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a b s t r a c t

In the last years a significant progress in the understanding of the aggregation properties of patchy col-
loidal particles and of the process of formation of equilibrium gels has taken place. We discuss here how
the number of patches (a variable which can be experimentally controlled in current synthesis proce-
dures) affects the equilibrium phase diagram and the relative stability against decomposition into two
phases with different colloidal concentration, the analog of the gas–liquid phase separation in simple liq-
uids. For small number of patches, the liquid phase exists as an equilibrium state down to small temper-
atures, giving rise to empty liquids and equilibrium gels. Finally, we discuss the connection between
irreversible and reversible gelation in this class of colloidal systems proposing a conceptual link between
elapsed time during the aggregation kinetics and temperature in thermodynamic equilibrium.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A significant change in colloidal science is taking place these
days. Colloids are turning aspherical, asymmetric, patterned [1].
Chemists and material scientists are starting to gain control on the
shapes [2] and on the local properties of the colloidal particles. Hard
cubes, tetrahedra, cones, rods as well as composed shapes of nano or
microscopic size have made their appearance in the labs, and will
hopefully become available in bulk quantities in the near future. Pat-
terning of the surface properties of these particles [3–5] is adding ex-
tra directions to the anisotropy axis space envisioned by Glotzer and
Solomon [1]. Patches on the particle surface can be functionalized
with specific molecules [6,7] (including DNA single strands) [8,9]
to create hydrophobic or hydrophilic areas, providing specificity to
the particle–particle interaction [10,11]. These new particles can
be used as building blocks for nano and microscale self-assembly
of new materials [12–14] and share conceptual similarities with
supramolecular chemistry [15–18], where thermoreversibile or
self-healing materials can be tuned at the molecular level: specific
examples include thermoreversible rubber [19], oligo(amido-
amine)s hydrogels [20] and self-healing liposome gels [21]. In the
same way as sterically stabilized colloids have become the ideal
experimental model system for investigating the behavior of hard-
spheres and simple liquids, the new physico-chemical techniques
will soon make available to the community colloidal analogs of
several molecular systems.

An interesting class of patchy particles is that of colloids which,
thanks to the selectivity of the patch–patch interaction, have a
fixed valence (defined as the maximum number of bonded nearest
neighbors) [3–5]. These colloidal particles, which mimic the corre-
sponding atomic and molecular systems, are the subject of this
contribution.

The study of simple models of fixed valence colloidal particles
has indeed recently been the focus of several investigations
[22–27], encompassing both the thermodynamic and dynamic col-
lective behavior of the system, as well as its out-of-equilibrium
dynamics. In this process, novel concepts like the so-called empty
liquids (i.e. liquids composed by very long chains of particles inter-
connected by rare branching points [25], resulting in a very small
overall density), the equilibrium gels, the analogy between colloi-
dal gels and network forming liquids, the connection between
chemical and physical gels, have been proposed and developed.
In this article we will attempt to review these concepts and possi-
ble experimental studies which may provide a realization of these
behaviors.

The numerical studies of simple and well defined models pre-
sented here can also be relevant to the ongoing debate on the ther-
modynamic signatures associated to the percolation transition in
association polymer systems. Indeed, contradicting views have
been expressed on the order of the sol–gel transition, arising from
different approximations for the infinite cluster structure [28–30].

2. Phase behavior of limited valence particles

Spherical particles, in the presence of isotropic attractive inter-
actions, usually show a gas–liquid critical point, characterized by a
critical density qc and a critical temperature Tc. In colloidal
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solutions, in which attraction is often induced by depletion forces,
such critical point is metastable, i.e. located in the region where the
thermodynamic stable phase is a crystal. Below Tc the solution
becomes cloudy and it separates into two phases, one rich in colloi-
dal particles (the liquid phase) and one poor in colloidal particles
(the gas phase). In the liquid phase, particles tend to minimize
their energy, which is equivalent to maximize the number of near-
est neighbor particles, i.e. particles sitting close to the minimum of
the potential well. Since interactions are usually short-ranged (i.e.
the interaction range is smaller than the particle size), this is equiv-
alent to maximize the number of contacts. As a consequence, each
particle tends to be surrounded by about twelve neighbors (a num-
ber fixed by geometrical constraints) and the coexisting liquid is a
rather dense state. At low T (i.e. such that kBT is smaller than the
interaction energy strength �, with kB the Boltzmann constant) this
dense state behaves as a glass, in which particle motion is ham-
pered both by the crowding and by the difficulty to overcome
the bonding potential energy. In this sense, a dynamic arrest at
low densities can be obtained only through a phase separation pro-
cess [31].

Recently, it has been shown that the reduction of the valence
provides an effective method to reduce the density of the liquid
phase at coexistence [22,25,26]. Indeed, when valence is small
there is no energetic gain in generating dense configurations, since
already with a small number of neighbors all possible bonds are
satisfied. Hence, on progressively decreasing the valence one ex-
pects that qc also decreases. At coexistence, along the liquid
branch, the number of contacts is of the order of the valence and
hence, the number of neighbors is smaller than in the isotropic
case. As a result, the density of the coexisting liquid is significantly
smaller than the one found in the case of spherically interacting
particles and crowding can not be responsible any longer for the
slowing down of the dynamics upon cooling. Dynamic arrest is
not driven by packing but only by the presence of a (percolating)
network of bonded particles which provides elasticity to the sys-
tem. The network restructures itself on a timescale fixed by the
bond lifetime. When the lifetime of the bond exceeds the experi-
mental observation time, the system becomes a non-ergodic state
in which particles occupy only a minor fraction of the total volume,
i.e. a gel [32]. The main idea is thus that small valence is an essen-
tial condition for generating arrested states at low T (or equiva-
lently strong interaction strengths) which are not arrested by
packing, as in molecular and colloidal glasses, but by the formation
of an extensive and percolating network of contacts which occu-
pies only a small fraction of the sample volume. The finite energy
of the interaction guarantees that the network structure is not per-
manently frozen (as in chemical gelation) but it can restructure
itself, on a time scale which can be tuned at will externally. In addi-
tion, for valences approaching two, the coexisting liquid density
vanishes. Such low-density liquid states have been named empty
liquids [25].

2.1. Wertheim theory

A formal evaluation of the gas–liquid coexistence curve for the
case of particles with fixed valence has been provided by the
Wertheim theory [33,34]. The free-energy calculation has been
developed for a model of patchy particles interacting under the
assumption of single-bond per patch. This condition guarantees
that the valence is encoded in the chemistry of the particle. The
single-bond per patch condition can be realized either by creating
chemically-different regions of the particle surface (the patches)
sufficiently small to shield the attraction from other neighbors
when two patches are in contact, or by functionalizing the particle
with groups which act under a lock-and-key paradigm (as in the
case of complementary single strand DNA sequences). In the

Wertheim approach, the free energy is written as sum of a refer-
ence free energy (usually the hard-sphere free-energy) and a bond-
ing contribution Fbond, which is expressed as a function of the bond
probability pb (the fraction of bonds over the total number of pos-
sible bonds) and the particle valence, or functionality, f. The latter
can be treated as a continuous variable, by attributing to it the
meaning of average valence of the system [25] (see also Ref.
[35]). Values of f between two and three can be realized for exam-
ple in binary mixtures of bi and three-functional particles with dif-
ferent relative concentrations [25]. In the formulation of Ref. [36],
the bond free energy density of a system of f-functional particles is

bFbond

V
¼ q lnð1� pbÞ

f þ 1
2
qfpb ð1Þ

where b = 1/kBT, q = N/V is the particle number density. The T and q
dependence of pb is given by

pb

ð1� pbÞ
2 ¼ qe�bFb ð2Þ

where F b is the patch–patch bond free-energy, i.e. the free energy
difference between the bonded and the unbonded state for a pair
of particles. The Wertheim theory provides an expression for F b

which depends only on the potential parameters and on the refer-
ence fluid radial distribution function. The interesting point to
notice is that, independently of the model (which only enters in
F b), all systems with the same pb and the same f will be character-
ized by the same free energy. This suggests that f discriminates
between different class of particles, or equivalently, that particles
with the same f will be represented by the same phase diagram in
the pb–q plane [37]. Solving the Wertheim theory for particles of
different valence, one indeed finds that both Tc and qc decrease with
decreasing f, both approaching zero when f ? 2, as shown in Fig. 1.
A similar trend characterizes the density of the coexisting liquid.

In essence, the Wertheim theory confirms that for small values
of f there is a wide window of densities, delimited on one side by
the coexisting liquid density and on the other side by packing
(excluded volume) constraints, where it is possible to cool the sys-
tem down to very small T without encountering any phase separa-
tion. Since excluded volume (caging) does not prevent the system
to explore configurational space, particles can easily explore differ-
ent bonding patterns and find the equilibrium state on a time-scale
essentially controlled by the lifetime of the bonds. The sigmoidal
shape of pb vs T, resulting from Eq. (2), suggests that almost fully
bonded states (pb ? 1) can be accessed by the system at finite T.

Fig. 1. Valence dependence of the gas–liquid coexistence region for particles with
limited valence (whose value is written inside the curves). For spherically
interacting particles, the gas–liquid coexistence is very wide in densities, since in
the liquid state particles are surrounded by about twelve neighbors. For particles
with limited valence, the liquid branch of the coexistence is located at a density
significantly smaller than the isotropic case, approaching zero as the valence
approaches two.
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Numerical simulations confirm that the ground state can be sam-
pled, in finite size systems, at finite temperatures (see discussion
in connection to Fig. 4 in the following). Thus a fully bonded net-
work of flickering bonds can be sampled in equilibrium when the
thermal energy is significantly smaller than the bond energy. Fur-
ther cooling these almost fully bonded states will generate techni-
cally out-of-equilibrium states, but the aging dynamics will be
essentially missing since structural and energetic properties of
the aging systems are already close to the final equilibrium ones.
This (low-density) quasi-equilibrium state of soft matter has been
named equilibrium gel to stress the fact that despite the system is
trapped in one of its multiple local minima, defined by the bonding
pattern, no change of the gel mechanical and thermal properties
with time will take place. The name equilibrium gel also stresses
the difference with the most common colloidal gels, resulting from
a gas–liquid phase-separation process interrupted by dynamical ar-
rest or by diffusion limited cluster aggregation [38–40], as found in
spherically isotropic potentials [32]. In the latter case, the gel state
can not be approached continuously from the liquid state since
gelation requires the crossing of the first-order gas–liquid transi-
tion line [31].

2.2. Connecting Wertheim theory to gelation through the Flory–
Stockmayer (FS) theory

An interesting connection between the thermodynamic
Wertheim theory and gelation is provided by the formal equiva-
lence between Eq. (1) and the free energy of a system of non-inter-
acting clusters distributed according to the Flory–Stockmayer (FS)
theory [41,42], developed to model aggregation in chemical gela-
tion. The FS theory provides expressions for the number density
of clusters of n particles, qn, as a function of the bond probability
(the extent of the reaction in the FS language). For functionality f

qn ¼ qð1� pbÞ
f ½pbð1� pbÞ

f�2�n�1xn

xn ¼
f ðfn� nÞ!

ðfn� 2nþ 2Þ!n!

ð3Þ

where q �
P

nnqn ¼ N=V is the total number density. This connec-
tion arises from the fact that Wertheim theory describes the system
as a collection of loop-less independent clusters, the same approx-
imation at the heart of the FS theory. As a result, the Wertheim the-
ory can be complemented with the FS expression

pp
b ¼

1
f � 1

: ð4Þ

to evaluate the location in the (T,q) plane of the percolation line pp
b.

The percolation line separates the fluid phase into two regions, one
composed by a fluid of polydisperse loop-less finite size clusters and
one where the system is still fluid, but an infinite spanning cluster
of reversible bonds is present. On entering deeper and deeper in the
percolating region, the fraction of particles belonging to the infinite
cluster progressively increases, and the average size of the remain-
ing finite-size clusters approaches one (indicating that the system is
composed by an infinite cluster in equilibrium with a very low den-
sity gas of monomers). Loops of bonds in the infinite cluster are pre-
dicted to occur and accounted for by the Flory theory. This is known
as the Flory post-gel assumption.

A summary of the specific features which characterize the phase
diagram of small-valence patchy particles, as predicted by the Wert-
heim and FS theory for the one-component case f = 3, are reported in
Fig. 2. The gas–liquid phase separation is confined to packing frac-
tions / ¼ p

6 qr3, where r is the diameter of the particles, smaller
than 20%. The percolation line separates the cluster-fluid phase
from the percolating one. The gas–liquid phase separation takes
place in the percolating region. Close to the critical point, the two

coexisting phases are both percolating. For smaller T, only the liquid
phase retains a percolating character. When the bond lifetime ex-
ceeds the observation time, the particle network formed by the sys-
tem becomes persistent, and hence an equilibrium gel is found. The
ideal gel transition thus would take place only at T ? 0, but an oper-
ative definition can be made in terms of a finite lifetime, as usually
done for the glass transition. A reasonable guide of the gel line can
be made by drawing an iso-pb line at sufficiently large pb value
[43,44].

2.3. Comparison with simulations

A significant effort has been made in the last years to compare
predictions of the Wertheim theory with accurate numerical simu-
lations [25,26,45–47] to assess the quality of the theory and its
predictive power. In all cases, simulations confirm the Wertheim
predictions to a good extent. Bonding properties (i.e. the T and /
dependence of pb) are rather accurate, and the agreement increases
significantly when the valence is reduced below three. Indeed, when
f ? 2, the typical liquid densities are rather small, excluded volume
effects are properly captured by the reference system. In addition,
when f ? 2, at low T the system is composed by rather long chains
of bi-functional particles connecting the small concentration of
multi-functional species which act as branching points in the sys-
tem, as shown in Fig. 3. If the chains of bi-functional particles are
characterized by a finite persistence length, then the probability
of forming closed bond loops in three-dimensions is negligible
and the Wertheim (or FS) theory becomes essentially exact. Only
very close to percolation, i.e. when the average cluster size diverges,
differences between the FS and the asymptotic percolation cluster
size distributions can be observed. Different is the two-dimensional
case where for entropic reasons bond loops are frequent and a
strong disagreement between the Wertheim (or FS) theory and sim-
ulation data is observed [48].

As a comparison between theory and simulations we report in
Fig. 4a the T and / dependence of pb for the case of a binary mix-
ture of particles with two and three patches, resulting in an aver-
age valence f = 2.055. For this model the equilibrium phase
diagram is found to be topologically similar to the theoretical
one reported in Fig. 2, but with an extremely small critical density
(qc � 0.005) [49]. In addition, for this low average valence, the
number of bond loops is always negligible, so that Wertheim and
FS approaches work very accurately up to very large values of pb.

0 0.1 0.2 0.3 0.4 0.5

packing fraction

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

k B
T

/ε

equilibrium gel

cluster fluid phase 

percolating fluid 

phase-separation

gas-liquid

p
b
(ρ,T)=(f-1)

-1
=0.5

p
b
(ρ,T)=0.99

Fig. 2. Phase diagram, calculated for a model with f = 3 patches using the Wertheim
and FS theories. Different loci are identified: the percolation line pp

bðq; TÞ ¼ 0:5,
separating a fluid of clusters from a percolating fluid, the gas–liquid coexistence, the
line where 99% of the bonds are formed. At low T, in the stable liquid region, the
liquid behaves as an equilibrium gel.

248 F. Sciortino, E. Zaccarelli / Current Opinion in Solid State and Materials Science 15 (2011) 246–253



Author's personal copy

Indeed, the peculiarity of such low-valence system is that percola-
tion is only found for pp

b ¼ 0:9256. The cluster size distribution
(Fig. 4b), both in the cluster phase (before percolation) and in the
percolating region, are also very well predicted by FS theory. It is
important to notice that pb ? 1 both in theory and simulations at
small T. This confirms that a reversible fully bonded network can
spontaneously self-assemble in a density region where the system
is always stable against gas–liquid decomposition. Hence, any fur-
ther cooling of the system (for example to T� 0.05 in Fig. 4a) will
only be accompanied by an increase of the bond lifetime, with no
structural adjustments. The system is already very close to its
ground state energy, since all possible bonds are formed. It is the
stability of the structure and the possibility of controlling the net-
work lifetime externally via a temperature variation which is the
essence of the equilibrium gel state.

Finally, we note that in this class of models, we do not observe
any detectable thermodynamic transition at the percolation line,
despite the presence of cyclical structures in the infinite cluster.

3. Time and temperature: connecting physical and chemical gels

Studies reviewed in the previous section provide a clean
theoretical approach for modeling the equilibrium properties of
low-valence patchy particles. An interesting question concerns

the relationship between physical (equilibrium or reversible) and
chemical (irreversible) gels, when these are made by particles with
similar values of functionality. In the chemical gel case bonding is
irreversible and the final structure of the system is the result of a
kinetic pathway, which depends in a fine way on the size depen-
dence of the cluster diffusion coefficient as well as on the free-en-
ergy barriers that need to be overcome in order to form an
(irreversible) bond. Chemical gelation can be thought of as an
aggregation process in which the binding energy scale � is much
larger than the thermal energy kBT and hence chemical gelation
can be modeled, to a first approximation, as a temperature jump
from high T (monomeric state) down to T = 0. We can then ask
how different is the structure of an irreversible gel state, which
is obtained at the end of the aging process through an instanta-
neous quench at low T, from the corresponding (i.e. same f) equilib-
rium gel structure. This question was raised in the context of ideal
polymer chains (with f = 2) which can associate through sticky
ends [50]. In Ref. [50] the number of loops was shown to be negli-
gible at large system sizes, and the equilibrium polymerization
process was found to be well described by mean-field theory. In
addition, it was also found that the diffusion-limited case could
be incorporated in the theoretical treatment, providing that a
density-dependent association constant (used as a fit parameter)
is used to rescale the data on the equilibrium case.

The relation between chemical and physical gelation question
could not be previously investigated for colloidal gels made by
spherically interacting particles, due to the fact that gelation is al-
ways mediated by the gas–liquid phase separation. Indeed, in the
isotropic potential case, the kinetics of the phase separation pro-
cess dictates (via the spinodal and coarsening processes) the struc-
ture of the arrested system [51–53]. The diffusion limited cluster
aggregation case (the extreme limit of a deep quench inside the
unstable region) is illuminating in this respect, since it generates
a fractal gel structure which results from the diffusion-limited or
reaction-limited aggregation processes [38], a structure which is
never encountered under equilibrium conditions.

On the contrary, for low valence systems phase separation is
limited to small densities and hence it is quite interesting to dis-
cuss the possible analogies and differences between chemical
and equilibrium gels in the absence of phase separation and to con-
nect the knowledge of the equilibrium phase diagram with the
irreversible gelation process. Since, as discussed previously, pb is
the scaling variable for the thermodynamics, the connection can
be sought of as a relation between time in irreversible aggregation
to (inverse) T in equilibrium clustering [54,55]. Indeed, during an
irreversible aggregation process, pb grows with time while for
equilibrium gelation pb grows with decreasing T. While irreversible
polymerization proceeds, the system visits in time a sequence of

Fig. 3. Snapshot of a patchy particle system composed of 5670 bi-functional
particles (the blue chain forming spheres) and 330 three-functional particles (the
red branching points) in a (empty) liquid state. Here kBT/� = 0.05, / � pqr3/
6 = 0.005 and pb = 0.97 (see Ref. [49] for details). The average valence is f = 2.055.
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states (from the starting monomer solution to the extensively
bonded gel) which may bear some relation to the states that are
explored in equilibrium upon decreasing T, as schematically shown
in Fig. 5.

3.1. Bond probability as the link between irreversible and reversible
gelation

A hint for the possible existence of a link between chemical and
physical gels is already contained in the equivalence between the
equilibrium cluster size distributions predicted by the Wertheim
theory and by the gelation theory of FS. Such equivalence was for-
mally anticipated by the early theoretical work of Stockmayer [42].
Indeed, Stockmayer showed that the distribution qn of clusters of
finite size n can be calculated following equilibrium statistical
mechanics prescriptions, i.e., maximizing the entropy with the
constraint of a fixed number of bonds. While this is not extensively
discussed, the fact the FS distributions are the result of a maximum
entropy constraint, suggests that these theoretical predictions may
apply only to cases in which kinetic contributions are irrelevant.
Indeed, Stockmayer also showed [42] that the very same distribu-
tions result from solving the Smoluchowski’s kinetic equations
when the rate of bond breaking is zero (irreversible aggregation)
and the rate of bond formation is slaved to the chemical processes,
i.e. depends only on the number of unreacted sites and not on the
diffusion coefficient of the relative clusters.

Van Dongen and Ernst [56] extended the work of Stockmayer to
the case in which also bond-breaking processes are possible. They
were able to show that the solution of the Smoluchowski equations
for the evolution of the cluster size distribution qn(t), with initial
conditions qn(0) = qdn1 (i.e., only monomers at time t = 0) and the
Flory post-gel assumption, is

qnðtÞ ¼ q½1� pbðtÞ�
f ½pbðtÞ½1� pbðtÞ�

f�2�n�1xn: ð5Þ

Remarkably, Eq. (5) is formally identical to that obtained by
Stockmayer in equilibrium (Eq. (3)), with the only replacement of
the equilibrium bond probability peq � pb(T) with the time-

dependent bond probability pb(t), evolving during the aggregation
process. Now the latter satisfies the equation,

dpb

d tksite
break

� � ¼ �pb 1� qf
ksite

bond

ksite
break

ð1� pbÞ
2

pb

" #
ð6Þ

where ksite
bond and ksite

break are respectively the bond-forming and bond-
breaking rates of a generic site. The latter equation can be solved
with pb(0) = 0 and pb(1) = peq, providing an analytical expression
of p(t) during a reversible aggregation process,

pbðtÞ ¼ peq
1� e�Ct

1� p2
eqe�Ct

ð7Þ

with C ¼ qfksite
bond 1� p2

eq

� �
=peq. In the limit of absence of breaking

processes (ksite
break ! 0 or equivalently peq ? 1), when irreversible

aggregation takes place, the cluster size distributions qn(t) are still
expressed in terms of pb(t) by the same Eq. (5), while the time evo-
lution of pb(t) with the initial condition pb(0) = 0 reduces to

pbðtÞ ¼
fqksite

bondt

1þ fqksite
bondt

: ð8Þ

We stress that the analytic solution for qn(t) (Eq. (5)) is obtained
under two assumptions: (i) the bond-formation contribution to the
rate is dominant as compared to that of diffusion, and (ii) that par-
ticles with functionality f form loop-less clusters. These two crucial
assumptions are highly non trivial and somehow depend both on
the microscopic dynamics and on the bonding volume. Indeed, only
when the bonding volume is small (i.e. for short-range patch–patch
interaction), the probability that two patches on distinct clusters
will encounter, in the absence of any activation barrier, is small.
Hence, the time requested to form a bond between two nearby clus-
ters can be significantly longer than the time requested for two
clusters of any size to diffuse distances comparable to the inter-
cluster distances and the size dependence of the diffusion coeffi-
cient can be neglected in the calculation of the rate constants.

The remarkable result of this approach is that, under these con-
ditions, the evolution of the cluster size distribution qn(t) (Eq. (5))
is entirely contained in pb(t)—therefore, the cluster size distribu-
tion only depends on the value of the bond probability. Hence,
independently of the specific kinetic pathway, at each time t dur-
ing the aggregation process, when pb(t) progressively increases
from zero to the final equilibrium value peq following Eq. (7), or
even under an irreversible aggregation process expressed by Eq.
(8), the cluster size distribution is predicted to be formally identi-
cal to that observed in a system in equilibrium at a certain T such
that its bond probability (at equilibrium) assumes the value pb(t).

This amounts to formally establish a link between chemical and
physical gelation, under the assumptions discussed above, through
the following relation for the bond probability (see Fig. 5),

pbðtÞ ¼ pbðTÞ: ð9Þ

In this way the aging dynamics can be interpreted as a sequence of
equilibrium states and the progression of time can be properly seen
as a progressive thermalization of the system toward equilibrium.
This is valid both when the system is quenched down to a T where
equilibration is still possible and, most importantly, also in the case
of a quench performed to such a low T that breaking processes
become impossible and irreversible aggregation takes place at all
times.

3.2. Simulation results

Numerical simulations of patchy particles have confirmed these
theoretical predictions for models where bond loops are scarce. In
particular, the aging behavior of the same binary mixture (with
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low average valence f = 2.055), whose equilibrium behavior was
illustrated in Fig. 4, has been examined and compared to the equi-
librium results. Indeed, the large value of the percolation threshold
for the bond probability makes it an ideal candidate to test the
theoretical predictions for the aging behavior. As previously al-
luded, the two theoretical assumptions at the heart of the theory re-
main valid during the whole aggregation process, up to the
emergence of a fully bonded state. The aggregation kinetics has
been followed via Brownian Dynamics simulations [57], in which
the system is quenched from a high T down to very low ones for a
series of densities (always outside the phase coexistence region).
The evolution in time of pb(t) following several quenches has been
compared to the Van Dongen and Ernst predictions (Eqs. (7) and
(8)) both for reversible and irreversible aggregation, and the
numerical results are found to be in very good agreement, as shown
in Fig. 6(left panel), using as the only fit parameter the value of
ksite

break.
Having established the functional form of pb(t), it is possible to

compare the system properties to the corresponding equilibrium
states, exploiting Eq. (9). Since qn(t) is only a function of pb(t), we
can indeed compare it at specific waiting times with the cluster
distribution of a system in equilibrium at a T corresponding to
the same value of pb. We find, as shown in Fig. 6(right panel), that
indeed the mapping in Eq. (9) is confirmed. Thus the knowledge of
pb(t) is sufficient to describe the full aggregation kinetics. Extend-
ing this concept to all static properties, like for example static
structure factors or radial distribution functions, the structure of
the system can also be predicted starting from the knowledge of
the same quantity at equilibrium, as shown in Ref. [57].

4. Discussion and perspectives

In this article we have discussed the equilibrium and out-of-
equilibrium behavior of patchy colloids, focusing on the case in
which particles can form a limited number of bonds with their
neighbors. We have shown that thermodynamic theories devel-
oped in the past to describe the behavior of associating liquids
can be applied to predict the phase behavior of this class of
systems, providing a clear reference frame for describing the sys-
tem stability against phase separation and the properties of the li-
quid phase. The key result of this studies is that in limited valence
systems phase-separation is confined in a very small region of den-
sities, leaving a large window of densities where the liquid can be
cooled to low T in an homogeneous state. Dynamics slow down
only due to the increase of the bond lifetime sb which takes place
on cooling, generating a network of bonded particles which can

support shear and propagate elastic perturbations for times smal-
ler than sb. In essence, small valence is a fundamental requisite to
generate stable equilibrium gels.

We have also discussed the possible existence of a connection
between physical and chemical gels for low-valence particles. This
is made possible by the fact that when valence is small, closed loops
of bonds are not very frequent and the fundamental assumptions of
both the Wertheim and the FS theories are satisfied. Indeed, under
the no-loop condition which can be realized by investigating sys-
tems in which the average valence is smaller than three or by add-
ing anisotropy in the particle shape in order to disfavor multiple
bond formation, theory is found to accurately describe the cluster
size distribution and the presence of an infinite cluster at all state
points, even beyond percolation [57].

The equivalence between the equilibrium Wertheim theory and
the FS description for loop-less aggregating systems establishes a
connection between equilibrium properties and the aggregation
kinetics, suggesting that the formation of a branched network pro-
ceeds via a sequence of equilibrium steps. This occurs even in the
deep quench limit where the system behaves as in an irreversible
(or chemical) gelation, but still it is found to visit, as time proceeds,
equilibrium states of lower and lower temperature. Under these
conditions, the equilibrium properties of ‘‘physical’’ gels in which
bond-loops can be neglected present strong analogies with the
evolution and final configurations of ‘‘chemical’’ gels.

It is important to discuss the reasons behind the possibility of
properly mapping equilibrium and aging properties, with the aim
of assessing the conditions of validity of such a mapping. Indeed,
the irreversible aggregation process of spherically interacting parti-
cles does not take place along a sequence of equilibrium steps, as
clearly revealed by the fractal structure of the aggregates resulting
from diffusion-limited or reaction-limited aggregation processes
[38]. Recently, it has been provided evidence that, for colloidal par-
ticles interacting via depletion interactions, the (reversible) aggre-
gation process is driven by a phase-separation [31] and the
structure of the system is not homogeneous. The mapping dis-
cussed in this article holds only in the limit of loop-less aggregating
clusters, and provided diffusion does not play a relevant role in the
rate constants, and hence small valence is a pre-requisite for this
mapping to hold. The reason for this, which has been investigated
in the context of equilibrium properties [49,45], can be found in
the different entropic cost of closing a loop of bonds, which
becomes larger and larger on increasing the length of the bifunc-
tional chains connecting the three-functional branching points. In
particular it is shown [45] that systems with small average func-
tionality have a negligible number of loops and fulfill rather
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precisely the mean-field predictions. For higher valence systems
the number of loops becomes non-negligible and deviations from
the mean-field results are observed.

The other important condition for the validity of the mapping is
the possibility of neglecting the diffusional component in the
aggregation and fragmentation rates, i.e. the so-called chemical
limit of the aggregation process [58]. Here the chemical limit is
set not by the presence of an activation energy for bonding (as in
the case of most aggregation processes where the barrier arises
from electrostatic repulsion) but again by an entropic barrier for
bonding, set by the difficulty in interacting with the right orienta-
tion to form a bond. For this to happen the range of the attraction
between patches must be small enough so that the time it takes
two colloids to diffuse and reach a bonding-compatible relative
distance is negligible as compared to the time requested to collide
with the correct orientation for bonding. In this case, the entropic
search of the correct orientation for bonding is controlling the
bonding rate constant.

The ideas discussed in this review are promising for the predic-
tion of the aggregation behavior of low-valence particles which
could become the building blocks of tomorrow functionalized
materials [1]. In addition to the simple spherical patchy particles
discussed in this work, a few other similar systems have been tested
in simulations against theory. In particular, extensive numerical
work has tried to connect the behavior of chemical gelation
observed in polymerizing systems to the concepts introduced for
patchy particles. Building on experimental studies of step-polymer-
ization of epoxy resins [59–61], a mixture of asymmetric ellipsoidal
particles, respectively with valence five and two (with average va-
lence 2.5), has been devised to study irreversible aggregation, as
well as the link to reversible one. In a sequence of works
[54,55,62], Corezzi et al. have shown that the theoretical framework
described in this review holds also for these types of systems even
beyond the percolation transition. However, given the fact that the
average valence is not so low (as compared to the small-valence
spherical colloid case addressed before) and consequently that
pp

b ’ 0:5, clear deviations are observed when the final state is exten-
sively bonded (pb J 0.8) [55]. Taking into account that for late
times a crossover from reaction-limited to a diffusion-limited
growth takes place in the irreversible aggregation process, it was
found that also the late-stage aggregation can be well described
[62] by a proper rescaling of the bond-forming rate constant.

Another interesting system that is suitable to be studied within
the theoretical framework reviewed here is that of DNA-coated
particles. These particles have recently received considerable
attention due to their prominent role as building blocks for nano
and microscale self-assembly [8,63] and to the control that can
be obtained experimentally [12–14]. In particular, a recent numer-
ical study [64] has focused on the aggregation kinetics of a mixture
of bi-functional and three-functional DNA-coated particles, with
the same average functionality (f = 2.055) of the binary mixture
of patchy particles discussed in the previous paragraphs (so that
the percolation threshold for the two models is obviously the
same). However, the bonding volume is very different for the
two cases, because in the DNA constructs each particle is decorated
with four DNA strands chosen to give complementary pairing be-
tween different arms. Nonetheless the comparison of the aging
behavior of the system with the theoretical predictions discussed
in Section 2 still provides an excellent agreement up to very large
values of pb as for the patchy spheres (although some adjustment
of the bond-forming rate constant was needed for short times
[64]).

These studies provide evidence that the proposed mapping
between equilibrium and aging properties in small valence systems
makes it possible to convert aging (curing) time with an effective
temperature and envisage the evolution of a chemical gel as a

progressive cooling of the corresponding physical model, i.e., as a
progressive path (Fig. 5) in the equilibrium phase diagram. Hence,
the concepts presented in this review can be in principle applied
to all those systems where the self-assembly of low-valence ele-
mentary units leads to branched structures and networks. In partic-
ular, these ideas can be of relevance in the field of supramolecular
chemistry [15–18] (e.g. thermoreversible or ‘‘self-healing’’ rubber
[19]), which models self-assembly of large molecules, again inter-
acting via strong directional forces, to produce materials with rele-
vance in technological and biomedical applications. Other
candidates for the applications of these ideas are gels whose visco-
elastic properties can be tuned at the molecular level, by changing
the number of bonding groups (i.e., in a certain sense, the valence)
such as recently shown for oligo(amidoamine)s hydrogels [20] and
self-healing liposome gels [21]. There is indeed a strong analogy,
with the only difference in the length scale of the building blocks,
between self-assembly of patchy colloids and supramolecular
chemistry.

The concept developed here can be relevant also to describe
self-assembly in magnetic nanoparticles, whose interactions are
mainly controlled by strong dipolar interactions. The preferred
dipolar orientation makes them suitable candidates for the forma-
tion of low-valence networks [65–68,46]. However, it is to bear in
mind that experimental studies in two-dimensional low-valence
systems might suffer from the presence of a large number of bond
loops, favored in low dimensions [69,48]. Similarly, patchy parti-
cles with extended patches (such as Janus particles for example
[70]) will also not be appropriate for these types of treatments,
due to the large number of bonded neighbors per patch. However,
the experimental control of the number and width of the patches
decorating colloidal particles appears to be nowadays possible
[71,72] so that the self-assembly of more elaborated Janus-like
particles (like the triblock Janus [71]) could be studied along the
same lines.

The existence of a time–temperature mapping can also be
exploited to describe the behavior of systems with less character-
ized effective interactions. Recently, the case of an anisotropic col-
loidal clay (Laponite) which is known to undergo a subtle aging
behavior [73] has been examined in these terms. The irreversible
aggregation process taking place in the experimental system has
been interpreted in the framework of a patchy disk model, con-
necting the theoretical equilibrium phase diagram with the exper-
imental observations of a low-density phase separation process
followed by the presence of an equilibrium gel state [74].

We finally note that an interesting case which has not been stud-
ied so far is that offered by the possibility that, during the formation
of an irreversible gel, the corresponding thermodynamic path
crosses the gas–liquid coexistence, resulting in an inhomogeneous
arrested structure. The stability and structural properties of the
final state of the chemical gels will be in this case connected to
the thermodynamic properties and the phase diagram of the corre-
sponding physical model. It is possible that the slow syneresis phe-
nomena which characterize some gel systems could be interpreted
as slow approach toward the equilibrium coexisting density. Lim-
ited-valence colloidal systems [4,5,71] can thus be excellent candi-
dates for testing the analogies between equilibrium and aging
properties and the connection between gel stability and colloidal
gas–liquid phase separation.
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