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Effects of patch size and number within a simple model of patchy colloids
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We report on a computer simulation and integral equation study of a simple model of patchy
spheres, each of whose surfaces is decorated with two opposite attractive caps, as a function of the
fraction y of covered attractive surface. The simple model explored—the two-patch Kern—Frenkel
model—interpolates between a square-well and a hard-sphere potential on changing the coverage y.
We show that integral equation theory provides quantitative predictions in the entire explored region
of temperatures and densities from the square-well limit y=1.0 down to y=~0.6. For smaller y, good
numerical convergence of the equations is achieved only at temperatures larger than the gas-liquid
critical point, where integral equation theory provides a complete description of the angular
dependence. These results are contrasted with those for the one-patch case. We investigate the
remaining region of coverage via numerical simulation and show how the gas-liquid critical point
moves to smaller densities and temperatures on decreasing y. Below y=0.3, crystallization
prevents the possibility of observing the evolution of the line of critical points, providing the angular
analog of the disappearance of the liquid as an equilibrium phase on decreasing the range for
spherical potentials. Finally, we show that the stable ordered phase evolves on decreasing y from a
three-dimensional crystal of interconnected planes to a two-dimensional independent-planes
structure to a one-dimensional fluid of chains when the one-bond-per-patch limit is eventually

reached. © 2010 American Institute of Physics. [doi:10.1063/1.3415490]

I. INTRODUCTION

Spherically symmetric potentials have become a well-
established paradigm of colloidal science in past decades.’
This is because, at a sufficiently coarse-grained level, colloi-
dal surface composition can be regarded as uniform with a
good degree of confidence, so that relevant interactions de-
pend only on relative distances among the particles. Recent
advances in chemical particle synthesis2 have however chal-
lenged this view by emphasizing the fundamental role of
surface colloidal heterogeneities and their detailed chemical
compositions. This is particularly true for an important sub-
class of colloidal systems, namely, proteins, where the pres-
ence of anisotropic interactions cannot be neglected, even at
the minimal level.* Directional interactions introduce novel
properties in such systems. These properties depend both on
the number of contacts (i.e., the valency) and the amplitude
of these interactions (i.e., flexibility of the bonds), a notable
example of this class being hydrogen-bond interactions,
ubiquitous in biological, chemical, and physical processes.6’7
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As a reasonable compromise between the high complex-
ity of interactions governing the above systems and the nec-
essary simplicity required for a minimal model, patchy-
sphere models stand out for their remarkable success in this
rapidly evolving field.®*!! See Ref. 12 for a recent review on
the subject.

Within this class of models, interactions are spread over
a limited part of the surface, either concentrated over a num-
ber of pointlike spotslo’13 or distributed over one or more
extended regions.m’15 While the former have the consider-
able advantage of a simple theoretical scheme,'® which al-
lows a first semiquantitative description, the latter can easily
account for both the effect of the number of contacts and
their amplitude, unlike “spotty” interactions which are al-
ways limited by the one-bond-per-site constraint.

In this paper we consider a particular model due to Kern
and Frenkel of this patchy-spheres class wherein short-
range attractive interactions, of the square-well (SW) form,
are distributed over circular patches on otherwise hard
spheres (HS). Interactions between particles (spheres) are
then attractive in the SW-SW interfacial geometry or purely
hard-sphere repulsive under the HS-SW or HS-HS interfacial
geometries, and can sustain more than one bond—in fact, as
many as the geometry allows—even in the case of a single
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patch assigned to each sphere. A number of real systems
ranging from surfactants to globular proteins can be de-
scribed with simplified interactions of these particular forms,
with well-defined solvophilic and solvophobic regions, and
despite their simplicity patchy hard spheres have already
shown a  remarkable richness of  theoretical
predictions.5’14’15 A9 Notwithstanding the discontinuous na-
ture of the angular interactions, highly simplified integral
equation approaches are possible,17 but only very recently
has a complete well-defined scheme, within the framework
of the reference hypernetted-chain (RHNC) integral equa-
tion, been proposed and solved for patchy spheres.20 This
integral equation belongs to a class of approximate closures
which have been extensively exploited in the field of mo-
lecular associating fluids.?' Its main advantage over other
available approximations (other than its less-accurate parent
HNC closure) lies in the fact that it relies on a single ap-
proximation, for the bridge function appearing in the exact
relation between pair potential and pair distribution function
¢(12),"*# to directly yield structural and thermodynamic
properties that include the Helmholtz free energy and the
chemical potential with no further approximations.23 2 In ad-
dition, it can be made to display enhanced consistency
among different thermodynamic routes.” This is an impor-
tant point when analyzing fluid-fluid phase diagrams such as
we propose to do here. We thus build on our previous work
with the one-patch potentia120 to study the two-patch case
and its relationship with its one-patch counterpart. In addi-
tion to RHNC integral equation results, we provide dedicated
Monte Carlo simulations which can assess the performance
of RHNC. We find that RHNC provides a robust representa-
tion of both structural and thermophysical properties of the
two-patch Kern—Frenkel model for a wide range of coverage
x (the ratio between attractive and total hard-sphere surface),
extending from an isotropic SW to a bare HS potential. The
competition arising between phase separation and polymer-
ization is discussed in terms of the angular dependence of the
pair correlation function and the structure factor. Finally, a
comparison between the one-patch and two-patch phase dia-
grams shows a strong impact on the different morphology
and stable structures obtained in the two cases.

We also report numerical simulation results of the model
in the region where the RHNC integral equations do not
numerically converge, to explore the low temperature, small
x limit. We find that for y<<0.3 it becomes impossible to
investigate the low-temperature disordered phases, since the
system quickly transforms into an ordered structure, which
itself depends on the coverage value. Indeed, on decreasing x
one progressively enters the region where the maximum
number of contacts per patch evolves from four to two and
eventually reaches the one-bond-per-patch condition. When
three or four bonds per patch are possible, the observed or-
dered structure is a crystal of interconnected planes, while
when only two contacts are possible, particles order them-
selves into a set of disconnected planes.

The patchy interaction model examined here can be re-
garded as a prototype of a special colloidal architecture
where there exist competitive interactions on the colloidal
surface that drive, by free energy minimization, the different
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FIG. 1. The two-patch Kern—Frenkel potential. Each sphere is divided into
an attractive part (color code: green) and a repulsive part (color code: red).
The attractive part is positioned on two symmetrically distributed patches
identified by unit vectors ﬁl(,’)=ﬁ,< and ﬁib)z—ﬁi (i=1,2), where the orienta-
tion vectors A, i, define angles 6,, 6, with the vector F|, joining the centers
of the two spheres and directed from sphere 1 to sphere 2. The particular
case shown corresponds to a 40% fraction of attractive surface (coverage y).

colloidal particles through a spontaneous self-assembly pro-
cess into complex superstructures whose final target can be
experimentally probed and properly tuned.”® The possibility,
discussed in the present study, of identifying the position of
the gas-liquid coexisting lines and its relative interplay with
different structures opens up fascinating scenarios in material
science on the possibility of novel material design exploiting
a bottom-up process not requiring human intervention.

Il. THE TWO-PATCH KERN-FRENKEL MODEL

As a paradigmatic model for highly anisotropic interac-
tions, we take the Kern—Frenkel' two-patch model where
two attractive patches are symmetrically arranged as polar
caps on a hard sphere of diameter o. Each patch can be
reckoned as the intersection of a spherical shell with a cone
of semiamplitude 6, and vertex at the center of the sphere.
Consider spheres 1 and 2 and let ¥, be the direction joining
the two sphere centers, pointing from sphere 1 to sphere 2
(see Fig. 1). The orientation of sphere i is defined by a unit
vector ﬁiEﬁE') passing outward through the center of one of
its patches, to be arbitrarily designated as the “top” (¢) patch.
The patch on the opposite, “bottom” (b) pole is then identi-
fied with the outward normal ﬁ;b)z—ﬁi.

Two spheres attract via a square-well potential of range
Ao and depth € if any combination of the two patches on
each sphere are within a solid angle defined by 6, and oth-
erwise repel each other as hard spheres. The pair potential
then reads"
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(I)(lz) = ¢(r12)q,(ﬁlvﬁ25f12)9 (1)
where
o, 0<r<o
d(r)=1-€, o<r<\o (2)
0, No<r
and

W (i, 1, 1))
1, if ﬁ(lpl) . f]z = COS 60

=9 and —ﬁ(z”z) -F1,=cos 0, . (3)

0, otherwise

where p;, p,=t or b indicates which patch, top or bottom, is
involved on each sphere. The unit vectors i,(w;) are defined
by the spherical angles w;=(6;,¢;) in an arbitrarily oriented
coordinate frame and f,({)) is identified by the spherical
angle () in the same frame. Reduced units, temperature 7*
=kyT/ €, and density p*=po” will be used throughout.

This model was introduced by Kern and Frenkel,' pat-
terned after a similar model studied by Chapman et al.,'* as
a minimal model where both the distributions and the sizes
of attractive surface regions on particles can be tuned. In this
sense, the model constitutes a useful paradigm lying between
spherically symmetric models which do not capture the
specificity of surface groups, not even at the simplest pos-
sible level, and models with highly localized interactions
having the single-bond, single-site limitation.'®'*?’ Several
previous studies have already examined potentials of the
Kern-Frenkel form wusing numerical simulations,s’15
corresponding-state arguments,18 highly simplified integral
equation theories,'” and pertubation theories.'”  More
recently,20 the single patch Kern—Frenkel potential was stud-
ied using a more sophisticated integral equation approach
based on the RHNC approximation coupled with rather pre-
cise and extensive Monte Carlo simulations. In the present
paper, we extend this last study to the two-patch Kern—
Frenkel potential and provide new methodologies specific for
the angular distribution analysis.

We define the coverage x as the fraction of the total
sphere surface covered by attractive patches. Thus y=1 cor-
responds to a fully symmetric square-well potential while
x=0 corresponds to a hard-sphere interaction and the model
smoothly interpolates between these two extremes in the in-
termediate cases 0<<y<1. The two-patch potential is ex-
pected to present qualitative as well as quantitative differ-
ences with respect to its one-patch counterpart. One
interesting question, for instance, concerns the subtle inter-
play between distribution and size of the attractive patches
on the fluid-fluid phase separation diagram. It is now well
established™' ™" that as coverage decreases the fluid-fluid
coexistence line progressively diminishes in width and
height. Indeed, this feature can be exploited to suppress
phase separation altogether to enhance the possibility of
studying glassy behavior'™"? and cannot be accounted for
with a simple temperature and density re:sc:aling,17 although
corresponding-state type of arguments can be proposed.18 On
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the other hand, the above mechanism can significantly de-
pend on how the same reduced attractive region is distributed
on the surface of particles. In Ref. 17, for instance, it was
suggested that lines of decreasing critical temperature as a
function of decreasing coverage, for the one-patch and two-
patch Kern-Frenkel models with very short-range interac-
tions, could cross each other at a specific coverage: for low
coverages, critical temperatures for the one-patch model lie
above the two-patch counterpart whereas the opposite is true
for larger coverages. This would have far-reaching conse-
quences on the phase diagram, as phase separation would
occur at higher or lower temperatures for fixed coverage,
depending on the specific allotment of the coverage. Another
interesting issue regards miscellization phenomena, present
in the one-patch version of the model,”® which is expected to
be replaced by polymerization (or chaining) in the two-patch
version.

lll. INTEGRAL EQUATION WITH RHNC CLOSURE AND
MONTE CARLO SIMULATIONS

The Ornstein—Zernike equation22 defines the direct cor-
relation function c¢(12) in terms of the pair correlation func-
tion h(12)=g(12)—1; it is convenient for computation to
write it using the indirect correlation function y(12)=h(12)
—c(12) instead of 4(12). We have then

¥(12) = ﬁ f drsdas] y(13) + ¢(13)]¢(32). 4)

A second, or “closure,” equation coupling y(12) and ¢(12) is
needed. The general form for this is*?

c(12) =exp[- BP(12) + v(12) + B(12)] - 1 — ¢(12), (5)

where B=(kgT)™! and a third pair function, the so-called
“bridge” function B(12), has also been introduced. While
known in a formal sense as a power series in density,”> B(12)
cannot in fact be evaluated exactly and at this point an ap-
proximation is unavoidable. The RHNC approximation re-
places the unknown B(12) with a known version B(12) from
some “reference” system. In practice, only the hard-sphere
model is today well-enough known to play the role of refer-
ence system. Here we will use the Verlet—Weis—Henderson—
Grundke parametrization®”>" for By(12)=Bys(ri2; 00), where
oy is the reference hard-sphere diameter. Some computa-
tional details of the RHNC integral equation approach can be
found in Ref. 20 (see Appendix A), so only the most relevant
equations will be repeated here.

Solution of the Ornstein—Zernike integral equation for
molecular fluids®' seemingly requires expansions in spherical
harmonics of the angular dependence of all pair functions, a
need that would be very problematic in the case of the dis-
continuous angular dependence in the present ®(12). In fact,
the integral equation algorithm allows ®(12) to remain
unexpanded.zo There is a potential problem however in
evaluating the Gauss—Legendre quadratures used in the nu-
merical solution, in that of the angles 6,,6,, ..., 6, used for
an nth-order quadrature, none is likely to coincide with the
angle 6, defining the semiamplitude of a patch. Thus the
algorithm will not “know” the correct patch size. This prob-
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lem is ameliorated in the following ad hoc fashion.
From the interaction ®(12) of Eq. (3), the total coverage
x can be computed in terms of 6, as

=

@f dw;dw,)[O(cos 6, — cos 6,)O(—cos 6,
—cos ) + O(cos 0, — cos 6,)O(cos B, — cos 6)

+ O(=cos 0, — cos 6y)O(—cos 6, —cos )

+ O(=cos 0, — cos 6,)O(cos 6, —cos )], (6)

where O(x) is the Heaviside step function, equal to 1 if x

>0 and 0 if x<<0. The integrals can be readily evaluated to
.15

give

x=2 sin@. (7)
2

This quantity can also be numerically evaluated by Gauss—
Legendre quadrature using the n roots 6; of the Legendre
polynomial P,(cos ) and the computed result compared
with the exact value (7). We may then vary n so as to find
that number n (typically kept between 30 and 40) that mini-
mizes the known error in computing y. All Gaussian quadra-
tures for that y value are then evaluated with the same num-
ber n of points, thus ensuring that minimal error arises from
the selected angular grid.

In an axial r frame?' with f,=Z, the internal energy per
particle in units kz7T is obtained from

BU

Ao
7 =— Zﬂpﬁff drr2<g(r,w1,wz)\I’(wl,wz))wle, (8)

where (--+),=(1/4)[dw - - denotes an average over spheri-
cal angle ® and where we have written out g(12)
=g(r,w,,w,). Similarly, the pressure P is computed from the
compressibility factor
P 2
B 2o (0,0, )P V)
p

@0y
- NGo0ho,op, 0[PV e — 1)), ) )

where the cavity function y(12)=g(12)e#®(1? has been intro-
duced. The angular integrations in these expressions are
evaluated with Gauss-Legendre and Gauss—Chebyshev
quadratures. Finally, the dimensionless free energy per par-
ticle BF/N and chemical potential Su can also be directly
computed from the pair functions produced by the RHNC
equation; the overall calculation is optimized by choosing
the reference hard sphere diameter o, so as to minimize the
free energy functional.” We solve the RHNC equations nu-
merically on r and k grids of N,=2048 points, with intervals
Ar=0.010 and Ak=m/(N,Ar), using a standard Picard itera-
tion method.” The square-well width is set at A=1.5 as a
reasonable value dictated by the availability of isotropic
square well results.*® Further details of these and other com-
putations can be found in Ref. 20.

For an assessment of the performance of the RHNC in-
tegral equation, we also perform NVT, grand canonical, and
Gibbs ensemble Monte Carlo (MC) simulations®® following
the path set in the one-patch case.”” Standard NVT MC simu-
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FIG. 2. Fluid-fluid coexistence lines of the two-patch model for different
values of the coverage ranging from a full square-well potential down to
x=0.3. Points represent MC results while thick solid lines report RHNC
values (for y=0.6). Thinner solid lines are a guide for the eyes whereas the
thick dashed line shows the estimated GCMC critical point for any fixed
coverage x. The MC data for y=1.0 (SW) coincide within the numerical
error with the ones reported in Refs. 34 and 35.

lations of a system of 1000 particles are used to compute
structural information (pair correlation functions and struc-
ture factors) for comparison with integral equations results,
whereas grand canonical and Gibbs ensemble MC (GEMC)
are used to locate critical parameters and coexisting phases.
The exact locations of the critical points (points connected
by the thick dashed green line in Fig. 2) have been obtained
from the MC data assuming the Ising universality class and
properly matching the density fluctuations with the known
fluctuations of the magnetization close to the Ising critical
point.36 For GEMC, we use a system of 1200 particles,
which partition themselves into two boxes whose total vol-
ume is 430007, corresponding to an average density of p*
=0.27. At the lowest temperature considered, this corre-
sponds to roughly 1050 particles in the liquid box and 150
particles in the gas box (of side =130). On average, the code
attempts one volume change every five particle-swap moves
and 500 displacement moves. Each displacement move is
composed of a simultaneous random translation of the par-
ticle center (uniformly distributed between *+0.050) and a
rotation (with an angle uniformly distributed between *0.1
rad) around a random axis. We studied systems of size L
=7 up to L=10 to estimate the size dependence of the critical
point, with an average of one insertion/deletion step every
500 displacement steps in the case of grand canonical Monte
Carlo (GCMC). We also performed a set of GCMC simula-
tions for different choices of T and u to evaluate p*(w,T).
See Ref. 20 and additional references therein for details.

IV. NUMERICAL RESULTS
A. Coexistence line

Locating coexistence lines is not an easy task within
integral equation theory, given the fact that virtually all inte-
gral equations are unable to access the critical region with
reliable precision due to significant thermodynamic inconsis-
tencies among various possible routes to thermodynamics, a
consequence of the approximation buried in the closure Eq.
(5). The RHNC closure is no exception to this rule, but has
the strong advantage of relying on a single approximation
expressed by the choice of the reference bridge function
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TABLE I. Comparison of the estimated location of critical points from MC and RHNC data (see text). In the

last column z,.=eP* is the critical activity.

¥ p:(MC) p:(RHNC) T*(MC) T*(RHNC) 2.(MC)
1.0 0312 0.317 1.22 1.23 0.0526
0.9 0.309 0.296 1.05 1.10 0.0516
0.8 0.303 0.277 0.883 0.949 0.0487
0.7 0.287 0.262 0.714 0.750 0.0432
0.6 0.262 0.254 0.555 0.562 0.0350
0.5 0.234 0.423 0.0202
0.4 0.206 0.333 0.0202
0.3 0.175 0.257 0.0155

By(12), at odds with other available closures which require
additional approximations in constructing various thermody-
namic quantities such as the chemical potential. Here we
follow the protocol outlined in Ref. 32 for the isotropic
square-well potential and Ref. 20 for the one-patch Kern—
Frenkel potential, where both the well-known pseudosolu-
tions shortcoming37 and the numerical drawbacks®® can be
conveniently accounted for.

Figure 2 depicts the location of the fluid-fluid coexist-
ence line for the two-patch case upon varying the coverage
x- The limiting case y=1 corresponds to the square-well
potential. Both MC (points) and RHNC (thick solid lines)
results are shown. As previously noted, RHNC is not able to
approach the critical point close enough to provide a direct
estimate of its location. However, since it provides a quite
good description of the low-temperature part of the coexist-
ence line, we tried to use these data to approximately locate
the critical point.

Visual inspection of the RHNC coexistence points re-
veals, in the cases where it is possible to go closer to the
critical region, an unphysical change in curvature of the co-
existence line moving from low to high temperature. For this
reason, for each coverage we selected only data clearly con-
sistent with a rectilinear diameter law. Then we fitted those
data with the following function (corresponding to the first
correction to the scaling):39

pi=py=a(T,~TP(1+b(T.~T)%), (10)

where the values of the exponents 8=0.325 and A=0.54 are
appropriate for the three-dimensional Ising model universal-
ity class.***' Once T, and the amplitudes a, b have been
determined, the critical density can be obtained from the rec-
tilinear diameter best fit. The numerical results of such a
procedure are compared with MC estimates of the critical
points in Table I. It is evident that even though in general the
validity of Eq. (10) is deemed to be limited to a smaller
neighborhood of the critical point;40 in the present case it
provides an acceptable procedure for a quick first estimate of
the critical point location.

As the coverage decreases, the coexistence line shrinks
and moves to lower temperature and density, as expected
from an overall-decreasing attractive interaction. This trend
can be tracked rather precisely by MC simulations down to
remarkably low coverages (y=0.3) and RHNC correctly re-

produces this evolution down to x=0.6 coverage. Below this
value, more powerful algorithms are required to achieve
good numerical convergence.

A few remarks are here in order. The coexistence curves
shown in Fig. 2 are consistent with previous analogous re-
sults reported in Ref. 15 but extend the range of temperatures
and, more importantly, the range of coverages (x values).
This allows a quantitative measure of the significant devia-
tion from the simple mean-field-like results, which can be
obtained from the simple scaling (not shown) 7°—T%/ x, as
suggested by the second-virial coefficient B,(7*) for this
model,15

By(T")

RS = - XN =1)(ePe-1), (11)
2

B(ZHS) being the hard-sphere result. This is also consistent
with the breakdown of the above simple scaling at the level
of the third virial coefficient, derived in Ref. 17 for the com-
panion patchy sticky-hard-sphere model. As we shall see
later on, the dependence of the critical temperature and den-
sity on both the coverage and the number of patches is one
of the main results of the present work. As a final point, we
note that all curves in Fig. 2 collapse into a single master
curve upon scaling 7°— T%/T., in agreement with Ref. 15.

B. Low-coverage results

Below x=0.3, it becomes impossible to properly esti-
mate the location of the critical point or the density of the
coexisting gas and liquid phases. Indeed, the gas-liquid sepa-
ration becomes pre-empted by crystallization into a structure
that depends on the value of y. Hence, the liquid phase, as an
equilibrium phase, ceases to exist for small y. This is
strongly reminiscent of the disappearance of the liquid phase
using spherical potentials when the range of the interaction
becomes smaller than about 10% of the particle
diameter,”™** thus providing the angular analog of the same
phenomenon. Interestingly enough, the crystal structure
which is spontaneously observed during the simulation de-
pends on the value of Yy, since the y value controls the maxi-
mum number of bonds per patch. In the range of y values
such that each patch can be involved in four bonds, the ob-
served ordered structure is made by planes exposing the SW
parts to their surfaces [see Fig. 3(d)]. Particles in the plane
are located on a square lattice and adjacent planes are shifted
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(2)
®

(b)

FIG. 3. Representation of the structures observed at small coverages y. (a)
The case of coverages such that each patch can be involved in only one
interaction. In this case, the system forms polydisperse chains. The snapshot
here refers to the case p*=0.01 and 7°=0.07. (b) Values of y such that each
patch can be involved in only two interactions. In this case, at low T the
system forms bonded planes interacting with each other only via excluded
volume interactions. The snapshot shows one such plane. (c) Values of y
such that each patch can be involved in only three interactions. The crystal
is now formed by interconnected planes, with a triangular arrangement of
the particles in the plane. Adjacent planes are shifted in such a way that each
particle sits in correspondence to the center of a triangle of the previous and
following planes. (d) Values of y such that each patch can be involved in at
most four interactions. The crystal is now formed by interconnected planes,
with a square arrangement of the particles in the plane. Adjacent planes are
shifted in such a way that each particle sits in correspondence to the center
of a square of the previous and following planes.

in each direction by a half lattice constant, resulting in a
reduced energy of —4 per particle (i.e., eight bonded neigh-
bors). On decreasing y below xy=0.118, the region where
only three bonds per particle are possible ([\/5(1 +A/0)]!
<sin 00<[\5(1 +A/0)]") is entered and the crystal struc-
ture is made by interconnected planes of particles arranged in
a triangular lattice [see Fig. 3(c)]. For [\/Z(l +A/0) ]!
<sin 6y < [\V3(1+A/0)]! only two bonds per patch are pos-
sible and the system organizes into independent planes [see
Fig. 3(b)], this time turning a HS surface to their neighboring
planes. Particles in the plane are now arranged on a triangu-
lar lattice and each patch is able to bind only to two different
neighbors located in the same plane, resulting in a reduced
energy per particle of —2. When sin 6, becomes smaller than
the value [2(1+A/0)]™" (corresponding to xy=0.0572), the
one-bond-per-patch condition is reached and the system can
form only isolated chains [see Fig. 3(a)]. In this limit, the
system is expected to behave as the two single-bond-per-
patch model.”

C. Structural information

We turn our attention next to structural information,
where the advantages of a reliable integral equation approach
become evident. One has to keep in mind that Gibbs en-
semble and GCMC simulations are particularly painstaking,
due to the combined effect of the required low temperatures
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FIG. 4. Behavior of g(12) from the RHNC equation for different coverages
and two specific orientations of the patches: || configuration corresponding to
n;-A,==*1 (a) and X configuration corresponding to A, A,=0 (b). All
curves are for a state point with A=1.5, p*=0.7, and T"=1.0. Black and
green lines show the limiting cases of square-well (xy=1) and hard-sphere
(x=0) potentials, respectively. Other coverages are 0.9-0.1 for both the |l
and X configurations.

and the aggregation properties of the fluid (as detailed be-
low), so that many of the state points examined here require
several weeks of computer time. On the other hand, the
RHNC integral equation, while rather demanding from an
algorithmic point of view (see, e.g., Appendix A of Ref. 20)
is a rapidly convergent scheme yielding solutions on the or-
der of minutes, depending on the temperatures considered. A
more profound advantage stems from the fact that, within the
approximation defined by the RHNC closure, all possible
pair structural information is in fact exactly available, unlike
MC calculations where, though available in principle, their
statistics would be so limited as to make such calculations
impractical. Thus, only the pair correlation function g(12)
averaged over angle ¥;,({)) is computed. By symmetry, the
resulting pair function in this context depends only on r
=r, and cos #,=n;-M, and will be denoted here as
2(r,cos 6,,); see Appendix B in Ref. 20 for details.

Consider then the unaveraged pair correlation function
g(12)=¢g(r,w,,®,) from RHNC in an axial frame with £,
=Z. Two noteworthy configurations occur when (a) all four
patches lie along the same line [we denote this as the parallel
(I) configuration, with A;-A,= =1, the actual labeling of
each patch being unimportant] and when (b) patches on
sphere 2 lie on an axis perpendicular to those of sphere 1 [in
this case fi, -, =0, which we denote as the crossed (X) con-
figuration].

Figure 4 reports the results for the case N=1.5, p*=0.7,
and T°=1.0, which has been selected so that the fluid is
above the coexistence line for all considered coverages, with
configurations |l and X in the top and bottom panels respec-
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FIG. 5. Behavior of the averaged g(r,cos 6) for different coverages and two
specific orientations of the patches: |l configuration corresponding to i, -1i,
=*1 (a) and X configuration corresponding to fi,-f,=0 (b). All curves are
for a state point with A=1.5, p*=0.7, and 7°=1.0. Both RHNC and MC
results are depicted for y=0, 0.1, 0.4, 0.5, 0.6, 0.9, and 1.0.

tively. Values of coverages range from a full square-well po-
tential (y=1) to a hard-sphere potential (xy=0).

As coverage decreases, the contact value r=0" of the ||
configuration has the unusual behavior of first a slight in-
crease from xy=1 to y=0.5, followed by a more marked in-
crease starting at y=0.4 up to the very small coverage y
=0.1 limit which eventually backtracks to roughly the same
value as at y=0.4 in the hard-sphere limit. At the opposite
side of the well, r=(\o)~, an even more erratic behavior is
observed, with an increase in the range 0.7<y <1, then a
decrease for 0.3<x<0.6, a new increase down to x=0.1,
and a final sudden decrease to the hard sphere value y=0. A
somewhat similar feature occurs in the X configuration
where within the entire well region o*=<r=(\o)~ one ob-
serves a sudden decrease from y=1 to xy=0.9 and a more
gradual increase until reaching the highest value for the HS
case. It is worth noting that in the X configuration there is no
discontinuous jump at r=Ao for any value y<<1. The reason
for this has already been addressed in Ref. 20 for the one-
patch case. Outside the first shell, there is a very weak de-
pendence on the coverage, with a slight shift in the location
of the second peak from a value of r=2.250 at the SW y
=1 to a value of r=1.80 for lower y.

We compare RHNC integral equation results with MC
simulations in Fig. 5. As noted above, only the averaged pair
function g(r,cos 6,,) can be compared and this is done in the
figure for different values of the coverage y at the same state
point (T*=1.0, p*=0.7) and for the same || and X configu-
rations considered earlier. The good overall performance of
RHNC in representing MC results is apparent as both contact
values at the well edges and the jump discontinuities are very
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well reproduced. It is instructive to contrast these results
with those of Fig. 4, as many of the abrupt changes appear-
ing in the actual pair correlation function are smoothed out
by the orientational average carried out here. For instance,
the characteristic jump at r=Ao of the || configuration (top
panel) progressively decreases as coverage is reduced and
disappears in the hard-sphere limit. Conversely, the jump is
present also in the X configuration (bottom panel) unlike the
corresponding case of the full g(12). In addition, the strong
increase in the || configuration for low coverages is not
present in this figure; as remarked earlier, this level of detail
in g(12) is one of the main advantages of an integral equa-
tion approach.

An additional useful quantity to consider, in view of its
direct experimental access through scattering experiments,22
is the structure factor, which will be denoted Sgo(k) within
our theoretical framework.”’*"*® This is also strongly re-
lated, via Hankel transforms, to the radial distribution func-
tion gooo(r), which is g(12) averaged over all orientations w,
and w, of the patches and of the relative angular position ().
Note that ggo(r) is also the simplest rotational invariant (see
Ref. 21 and Appendix B).

The structure factor and the radial distribution function
are reported in Fig. 6 for two representative values of cover-
age, ¥=0.8 and x=0.2, corresponding to almost fully attrac-
tive and almost fully repulsive limits. These values have
been selected at the same state point previously considered
(T"=1.0, p*=0.7) as having a very different behavior within
the first shell o=r=M\o. This high-density result is also con-
trasted with a low-density state point p*=0.1 at the same
temperature, a value which, in the temperature-density plane,
lies symmetrically with respect to the coexistence curves in
the single fluid phase for all coverages (see Fig. 2).

A few features are worth noting. For density p*=0.7
there is a significant coverage dependence, where the contact
value gggo(o) for x=0.2 coverage is larger than that for the
corresponding xy=0.8 case and, conversely, the jump present
at the other extreme No~ is much smaller in the former than
in the latter case. A similar feature also occurs for the low-
density state point p*=0.1. This results from an angular av-
erage of the results given in Fig. 4. Likewise, there is a
marked difference in the behavior of the structure factor
Sooo(k) for the high-density case p“=0.7, both in the height
of the first peak [related to the gyy(o*) value] and of the
secondary peaks [related to the behaviors of ggo(r) in the
o<r<\o region and of the gyy(Ao™) discontinuity]. Simi-
larly, in the low-density branch p*=0.1, the large Syn0(0)
value for the y=0.8 coverage case is signaling the approach
to a spinodal instability which is clearly not present in the
corresponding y=0.2 coverage.

One natural interpretation of the above results is the pro-
gressive rearrangement of the distribution within the first
shell upon varying both the coverage and the density. To
support this view, we consider the angular distribution within
the first shell in the next subsection.

D. Angular distribution

The nonmonotonic dependence of g(12) in terms of the
distance r/ o for decreasing coverage x, as illustrated in Fig.
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FIG. 6. Behavior of the structure factor Sy (k) [(a) and (c)] and the radial distribution function gu(r) [(b) and (d)] for coverages x=0.8 and x=0.2,
respectively. Here 7°=1.0 and N\=1.5 as before, while densities are p*=0.7 and p*=0.1.

4, is rather intriguing and requires an explanation. A similar,
albeit different, feature occurs even in the one-patch case, as
shown in Ref. 20. We tackled this in two ways, illustrated in
the following.

All previous representations of g(12) have been depicted
in the molecular axial frame, where A,-Fj,=1, so that
patches on sphere 1 are parallel to the vector r, joining
sphere 1 with sphere 2. This is clearly preventing an under-
standing of the angular distribution of the patches around a
given sphere 1, that is, as a function of ¥,({2).

This is however a needless restriction, as one can start
from the expression for g(12) in a general (laboratory) frame
and study the dependence on the angle () for fixed patch
directions i; and n,. In Figs. 4-6, we notice that the main
dependence on coverage y stems from the region within the
well, c=r=N\o; it suffices therefore to investigate the aver-
age () dependence by integrating over the radial variable r
within this region. We further note that there is azimuthal
symmetry with respect to the ¢ variable, so that we can focus
on the 6 dependence. The details of the analysis are reported
in Appendix A, where it is shown that the relevant quantity is
g(#, 6,), which is a function of the angle 6 (polar dependence
of ,(€2)) and of the polar angle 6, of the patches on particle
2, given that the patches on particle 1 lie along the Z axis. We
report comparative calculations for both low (p*=0.1) and
high (p*=0.7) density at identical temperature 7°=1.0 at two
representative coverages, y=0.8, representing a case with al-
most all attraction, and y=0.2, as representative of an almost
hard-sphere case. These are the same conditions considered
in Fig. 6; the results are reported in Fig. 7. Let us consider
first the high-density, p*=0.7, situation as depicted in the two
left panels for y=0.8 (a) and xy=0.2 (c). Here, the xy=0.8

case yields a very well-defined pattern with a periodically
modulated distribution of the patches in symmetrical fashion
as indicated by the trimodal distribution as a function of the
relative positional angle 6, so that 0,7/2,7 are almost
equally represented. (Note that 6#=0,7 are necessarily
equivalent due to the up-down symmetry of the two-patch
distribution.) The two interstitial minima are a consequence
of the reduced valency—the corresponding fully symmetri-
cal result under this condition would be a flat distribution
around the value 1.66 in between the two maxima and
minima—so this slightly favors perpendicular orientation of
the patches along the forward (or backward) direction and
parallel orientation along the transversal direction. Under
low coverage (x=0.2) conditions, on the other hand, there is
clear evidence of a parallel orientation of the patches along
the forward (or backward) direction, the opposite being true
for a perpendicular orientation of the patches. This confirms
the tendency to filament formations previously alluded to.
The situation is even more evident at low density, p*=0.1, as
shown in the right two panels (b) and (d).

E. Coefficients of rotational invariants

Additional insights on the angular correlations of patch
distributions can be obtained by considering other coeffi-
cients hh2!(r)= glll2l(r)—5lllzlq000 of the rotational invariants
/12!(r) as defined in Eqs. (A1) and (A2); they have proven
to be of invaluable help in discriminating between parallel
and antiparallel configurations occurring in different models
such as dipolar hard spheres“s’46 and Heisenberg spin
fluids.”” Some relevant properties of these coefficients are
also listed in Appendix B, where we display explicit expres-
sions for the first few coefficients.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



174110-9 Patch size and number for patchy colloids
5 [ " T T T T T T T T T T T T T T ]
r @ 2P case x=0.8 ]
4} P =0.70 {
~.3f QD ]
D
1%

L e

'
'

[=]

w

(=}

(=]

w

Co
2P case x=0.2
0 =0.70

2.5

©o ¢

cos 0

J. Chem. Phys. 132, 174110 (2010)

®) 2P case x=0.8
p'=0.10

0 | PR |
-1 -0.5 0 0.5 1
cos 0
37 ‘d)‘ T T L
F ( 2p case %x=0.2 O
[ =0.10 -efm
25k % P % ]
s 2
s [
S

cos 0

FIG. 7. Angular distributions g(6, 6,) as functions of cos @ for two different orientations of the patches on sphere 2, given that sphere 1 is fixed with patches
along the Z axis. Results are reported for two different coverages, y=0.8 [(a) and (b)] and x=0.2 [(c) and (d)], and two different densities, p*=0.7 [(a) and
(c)] and p*=0.1 [(b) and (d)], at the same temperature T*=1.0. Again, the square-well width was set to N=1.5. The colored arrows are cartoons of the
orientations of sphere 2 patches, corresponding to 6,=0, /2. Note that these are the same state points considered in Fig. 6.

In the two-patch case, we note that all coefficients with
I, or [, odd vanish, so we depict the first nonvanishing coef-
ficients h?2°(r), h*?2(r), h°%(r)=h>(r) in Fig. 8 for the same
state points as before. Note that the leftmost two curves, (a)
and (c), correspond to density p*=0.7, temperature 7"=1.0,
coverages x=0.8 (a) and x=0.2 (c), and are plotted on the
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same scale. While qualitative trends are similar, the two
cases have significantly different behavior. Within a given
coverage h*?°(r) and h***(r) are almost coincident, with posi-
tive correlation in the well region o <r<\r, whereas h"?%(r)
has decreasing positive correlation in the same region and
negative correlation for r>A\o. Numerical values, on the
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FIG. 8. Plot of rotational invariants #*2°(r), h°**(r), and h***(r) as functions of r/o. Results are reported for two different coverages, y=0.8 [(a) and (b)] and
x=0.2 [(c) and (d)], and two different densities, p*=0.7 [(a) and (c)] and p*=0.1 [(b) and (d)], at the same temperature 7°=1.0 and square-well width \

=1.5. Again, these are the same state points considered in Figs. 6 and 7.
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FIG. 9. Comparison between the critical parameters observed for the one-
patch case (from Ref. 48) and the two-patch case (this work).

other hand, differ among each other, with small values for
h**(r) and h***(r) in the high coverage case x=0.8 and sig-
nificantly higher values in the low coverage limit y=0.2.

Likewise, for the low-density state point p*=0.1, T*
=1.0, right-hand-side plots (b) and (d) can be unambiguously
discriminated between high (b) and low (d) coverages. We
shall return to this point in the comparison with the one-
patch results, where the physical meaning of these coeffi-
cients will be discussed.

V. COMPARISON WITH ONE-PATCH RESULTS
A. Phase diagram

Figure 9 shows the critical parameters for the case of
particles with one and two patches, both reported as a func-
tion of the total coverage. Here only MC results are reported
in view of their precision and reliability. The y=1 limit cor-
responds to the SW case and coincides for both models. An
analogous figure, for the case of adhesive patchy spheres (the
limit of the present model for vanishing ranges), has been
reported in Ref. 17 within a simplified integral equation
scheme.

With respect to the adhesive limit, the range of cover-
ages which can be explored numerically is significantly
wider (for both one-patch and two-patch cases). In the case
of two patches, crystallization pre-empts the possibility of
exploring the smaller values. In the one-patch case, the pro-

J. Chem. Phys. 132, 174110 (2010)

cess of micelle formation, also observed experimentally,49
suppresses the phase-separation process28 at small y values.

The critical parameters decrease on decreasing x for
both one-patch and two-patch models. The behavior of T.
can be explained on the basis of a progressive reduction in
the attractive surface. The decrease in the critical density
becomes significantly pronounced only for the smallest y
values and can be attributed to the lower local density re-
quested for extensive bonding. Such behavior is analogous to
the suppression of the critical density observed when the
particle valence decreases.'™ In the X region where it is
possible to evaluate the critical parameters, 7. and p,. for the
two-patch case are always larger than the corresponding one-
patch values, a trend which can be tentatively rationalized on
the basis of the ability to form a larger number of contacts
and higher local bonded densities for the case in which both
poles of the particles can interact attractively with their
neighbors. No evidence of a crossing between the two geom-
etries is observed. Such a crossing has been predicted by a
theoretical approach based on a virial expansion up to third
order in density and appropriate closures of the direct corre-
lation function.'’

It is worth emphasizing that the above dependence on
the number of patches, at a given coverage, provides clear
evidence of the impossibility of rationalizing the change in
the critical line on the basis of a trivial decrease in the at-
tractive strength of interactions due to the reduction in cov-
erage, as alluded to in Sec. IV A.

For the sake of completeness, we also report RHNC in-
tegral equation results for the most relevant thermodynamic
quantities, as a function of the coverage y. These are shown
in Table II for the same high-density state, p*=0.7 at T*
=1.0, considered above for structural information. Here we
present the reduced internal energy per particle and the re-
duced excess free energy per particle, U/Ne and BF.,/N,
respectively, the reduced chemical potential SBu, the com-
pressibility factor BP/p, and the inverse compressibility
B(P/dp)s. These results may be compared with those of
Table IV in Ref. 20 listing the same quantities for the one-
patch counterpart. (We ignore the tiny difference in densities
between the two calculated states.) The last two columns

TABLE II. Values of reduced internal and excess free energies, chemical potential, pressure, and inverse
compressibility as a function of the coverage y for a fixed state point, p*=0.7, and 7°=1.0. The last two
columns report the reference HS diameter o, (in units of o) and the average coordination number z. Expected

errors are in the last digits.

X U/Ne BFo /N Bu BP/p B(OP/dp)r oyl o z
1.0 —5.46 —2.56 —3.28 0.64 10.33 1.031 10.92
0.9 —4.88 —1.81 —1.79 1.37 11.26 1.026 9.76
0.8 —4.10 —0.98 —0.10 2.24 12.39 1.020 8.20
0.7 —3.25 —0.19 1.53 3.08 13.54 1.014 6.50
0.6 —2.49 0.49 2.88 3.75 14.48 1.010 5.00
0.5 —1.88 1.05 3.94 4.25 15.21 1.007 3.76
0.4 —1.26 1.61 5.00 4.74 15.95 1.005 2.51
0.3 —0.80 2.00 5.75 5.10 16.51 1.003 1.60
0.2 —0.39 2.33 6.39 542 17.00 1.001 0.79
0.1 —0.11 2.54 6.79 5.62 17.31 1.000 0.23
0.0 0.00 2.61 6.95 5.69 17.43 1.000 0.00
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FIG. 10. Angular distribution g(6, 6,) for the one-patch model as a function of cos 6 for three different orientations of the patch on sphere 2, given that sphere
1 is fixed with patch along the Z axis. This is the one-patch counterpart of Fig. 7. Results are reported for two different coverages, y=0.8 [(a) and (b)] and
x=0.2 [(c) and (d)], and two different densities, p*=0.7 [(a) and (c)], and p*=0.1 [(b) and (d)], at the same temperature 7°=1.0 and square-well width \
=1.5. The colored arrows are cartoons of the orientations of the sphere 2 patch, corresponding to 6,=0, 7/2, and .

give the reference HS diameter o, stemming from the varia-
tional RHNC scheme (see Ref. 20 for details) and the aver-
age coordination number within the wells z, whose one-patch
counterparts are included in Tables IV and V of Ref. 20,
respectively. Note that 7 here is systematically larger than in
the one-patch case, in qualitative agreement with the MC
results of Fig. 9.

B. Angular distribution and coefficients of rotational
invariants

Within the RHNC integral approach, the analysis of the
angular distribution of patches within the first shell given in
Sec. IV D revealed that the cylindrical symmetry of a pair of
patches (2P case) on each particle was very effective in driv-
ing the system to morphologically different configurations in
the low (20%) and high (80%) coverage limits, as illustrated
in Fig. 7. It is natural to expect a very different situation in
the single-patch case (1P case). This is indeed the case as
further elaborated below.

For the single patch with y=0.2 coverage [Fig. 10, bot-
tom panels (c) and (d)] parallel patches (6,=0) are more
likely in the perpendicular direction (8= /2 or cos 6=0),
whereas antiparallel patches (6,=7) are more likely in the
forward direction (cos §=1). The case of perpendicular
patches (6,=1/2) is conversely more or less equally distrib-
uted along the whole angular region 0= #= . There is no
qualitative difference between the situation of high (p*
=0.7) and low (p*=0.1) densities as shown by the contrast
between the bottom left (c) and right (d) panels. Note that the
result significantly contrasts with the corresponding results
of the two-patches case depicted in Fig. 7. Consider now the

opposite situation of very large coverage (y=0.8) [Fig.
10(a)] where there is a single well-defined peak for antipar-
allel orientations (6,=1r) in the backward direction (cos 6
~—1). Again, this markedly differs from the two-patch case
[Fig. 7, top left panel (a)], where there is a triple peak for
aligned patches (6,=0, ) in the forward (cos 6=~ 1), perpen-
dicular (cos 8=0), and backward (cos §=—1) orientations.
This is a dense state point. Under diluted conditions, p*
=0.1, we find a qualitatively similar behavior as in the dense
case, with antiparallel alignment in the forward direction
(which cannot be physically distinguished from the back-
ward one). Clearly the predominant antiparallel alignment is
reflecting the tendency to miscellization rather than polymer-
ization which is built into the single patch symmetry.

It is also interesting to contrast the coefficients of rota-
tional invariants for the one-patch case with those obtained
in the two-patch counterpart in Fig. 7. At variance with the
two-patch case, here all coefficients are nonvanishing so that
we consider the first nonvanishing instances, that is R10(p),
h"2(r), and h**(r), which are particularly useful as giving
the projections over the important invariants.”

We evaluated these coefficients for the same state points
considered in the two-patch case in Fig. 11 for both dense or
diluted conditions and small or large coverages. In contrast
with the two-patch case, here the effect of coverage appears
to be less significant, as can be inferred by inspection of the
dense case p*=0.7 [left panels (a) and (c)]. For the 1''%(r)
case, the projection coefficient along the ferroelectric invari-
ant A(12) in Appendix B, we find a negative correlation
within the well both for x=0.8 [top left panel (a)] and y
=0.8 [bottom left panel (c)], as expected from the tendency
to form antiparallel alignments. Likewise, the projection
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FIG. 11. Plot of rotational invariants 4''%(r), h'*(r), and h**’(r) for the one-patch model as functions of /. Results are reported for two different coverages,
x=0.8 [(a) and (b)] and x=0.2 [(c) and (d)], and two different densities, p*=0.7 [(a) and (c)] and p*=0.1 [(b) and (d)], at the same temperature 7°=1.0 and
square-well width N=1.5. Again, these are the same state points considered in Fig. 8.

h''2(r) along the dipolar invariant D(i,,R,,F},) is found to
be negative and numerically similar to 4''%(r) at both cover-
ages, again indicating negative correlation to dipolar align-
ment. The only positive correlation is found for the #?2%(r)
component, which does not distinguish between up and
down symmetry, in qualitative agreement with the two-patch
analog.

This situation is replicated in the diluted case [right two
panels (b) and (d)] with different numerical values, thus in-
dicating that these correlations are signatures of robust ori-
entational trends induced by the particular one-side symme-
try of the single-patch potential.

VI. CONCLUSIONS AND OUTLOOK

We performed a detailed study of a fluid whose particles
interact via a two-patch Kern-Frenkel potential that at-
tributes a negative square-well energy whenever any two
patches on the spheres are within a solid angle associated
with a predefined coverage and within a given distance given
by the well width, and a simple hard-sphere repulsion other-
wise. This model can be reckoned as a paradigm of a unit
system with incompatible elements (e.g., hydrophobic and
hydrophilic) that can self-assemble into different complex
superstructures depending on the parameters of the original
unit (e.g., coverage). We exploited state-of-the-art numerical
simulations (standard Metropolis, Gibbs ensemble, and
GCMC) coupled with RHNC integral equation theory fol-
lowing the approach outlined in previous work on a single
patch.20 On comparing RHNC integral equation with numeri-
cal simulations, we find the former to be quantitatively pre-
dictive in a large region of coverage, even close to the gas-
liquid transition critical region, over a range of coverage

which is significantly larger than the single patch counter-
part. The reason for this is attributed to the fact that RHNC
uses the approximated hard-sphere bridge function, which
retains spherical information, as a unique approximation
throughout the entire calculation, a feature which works bet-
ter for the more symmetric two-patch case than the highly
asymmetric one-patch Kern—Frenkel potential.

Having assessed the reliability of the RHNC integral-
equation approach, we fully exploited its capabilities in pro-
viding detailed angular information that is typically inacces-
sible to MC simulations, as already discussed in Ref. 20.
This has been done in two ways. First, by computing the
orientational distribution probability of parallel and perpen-
dicular alignment of patches within a spherical shell in the
region o<r<Ao. This methodology is able to account for
the erratic coverage dependence of the pair correlation func-
tion g(12) by clearly discriminating between small and large
coverages at all densities. The same approach also enlightens
the characteristic symmetries of the patch distributions when
the two-patch case result is contrasted with the one-patch
analog. Second, by computing the rotational-invariant coef-
ficients that are the projections of g(12) over rotational in-
variants. Again, this can discriminate between small and
large coverages (at all densities) and single and double
patches.

Our Monte Carlo results extend those originally obtained
by Kern and Frenkel'® for the two-patch case and can be
contrasted with those of the corresponding single-patch
counterpalrt20 and those obtained when the radial part of the
potential is of the Baxter type.17 The RHNC calculation pre-
sented here, along with the corresponding calculation carried
out in our previous paper,20 together constitute the first at-
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tempt to apply a well-defined integral equation theory to
such highly anisotropic potentials having sharp angular
modulation.

An important outcome of our calculations is the clarifi-
cation of the combined effect that size and distribution of the
patches have on the gas-liquid coexistence lines and critical
parameters. The reduction in the bonding surface clearly de-
creases the critical temperature, an effect which can be re-
lated to the decrease in the bonding energy of the system.
More interestingly, it also shows a suppression of the critical
density, which can be interpreted along the same lines used
in interpreting the valence dependence in patchy
colloids.™ Indeed, the maximally bonded structures re-
quire lower and lower local densities on decreasing y. Inter-
estingly, while in the single-bond-per-patch condition the
evolution of the critical parameters on decreasing valence
can be followed down to the limit where clustering prevents
phase separation,28 in the model studied here crystallization
pre-empts the observation of the liquid-gas separation for y
<0.3. Crystallization is here much more effective due to the
analogy between the local fully bonded configuration and the
crystal structure. By contrast, crystallization is never ob-
served for the one-patch case, where it has been shown that
the lowest energy configuration is reached instead via the
process of formation of large aggregates (micelles and
vesicles) or via the formation of lamellar phases.28 This dif-
ference highlights the important coupling between the orien-
tational part of the potential and the possibility of forming
extended fully bonded structures. Our results indicate that,
for a given coverage, in the two-patch case both the critical
temperature and density are slightly higher then their corre-
sponding one-patch counterparts, thus indicating that an in-
crease in the valence favors the gas-liquid transition, in
agreement with previous findings.

A final important consequence of our study concerns the
limit of very small coverages that is particularly interesting.
Indeed, it is possible to tune the structure of the system and
control the topology of its ordered arrangement. By doing
this we observed a progression from the case where chains
are stable (in the one-bond-per-patch limit) to the case where
independent planes are found, evolving—for slightly larger x
values—into an ordered three-dimensional crystalline struc-
ture. Each of these ordered structures is observed in a re-
stricted range of y values. This possibility of fine tuning the
morphology by controlling the patterning of the particle sur-
faces may offer an interesting possibility for specific self-
assembling structures.

An additional perspective of our work should be
stressed. Several studies (see, e.g., Ref. 51 and references
therein) exploited spherically symmetric potentials to mimic
effective protein-protein interactions, especially in connec-
tion with protein crystallization.52 This is clearly unrealistic
for the majority of proteins where the distribution of hydro-
phobic surface groups is significantly irregular, a feature that
can be captured, at the simplest level of description, by the
model studied here. The specific location of the coexistence
lines, such as those considered in the present study, have
important consequences in the study of pathogenic events for
sickle cell anemia® and other human diseases.”*
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APPENDIX A: ANGULAR PROPERTIES OF g(12) IN A
GENERAL FRAME

The expansion in spherical harmonics Y;,,(w) of g(12) in
an arbitrary space frame reads™

] L1+l
g12)=dm X > g(nhib)y(ww,Q),  (AD
11,15=0 I=|1,~1,)|
where we introduced the rotational invariants’'
+1 +ly

P w0, N)= X X CUyblimymym, +my)

my==ly my=—I,

X Yllml(wl)lemz(wZ) Y;mﬁmz(ﬂ) . (AZ)

Note that g(r;1,1,]) coincides with g'12/(r) up to a normaliza-
tion constant (see Appendix B).

We are free to set the origin of the coordinate frame at
the center of particle 1 and choose its orientation so that Z
=n; without loss of generality. We first note that

211+1>“2
4ar

(A3)

Yl]in1(01=0’¢1)=< 0, 0-

my
Clearly, the orientation of the x and y axes is then irrelevant,
so we may integrate out the angles ¢, and ¢; this leads to the

average (g(12)>¢24,, where we note that

<Y12m2( 027 QDZ»(,DZ

20+ 1 (L —my)! |2
. l)m{z_ﬂ]
dqr (12 +m2)!
1 2
XP[ m (COS 02)_f d(Pzeimz(Pz
272 271- 0

(A4)

_(25+1
“\ 4

172
) PZZ(COS 62) 5m20,

and similarly for (Y’ ;‘mz(ﬁ, ®)),- Here the Pjy(x)=P/(x) are the

usual Legendre polynomials. We have then from Egs. (Al)
and (A2) that

(8(12)p o= 2 g(r;libol)

Iyd,1

XC(lllzl;OOO)Plz(cos 0,)P;(cos 6).

[(211 + DL+ 1DQ2I+1) |12
4

(A5)

We are interested in the angular behavior within the well,
o=r=N\o, so we finally integrate over the radial variable r
and define

1 Ao
gLl = mja drg(r;lil1), (A6)
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1
A=-1o

\o
7(6.6) = f dr(g(12)), . (A7)

The result is then a function of the polar coordinate 6 of ¥,
and the polar orientation of the second patch, 6,; that is,

{(211 + 1)L+ 1)(Q2I+1) 12
4

g(6,60))= > gL
l, ,12,1

X C(lllzl;OOO)Plz(cos 0,)P;(cos 6), (A8)

given that the z axis is aligned with the patches of particle 1.

APPENDIX B: COEFFICIENTS h"%/(r) OF
ROTATIONAL INVARIANTS

In this appendix we consider the coefficients g"12(r) of
rotational invariants that have proven to be particularly use-
ful in discriminating among different orientational behaviors.
In numerical simulations they are defined as follows (see,
e.g., Ref. 45):

ghll(r) = > 5(r—’ij)A11]21(12)>, (B1)

N47Tpr2<#j

where the A'1”2/(12) are rotational invariants. Explicit expres-
sions for the first few are™

A(12) =1,

A'9(12) =3A(12) = 34, - A,
(B2)
AM2(12) = 3D(12) = 3[3(i; - F1o) (i, - F1) — 1 - y],

A?0(12) = 2E(12) = 3[3(id; - i,)> - 1].

Other expressions can be found in Ref. 56.

We note that the first expression in Egs. (B2) yields
¢"(r), which coincides with the radial distribution function
2000(r)=(8(r, @1, @)}, Here we have A%(r)=g®(r)-1;
in all other cases h'1"2/(r)=g"12!(r). Some of the coefficients
have particularly interesting physical interpretations: the
term h'1%(r) is the coefficient of ferroelectric correlation, the
term h''’(r) the coefficient of dipolar correlation, the term
h?9(r) the coefficient of nematic correlation, and so on.

It might be useful to show how these general expressions
(typically computed in Monte Carlo simulations) connect
with the corresponding ones typically evaluated in an inte-
gral equation approach. We do this for the representative
case of g!''?(r), the others being similar.

We define g'2!(r) = g(r;1,1,1), where the proportionality
constant is obtained through a particular prescription to be
further elaborated below. The projections g(r;1;1,1) of g(12)
on the rotational invariants /12/(w,w,()) as defined by Eq.
(A1) are related to the values g; ; ,(r) in the axial frame by*!

4

172
g(r;lll2l) = (m) % C(ZIIZZ;mn_/lO)glllzm(r)s (B3)

where m=-m.
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Consider as a representative example the quantity
A''2(12) defined in Egs. (B2) and note that in Eq. (B1) one
has

N
> 8r-ry)D(ij)
i#j=1
Npr?
4ar

= f dwldwzg(r,wl,wz)D(IZ). (B4)

Upon choosing the molecular frame (Z=¥,,), one finds
D(12) =2 cos 6, cos 6, —sin 6, sin 6, cos(¢; — ¢,)
4
= ?[2Y10(¢01)Y10(w2) +Y 1 (0)Y (o)

+Y_(0)Y(w)], (BS)

where the Y, (w) are spherical harmonics.
The expansion (A1) in a molecular frame reduces to

21

g(rop,0) =412 81,1 (MY 1 (@)Y (@) (B6)

Lilym

Using Egs. (B5) and (B6), and the orthogonality relations for
. .2l :
spherical harmonics,” one finds easily that

1
(47)2[ dwdw,g(r,w;w,)D(12)
1
= 5[281100) +g11(r) + g1 (0], (B7)

so that, combining with 4!''?(r) given in Egs. (B1) and (B2)
and using the symmetry property g,_;(r)=g;,:(r), one finds

hllz(")=gllo(r)+g111(")- (B8)

We can work out the first few projections by using tabu-
lated values for the Clebsch—-Gordan coefficients
C(lil,l;mm0). Using the symmetry properties of the
Clebsch-Gordan coefficients and the g; ; ,,, (r), one finds

£(r;000) = (47)ggoo(r),

g(r;110) = = (471/3) [ g10(r) = 2g 111 ()],

g(r;112) = (87/15) [ gy10(r) + g111(1)],

8(r:220) = (471/5)"*[8220(r) = 28201 (r) + 28220(r)],
8(r;222) = = (87/35) [ g2(r) = £221(r) = 28222(r)],
2(r;224) = (87/35) [ 20(r) + 8om1 () + 582221 ],
g(r;011) = (471/3)"?gg;0(r) = — g(r; 101),

£(r;022) = (471/5)gpo(r) = g(r;202),

—
g(r;121) = = (87/15)"[g120(r) = V3g121(r)]
=-g(r;211),
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2
g(r;123) = (127/35)"2| g150(r) + \nglﬂ(r)

=-g(r;213). (B9)

As anticipated above, we now fix the proportionality con-
stant in g'"2!(r) < g(r;1,1,1) by dividing out the leading con-
stants above so that the coefficient of g; ;(r) is unity, e.g.,
87(r) = g220(r) = 28201 (r) +2g0:0(r).
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