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We introduce a microscopic model for particles with dissimilar patches which displays an unconven-

tional ‘‘pinched’’ phase diagram, similar to the one predicted by Tlusty and Safran in the context of

dipolar fluids [Science 290, 1328 (2000)]. The model—based on two types of patch interactions, which

account, respectively, for chaining and branching of the self-assembled networks—is studied both

numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense

phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference

system for a deep understanding of the competition between condensation and self-assembly into

equilibrium-polymer chains.
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Almost a decade ago, Tlusty and Safran (TS) [1]
predicted a topological phase separation in dipolar fluids
which differs from the standard liquid-vapor phase transi-
tion of isotropically aggregating particles. Indeed, in
dipolar fluids, the strong anisotropic interaction favors a
nose-to-tail alignment of the dipoles and the formation on
cooling of long equilibrium-polymer chains, generating a
competition between self-assembly and condensation
which appears to suppress the standard gas-liquid phase
separation [2–7]. The TS mean-field theory assumes that
stable chains are formed and focuses on the thermally
excited defects of the infinite chain ground state rather
than on the monomers themselves. These topological de-
fects are identified as chain ends and junctions; their
concentration is temperature T and density � dependent.
Under specific choices of the energy cost of forming a
defect, a first-order phase transition is expected to take
place at low T and �, arising from the competition between
a low-density phase rich in chain ends, and a high-density
phase rich in junctions. The theory predicts an unusually
low critical T and � behavior, and its distinctive feature is a
’’pinched’’ phase diagram, i.e., a coexistence region in
which the coexistence � of the dense phase decreases
and approaches the � of the less-dense phase, both vanish-
ing as the T is decreased. Interestingly, the specular case, in
which the gas density approaches the liquid density on
cooling, has been recently reported [8].

Besides magnetic fluids, the TS theory was shown [9] to
have physical implications for broad classes of systems
such as gels, microemulsions and wormlike micelles. It is
thus of utmost importance to design a simple (and ame-
nable to analytic studies) microscopic model in which it is
possible to tune the energy scales for chaining and for
branching and which offers us the possibility to validate

the topological phase transition proposed by TS and to
shed light on the competition between chaining and
branching. One of the most promising routes to address
the problem is the study of patchy particles, which not only
can model angular-dependent, limited valence interactions
[10], but can also be designed, via dissimilar patches
[11,12], to independently control chaining and branching.
Indeed, theoretical investigations [11,12] based on the
parameter-freeWertheim thermodynamic perturbation the-
ory [13,14] suggest that, under specific choices of the
energy scale of the interactions, the free energy of particles
with dissimilar patches can be related to the TS expression,
providing a liquid-state based alternative interpretation of
the TS theory.
In this Letter we introduce a microscopic patchy-particle

model specifically designed to incorporate the physics of
chaining and branching [11,12,15] and which can be ac-
curately studied numerically as well as theoretically. The
model consists of hard-sphere particles of diameter �
(hereby taken as the unit of length), whose surface is
decorated by patches of two different types, A and B.
Two patches of type A are placed on the poles and account
for the aggregation of particles in linear chains, f patches
of type B are equally spaced along the equator. Different
particles interact via AA bonds (with an energy scale �AA)
or via AB bonds (with an energy scale �AB). The interaction
between patches is described by the Kern-Frenkel potential
[16,17]. In the following, T is measured in units of �AA=kB
(where kB is the Boltzmann constant and � � 1=kBT) and
number density in units of ��3. In this model, the number
of junctions nj (in the TS language) is equivalent to the

number of AB bonds present in the system. Similarly, the
number of ends ne is provided by the number of patches of
type A which are not bonded. A schematic representation
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of the model can be seen in Fig. 1. The same figure
schematically explains also the mapping between the
bond energy scale of the present model and the energy
scale of the topological defects introduced by TS. The
energy cost �AA of breaking a chain is twice the energy
cost of a chain end (since a break produces two chain ends),
while forming a junction costs �j � �AA=2� �AB.

The emergence of pinching is a consequence of the
change in the ground state of the system when �j changes

sign. In the usual liquid vapor coexistence (as obtained in
[15] for the present model with �j < 0), as T decreases, the

low density (vapor) phase approaches an ideal gas, and the
high density (liquid) approaches the disordered ground
state. As a result, the differences in internal energy (�U),
entropy (�S), and volume (�V) between the vapor and the
liquid phases increase when T decreases. In the present
model, for �AB < �AA=2 or �j > 0, the ground state is

composed of unbranched structures (infinite AA chains or
rings). Since there is no phase separation between an ideal
gas and a fluid of chains (e.g., [10]), the coexisting phases
arise from an interplay of the thermal excitations (or
defects) of the ground state fluid of chains: a low �, high
energy phase rich in ends, and a high �, low energy phase
rich in junctions. As T is lowered, the number of defects
decreases, both phases approach the ground state, and thus
�U, �S, and �V ! 0. In this Letter, we investigate the
case of �AB ¼ 0:37�AA. To favor the formation of a suffi-
ciently large number of junctions we have placed f ¼ 9 B
patches, equally spaced over the particle equator.

The structural and thermodynamic properties of the
model are calculated by solving the first-order perturbation
theory of Wertheim and by numerical simulations.
Wertheim’s theory was developed in the context of asso-
ciating liquids and has proven a very powerful framework
for parameter-free calculations of the thermodynamic
properties of patchy models [10,18,19]. According to

the theory, the free energy can be written as a sum of
the reference hard-sphere free energy and a bonding
contribution

�Fb

N
¼ 2 logXA þ f logXB � XA � f

2
XB þ 1

2
ð2þ fÞ;

(1)

where XA and XB are, respectively, the fraction of sites A
and B which are not engaged in a bond. XA and XB can be
calculated through the law of mass action [12]

XA þ 2��AAX
2
A þ f��ABXAXB ¼ 1;

XB þ 2��ABXAXB ¼ 1; (2)

where� ¼ Nvs=V is the volume fraction, vs is the volume
of the sphere of diameter�, and the quantities��� (�,� ¼
A, B) are given by ��� ¼ 1=vs

R
gHSðrÞ½expð����Þ �

1�dr, where the integral involving the hard-sphere radial
distribution function gHSðrÞ [20] extends over the volume of
bonding [17].
To determine the phase behavior numerically we run

successive umbrella sampling Monte Carlo (MC) simula-
tions [21], which allows us to evaluate the full density
probability distribution Pð�Þ at fixed chemical potential
� and T. This method partitions the density region to be
explored in windows of �N particles. Each region is
sampled with grand-canonical simulations, with appropri-
ate boundary conditions [22], allowing for effective paral-
lelization. Sampling is very difficult specially at low T,
where the pinched phase separation is predicted to occur.
Indeed, at the lowest studied T, the probability of breaking
a AA bond becomes of the order of expð1=0:045Þ, thus
requiring�4� 109 MC attempts for successfully breaking
such bond. Any unbiased algorithm that generates trial
positions and orientations at random will therefore be
highly ineffective, either missing the formation of bonded
configurations, or getting trapped once a bonded configu-
ration is found. To overcome this problem we adapted the
aggregation-volume-bias MC algorithm [23] (AVBMC).
We first define the regions in space where bonding occurs
and then, for each randomly selected particle, we either
move a particle out of the bonding volume, or bring a
particle in the bonding volume, accepting the move with
the proper acceptance probability [23]. A MC step com-
prises GC insertion or removal moves, AVBMC moves,
and ordinary Metropolis translational and rotational moves
(the frequency of the three moves is, respectively,
1:500:500). At the two lowest investigated T, the length
of the chains of AA particles becomes comparable to the
simulation box size. To avoid spurious size effects, we
have rejected moves generating AA chains of infinite
length via periodic boundary conditions. Through a
finite-size analysis, we have checked that these configura-
tions have vanishing probability as the box side is in-
creased. To evaluate the coexistence � and the
corresponding Pð�Þ, implementing the equal area rule,

FIG. 1 (color online). Schematic representation of the patchy-
particle model (two A sites are placed on the poles and nine B
sites are placed along the equator), and of the energy cost of
forming topological defects. Starting from a linear chain con-
figuration (top), the figure displays the steps involved in the
formation of (a) two ends, and (b) one end and one junction.
From this, one can evaluate, in the TS language, the cost of
creating an end as �e � �AA=2 and the cost of forming a junction
as �j � ��AB þ �AA=2. In the online-color version the A and B

sites are colored in red and blue, respectively.
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we used histogram reweighting techniques [24]. The criti-
cal point is determined from both the energy and � histo-
grams of a nearby point, and then reweighting the
distributions to obtain the best possible fit to the universal
Ising distribution [25]. The calculated Pð�Þ at several
different T (these data have required in total more than
10 years of CPU time) are shown in Fig. 2, while infor-
mation on the coexistence � and system sizes are reported
in Table I. Interestingly, the position of the high-density
peak has an unconventional reentrant behavior when low-
ering T, starting to decrease below T ¼ 0:065. To our
knowledge, this is the first time that a pinched phase
diagram is directly observed.

The average densities of the two peaks of Pð�Þ provide
precise estimates of the two coexisting densities. It is then
possible to evaluate from data in Fig. 2 the full phase
diagram of the model, down to T ¼ 0:045. The res
ults are shown as symbols in Fig. 3, where the pinched
TS type of phase diagram can be fully appreciated. The
best estimates for the critical point are Tc ¼ 0:0744 and
�c ¼ 0:121. The small value of �c is characteristic of small
valence systems [10].

Along with the numerical results, Fig. 3 shows also the
theoretical coexistence line predicted with the Wertheim
theory. In agreement with previous studies of patchy mod-
els, Wertheim theory underestimates the � width of the
coexistence region (at fixed T), but it gives accurate esti-
mates of the T range where the coexistence is to be
expected and, more importantly, it predicts the correct
pinched behavior of the phase diagram.
Figure 3 also displays snapshots of the simulated system

at different state points along the coexistence line, high-
lighting the presence of ends and junctions. In the high-
density branch, the number of junctions exceeds the
number of ends. By lowering T, the number of junctions
decreases, leading to a progressive chaining. The visual
inspection is quantified in Fig. 4 where the fraction of ends
ne [panel (a)] and junctions nj [panel (b)] is reported along

the numerically determined coexistence line, evaluated
both from simulations and Wertheim’s theory.
Simulations and theoretical results are in good agreement.
The figure also shows that the high-density branch is rich in
junctions, while the low-density branch is rich in chain
ends, in agreement with the TS predictions. Simulations of
strongly dipolar fluids [26] also found that, for the same T,
higher (lower) densities contain more junctions (ends) than
ends (junctions). At the critical point, the number of junc-
tions is larger than the number of ends.
It is important to note that all the ingredients of the

pinched phase diagram are well described by the first-order
perturbation theory of Wertheim, and indeed the free en-
ergy of the TS topological phase transition can be derived
as the limit of strong association within the Wertheim
theory [12]. This reveals that the mechanism which drives
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FIG. 2 (color online). Density histogram at coexistence for
several T values. The average � of the less-dense phase is
monotonically decreasing on cooling, while the average � of
the dense phase has a nonmonotonic behavior with T. The
histogram at the critical point (T ¼ 0:0738) is depicted as a
continuous line.

TABLE I. Values of the excess chemical potential �ex, of the
two coexisting densities �low and �high, and of the simulated box

size L. Successive umbrella sampling calculations have been
performed with �N ¼ 5.

T �ex �low �high L

0.0738 �0:4221 0.059 0.175 18

0.0730 �0:4266 0.048 0.187 14

0.0700 �0:4443 0.025 0.210 14

0.0650 �0:4755 0.0091 0.214 14

0.0600 �0:5086 0.0038 0.202 14

0.0550 �0:5436 0.0019 0.175 14

0.0500 �0:5805 0.0012 0.137 14

0.0450 �0:6190 0.0006 0.098 18

FIG. 3 (color online). Phase diagram of the model in the T-�
plane. Symbols refer to simulation data, while the line describes
the result of Wertheim’s theory. Circles are coexistence points,
while the open square is the estimated critical point. The pictures
show the structure of a slab (of width 5� for the high-density
phase, and L for the low-density phase) of the system for
selected points along the numerical coexistence line. The dashed
line separates coexisting low and high-density configurations at
T ¼ 0:045. In the online-color version chain ends are colored
blue and junction particles are colored red.
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the phase transition is the condensation of particles in a
percolated network, as in the ordinary gas-liquid phase
separation, and that the same mechanism can equivalently
be described in terms of thermodynamics of the lowest
energy chain defects (ends and junctions). Interestingly,
both approaches predict a pinched phase diagram only for a
limited range of values of the actual energy cost of forming
a junction. The present model will thus display (or not) a
critical point, depending on the energy scales for chaining
and branching, and so is potentially useful for studying
systems where phase separation and aggregation compete.
This is further facilitated by the availability of a closed-
form expression for the free energy from thermodynamic
perturbation theory. In addition it might be a first step
towards elucidating whether the simplest model dipolar
fluid—the dipolar hard-sphere fluid—actually has a critical
point, for which there is no conclusive evidence [26,27].
However, true dipolar fluids display additional complica-
tions relating to the long range of their interactions, which
are poorly understood at present.

Finally, we note that the progressive decrease of the
density difference of the coexisting phases may be related
to the results of [10], providing an example of temperature
controlled effective valence.
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