 � 0.05. This value differs from
Fig. 8 Cluster size distribution close to percolation (T ¼ 0.078, r ¼ 0.1).

To minimize size effects, 40 000 particles have been simulated. The

different straight lines show the theoretical predictions for mean-field and

2d-percolation, as well as the best fitting slope of the numerical ns. The

cluster size predicted by the Flory–Stockmayer theory is also reported,

but its range of validity is limited to only small clusters.

Soft Matter, 2010, 6, 4229–4236 | 4233
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the expected two dimensional site or bond percolation prediction

s ¼ 187/91,46 suggesting that we are not sufficiently close to

percolation to detect the asymptotic exponent. We note that in

the corresponding 3d case,22 even rather close to percolation the

cluster size distribution was properly predicted by the mean field

scaling exponent s ¼ 2.5. This difference again stresses the rele-

vant role of the bond loops in two dimensions.

Within the FS approach it is possible to evaluate, at any fixed

pb value, the length distribution r2(s) of chains formed only by

two-functional particles. This distribution, normalized in such

a way that
P

sr2(s) ¼ N2/S, is

r2(s) ¼ r2(1 � p2pb)2(p2pb)s�1 (8)

where p2 ¼ 2N2/(2N2 + 3N3) ¼ 0.8571 is the probability that

a randomly chosen binding site belongs to a bifunctional particle.

The r2(s) distribution is thus always exponential. At low T, when

pb / 1, the distribution becomes controlled only by the relative

fraction of two-functional particles. Indeed, when pb / 1, the

average distance �l between branching points in the network

becomes only a function of p2, i.e. �l ¼ 1/(1 � p2). Fig. 9 compares

the FS predictions with the numerical results. The bond proba-

bility in the theoretical expression is the one predicted by
Fig. 9 Cluster size distribution for chains of bifunctional particles at h¼
0.01. Dashed lines are parameter free theoretical predictions based on eqn

(8) with pb from eqn (2).

Fig. 10 Phase diagram for the case of the functionality f¼ 2.1. Lines are

theoretical predictions based on the Wertheim theory (from ref. 4), and

the cross symbol (�) is the predicted critical point. Symbols are numerical

results for percolating and non percolating state points.
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Wertheim (eqn (2)). The distributionr2(s), which does not involve

loops by construction, is perfectly described by eqn (8).

A global view of the connectivity properties of the system is

reported in Fig. 10, where state points which have been found to

be characterized by spanning clusters are indicated. We also

show the predicted FS line of percolation. As expected, perco-

lation is found at temperatures well below the FS prediction,

since a large fraction of bonds is ‘‘wasted’’ in intra-cluster

connections which do not favor the formation of a spanning

cluster. The same figure reports also the Wertheim prediction for

the spinodal and the gas-liquid coexistence for the present model.

It is interesting to note that the presence of intra-cluster bonds,

by depressing the percolation line, has also a profound impact on

the gas-liquid phase separation. Indeed, if the formation of

bonds can be realized without connecting different clusters, then

the driving force for phase separation (i.e. for creating an infinite

size cluster47) decreases. Moreover, percolation via physical

bonds is a pre-requisite for phase-separating, as shown in the 80s

by Coniglio and coworkers.48 In the case of the simple short-

range square-well potential, this means that the gas–liquid crit-

ical point (which is characterized by diverging correlation

lengths) must be located in the percolating part of the (T, h)

plane.

The natural question which arises is if the intra-cluster

bonding shifts the critical point to smaller T than expected on the

basis of the Wertheim theory or if it completely suppresses the

critical point. This last possibility would be the case if the intra-

clustering bonding generates fully bonded structures, which are

then inert for what concern the phase separation process, in

analogy to the micelle formation process in surfactants.49–51

However, in the present 2d system, a visual inspection of the low

temperature (T ¼ 0.05) configurations [(d) and (e) in Fig. 2]

reveals that: (i) for h ( 0.05 the observed cluster structure is

always composed by very few clusters; (ii) several reactive (un-

bonded) sites remain located on the cluster perimeter; (iii) the

final configurations span the simulation box only when h T 0.05,

suggesting that the density of the liquid branch spinodal should

have approximately this value. These data suggest that, in order

to achieve almost full bonding at small h (as expected on the basis

of the pb data reported in Fig. 1), the system is forced to phase

separate.
IV. Conclusions

In this article we have examined the equilibrium properties of

a mixture of bifunctional and three-functional patchy particles in

two dimensions. The study of this model is very relevant for the

field of low-valence colloidal suspensions whose motion is con-

strained in 2d. Both equilibrium and nonequilibrium properties

of the three dimensional version of this model have been exten-

sively studied,24,52 so that a direct comparison with the present

results makes it possible to uncover the effects of the confinement

to a surface.

The short-range and limited-valence nature of the interactions,

together with the low densities considered in the present work,

determine very long equilibration times inaccessible with

conventional methods. To overcome this difficulty we have

adopted the ‘‘virtual move’’ Monte Carlo algorithm, successfully

covering a large region of the h – T phase diagram. The
This journal is ª The Royal Society of Chemistry 2010
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numerical results have then been compared with the theoretical

predictions of the Wertheim theory, which is known to give very

accurate estimates for the corresponding three-dimensional

systems.22

First, we have considered the h and T dependence of the bond

probability (pb), showing that it is possible to reach the ground

state at finite T. The Wertheim theory predictions for pb prove

very accurate for T > 0.07, but clearly underestimate the real

number of bonds at lower temperatures, and more so at lower

values of h. The failing of the Wertheim theory at low h and T is

attributed to the large number of loops in finite size clusters,

which the theory does not take into account. The significant

presence of loops is peculiar to the 2d system, being very different

from the previously studied three-dimensional case.22,24 These

differences can be traced down to the lower entropic cost of

forming a loop in two dimensions rather than in three, making

the formation of intra-cluster bonds more convenient in the

former case.

We have then characterized the clusters structure by means of

their fractal dimension. The radius of gyration of the clusters

shows two distinct behaviours: up to ten particles, the fractal

dimension is df z 1, therefore indicating a linear chain structure

of the smaller clusters; for larger clusters, we obtain a fractal

dimension of df z 1.8. We also note that the structure of the

clusters has a small dependence on the bond probability.

Focusing at clusters of the same size, the ones at lower h (i.e.

lower pb) are richer in three-functional particles and conse-

quently their radius of gyration is smaller (since there is more

branching).

Further structural information on our system is obtained by

studying the structure factor properties at low-q. This is a diffi-

cult task at very low h, because it is necessary to fully equilibrate

the diffusional processes over distances of the order of q�1. The

VMMC algorithm employed in this study has proven essential in

order to obtain a full equilibration of the system and avoid

spurious artifacts. The increase of the structure factor at small q-

vectors satisfies the Guinier law, showing that, at least for the low

h, the system can be viewed as a collection of independent and

polydispersed clusters. The value at zero wave-vector is predicted

from the second moment of the cluster size distribution, and the

low-q decay gives us the correct fractal dimension.

We have also quantified the number of loops in the T ¼ 0.07

systems at different h, showing that the distribution of ring-sizes

has a peak at about ten particles and, at high volume fractions,

displays an exponential tail with a characteristic length of 14. The

Flory–Stockmayer predictions for the cluster-size distribution,

for sizes larger than 10–20, fail due to the abundant number of

loops in large clusters. It is an open question why, even close to

percolation, the observed s significantly differs from the expected

2d random percolation universality class.

Bond loops have also a strong influence on the phase diagram.

With respect to the Wertheim predictions, we note a strong

suppression of the percolation line and the critical region, to low

temperatures and h. In the T-window which we have been able to

explore, only at the lowest studied T¼ 0.05 we have observed the

formation, for h z 0.05, of almost fully bonded clusters which

barely percolate. This is suggestive of the presence of phase

separation at lower h. Studies at higher average valence (where

the critical point would be located at larger temperatures) can
This journal is ª The Royal Society of Chemistry 2010
help clarifying this issue. Finally, results reported in this manu-

script provide an accurate set of data to compare with predic-

tions of future theoretical approaches in which the role of loop

formation can be explicitly taken into account.
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