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We discuss the results of intensive Brownian dynamics simulations of a simple model of tetrahedral patchy
particles in the optimal network density region. This choice allows us to investigate the evolution of the structure
and of the dynamics in a wide range of temperatures without encountering any phase separation. The slowing
down of the dynamics in this model system is driven by the progressive bond formation and the increasing bond
lifetime. Although dynamical arrest is different from the glass case, where excluded volume interactions are
dominant, the decay of the self- and collective correlation functions of the resulting fluid bears similarities with
that observed in glassy systems.
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1. Introduction

Patchy colloidal particles [1–3] continue to be the
subject of intense investigation, both experimentally
and theoretically. There is indeed much expectation in
the outcome of recent efforts of creating colloidal
particles that interact via anisotropic potentials. The
challenge faced by physicists, chemical engineers and
material scientists is to organize these new geometries
into specific structures via self-assembly, the sponta-
neous organization of matter into desired arrange-
ments. The aim is to achieve – via the rational design of
elementary building blocks (i.e. the particles) –
predefined specific structures, ordered or disordered,
shifting from the top-down to the bottom-up
approach, in which effort is made in the direction of
controlling particle shape and patterning.

Theoretical and numerical studies of the phase
behavior of patchy colloidal particles have been very

rewarding. Quite unexpectedly, a very rich framework

for interpreting phenomena like thermoreversible gela-

tion, the competition between gelation and glass

transition or the competition between condensation

and polymerization [4] has been unraveled. New

concepts like empty liquids [5–7], equilibrium gels

[8,9], and unconventional gas–liquid phase diagrams

[10–12] have been introduced and have been very

fruitful in promoting further developments [13,14].

One of the unexpected connections concerns the

analogy between gelation in patchy colloids and glass

formation in atomic and molecular network-forming

systems [13]. Indeed, studying the role of the ‘valence’

M (defined here as the maximum number of possible

bonded nearest neighbors) it has been disclosed that

the packing fraction � of the liquid coexisting with the

gas decreases on decreasing M [5]. For the case of

hard-sphere colloids with four patches, � is of the order

of 30%. This implies that, for larger values of �,
gas–liquid phase separation is not encountered on

cooling. On progressively decreasing the temperature

T, the average lifetime of a patch–patch bond increases

and particles become arrested by being part of a

long-lived network of bonds. Energetic bonds thus

determine the slowing down of the dynamics and the

approach to a non-ergodic state, a dynamical arrest

that we call gelation [6,8,15,16]. Dynamical arrest can

thus be expected to be different from that character-

izing glassy states, where caging is controlled by

excluded volume interactions. Limited valence is cru-

cial for gelation, since only when valence is limited, is

this region of intermediate densities, where packing

does not play a major role, is accessible at low T. For

spherically interacting colloids, the gas–liquid phase

separation is much wider and the coexisting liquid

density is found at �� 0.6–0.7. Hence, if crystallization

is preempted, a liquid of spherically interacting parti-

cles can be brought to low T to form a glass without

phase separating only at very large densities.
In this article we investigate in detail the evolution

on cooling of the self- and collective dynamics of a
model for tetrahedral patchy colloids in the gel region
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at a fixed value of the density, in the so-called optimal
network density region. In this window of densities the
system is expected to be able to form an ideal (fully
connected) random tetrahedral network [17]. At lower
densities, gas–liquid phase separation takes place,
while at larger densities packing prevents the possibil-
ity of geometrically arranging all molecules with the
proper angular and distance constraints required to
form bonds. Despite the different nature of the
dynamical arrest process, driven by bonding rather
than by packing, the decay of the correlation functions
for this four-coordinated model resembles that
observed in glasses.

2. Model and numerical methods

We study a simple continuous model for tetrahedral
patchy particles by means of Brownian dynamics
simulations. A particle is modeled as a rigid body
defined by the position of its center of mass and by
M¼ 4 vectors indicating the locations of the four
patches [6]. The interaction potential between particles
1 and 2 is

Vð1, 2Þ ¼ VCMð1, 2Þ þ VPð1, 2Þ ð1Þ

where VCM is the potential acting between the centers
of mass of the two particles and VP is the interaction
between patches:

VCMð1, 2Þ ¼
1

r12

� �m

ð2Þ

VPð1, 2Þ ¼ �
XM
i¼1

XM
j¼1

� exp �
1

2

rij12
�

 !n" #
: ð3Þ

The large value m¼ 200 is chosen to approximate the
hard-sphere behavior, the quantity n¼ 10 makes the
exponential function resemble a square well, �¼ 0.12
guaranties that the single bond per patch condition is
satisfied and �¼ 1.001 fixes the absolute minimum at
unitary depth. The distance between the centers of
particles 1 and 2 is indicated as r12 while the distance
between patches on different particles is denoted by the
symbol rij12. Bond forces thus act on surface spots
allowing momenta which can induce particle rotations.

The parameters entering in the functional form
(Equations 2 and 3) have been chosen in such a way
that the resulting potential has a depth u0 ¼ �1 and it
resembles that resulting from respectively a hard
sphere and a square well potential, allowing greater
flexibility in the study of the dynamics of these systems
compared to step-wise potentials. Note that, while in
the Kern–Frenkel potential [18] the interaction range

and the angular width of the bond can be indepen-
dently controlled, in the present continuous potential
the patch–patch interaction depends only on the
patch–patch distance and hence the patch–patch
interaction range and angular width are coupled.

We perform Brownian dynamics simulations in the
NVT ensemble using 10,000 particles in a cubic box of
size L¼ 26 with periodic boundary conditions. In the
following, the energy unit is chosen to be the depth u0
of the potential, the length unit is chosen to be the
colloid diameter � and time is in units of �

ffiffiffiffiffiffiffiffiffiffiffi
m=u0
p

,
where m is the mass of the colloids. The Brownian
algorithm used in the simulations is described in the
appendix of Ref. [6]. Here we summarize its features.
A Velocity Verlet integrator with a time-step �t¼ 0.001
is used to integrate the equations of motion. To model
Brownian diffusion, we define a probability p for each
particle to undergo a random collision every N
time-steps. By tuning p it is possible to obtain the
desired free particle diffusion coefficient D0 using the
relation

D0 ¼
kBTN �t

m

1

p
�
1

2

� �
: ð4Þ

In simulation units the chosen translational bare
diffusion coefficient is DT

0 ¼ 0:01 and the correspond-
ing rotational diffusion coefficient is DR

0 ¼ 0:03 (so
that DR

0 =D
T
0 ¼ 3, as expected for non-slip particles).

These values fix pT and pR for each temperature.
The average time between two random collisions is

given by

Dt ¼
N �t

p
¼

kBTN �tþ 2mD0

2kBT
, ð5Þ

thus our simulations follow Newtonian dynamics for
t<Dt and Brownian dynamics after that time.

In order to equilibrate at the lowest temperatures
we implemented a version of the code that runs on
GPUs using CUDA [19]. The simulations were per-
formed on Tesla C2050 GPUs. While on this hardware
peak performances can be achieved only if single
precision is used, the numerical instability makes it
unfeasible to use float precision [20]. To overcome
these instabilities but still retain good performances we
use double precision for time integration and single
precision for force calculation [20,21]. While using full
double precision results in a two-fold performance loss,
using this mixed single-double precision results only in
a 10–15% decrease in performance.

The performances achieved on GPUs depend
heavily on interaction details (such as cut-off
distances), number of particles and density [20–23].
For the state points investigated in this work
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(N¼ 10,000, ��3 ¼ 0:57) we obtained a 30� speed-up
with respect to a Xeon E5620 (single core).

We have used up to 1010 MD steps for equilibration
and from 107 to 2 � 109 MD steps for data generation,
depending on the temperature.

In Brownian dynamics simulations particles are
subject to a random force which accounts for the
collisions between colloidal particles and the solvent.
Even if the random force has a zero mean, the position
of the center of mass of the system becomes a random
variable, again with zero mean. In standard simula-
tions the random motion of the center of mass (COM)
is negligible and the particle dynamics is weakly
affected by this random process. In the study of very
long simulations, such as those reported here (which
extend to more than 109 integration time-steps), the
motion of the center of mass can be quite substantial
and can produce artifacts in the evaluation of dynam-
ical quantities. For this reason, in all data presented in
this work the trajectories of the single particles have
been corrected to subtract the center of mass motion.
Care needs to be taken in the analysis of Brownian
dynamics trajectories in glassy systems, especially now
that the increased power of GPUs for scientific
application is opening the possibility of investigating
arrested states via lengthy simulations.

3. Results

3.1. Static properties

To properly frame the investigation of the dynamics,
we start by showing in Figure 1(a) the potential energy
per particle as a function of T. The energy has the
typical sigmoidal shape characteristic of bond interac-
tions, reminiscent of the two-state behavior of the
bonds (broken or formed). On cooling, the system
changes from a collection of isolated clusters to a
percolating network to an essentially fully bonded
configuration, with a few isolated monomers detaching
from the infinite cluster, as indicated by the cluster size
distribution, reported in Figure 1(b). Two particles are
considered connected, and hence belonging to the same
cluster, if their pair interaction energy is lower than
�0.5. Below T¼ 0.15, a large fraction of particles
belongs to the infinite cluster and at the lowest
investigated T more than 99% of the particles is in
the infinite cluster (see inset of Figure 1b). Hence, at
low T the system can be visualized as a percolating
network which incorporates most of the particles.

3.2. Bond Lifetime

The bond–bond autocorrelation function Cb(t),
defined as the probability that a bond existing at

t¼ 0 exists also at time t, provides a quantification of

the typical microscopic time, setting the scale for the

dynamics, separating the (short) time scale in which

the dynamics takes place at fixed bonding pattern from

the (long) time scale where the dynamics is intrinsically

connected to bond breaking events. Figure 2(a) shows

Cb(t) for all the investigated T, showing that more than

five orders of magnitude in bond lifetime are properly

explored. The decay of the correlation function can be

fitted with a stretched exponential function, e�ðt=�bÞ
	b ,

suggesting that the different local bonding environ-

ments have a role in the process of bond breaking.

From the fit, an average bond time can be calculated as

h�bi ¼
�b
	b

�ð 1	bÞ, where �(x) is the Gamma function. The

values of 	b are reported in the inset of Figure 2(a),

while the T dependence of �b and h�bi is shown in

Figure 2(b).
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Figure 1. (a) Potential energy per particle U as a function of
temperature (black circles). Also shown for comparison is the
potential energy per particle in a diamond crystal structure
(red squares). (b) Number of clusters n(s) of size s for
different temperatures for a system of 10,000 monomers. For
T< 0.15 the system always contains a percolating cluster
(disconnected points at s � 104). Inset: percentage of
particles that are in the infinite cluster (P1) as a
function of T. (Colour online).
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3.3. MSD and the diffusion coefficient

Figure 3(a) shows the mean square displacement
(MSD) for all the investigated T. Above and around
percolation, no plateau in the time dependence of the
MSD is observed. Indeed, close to T¼ 0.15, the
lifetime of the bonds is still very short and no
dynamical signatures of the presence of a transient
infinite cluster are observed. Below percolation an
inflection develops, giving rise to a plateau which
increases on further cooling. The height of the inflec-
tion point significantly changes with T, signaling that
bonding progressively reduces the cage volume. At the
lowest T, the MSD becomes comparable to the square
of the bonding distance, suggesting that in a (almost)
fully bonded locally tetrahedral structure, bond con-
finement can be quite effective.

The diffusion coefficient D, evaluated from the
long time limit of the mean square displacement
(MSD¼ 6 Dt) is shown in Figure 3(b). D is clearly
super-Arrhenius around the percolation temperature.

In this T-interval indeed the structure of the system
changes significantly, since particles first aggregate into
larger and larger clusters and, beyond percolation, join
more and more the spanning cluster. As discussed later
on, upon entering well inside percolation the structure
of the system reaches its equilibrium gel state and no
further significant structural changes take place. At
these low T, D shows an apparent Arrhenius behavior,
with an activation energy of about �4.5, a value
slightly larger than the energy required to completely
break four bonds. The Arrhenius dependence classifies
the present model in the category of strong
glass-forming systems [24], which includes all tetrahe-
dral network fluids. In this respect, the present results
confirm once more that there is a strong connection
between the insurgence of an open local structure held
together by strong directional forces and the observa-
tion of Arrhenius dynamics. It is also interesting to
observe that a similar value has been recently reported
in the study of ST2 water at the optimal network
density [25]. Values of the activation energy of the
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Figure 2. (a) Bond–bond autocorrelation function for dif-
ferent temperatures (T¼ 0.098, 0.10, 0.105, 0.11, 0.115, 0.12,
0.15, 0.25). A stretched exponential fit to Cb(t) at T¼ 0.12 is
also included (dashed line). Inset: values of the fit parameter
	b (see text) for different temperatures. (b) Values of the fit
parameter �b (black circles) and the average bond time h�bi
(red squares, see text) for different temperatures. (Colour
online).
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Figure 3. (a) Mean square displacement for different tem-
peratures. The dashed line shows the expected time depen-
dence of the diffusive behavior at long times for monomers
(for which Dt¼ 0.01). (b) Diffusion coefficient D extracted
from the slope of the MSD at long time for different
temperatures (black circles). The red line is an Arrhenius fit
performed over the five lowest temperatures. (Colour online).
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order of four bonds have also been observed in a model
of tetrahedral DNA constructs [26] and in a primitive
model for water [17], suggesting that the mechanism
for microscopic dynamics in tetrahedral networks
shares common features.

3.4. Self-dynamics

To analyze the tagged particle motion in the wave-
vector ~q space, we evaluate the self-intermediate
scattering functions Fsðq, tÞ, defined as

Fsð~q, tÞ ¼
1

N

XN
i¼1

he�i~q�ð~riðtÞ�~rið0ÞÞi ð6Þ

where ~riðtÞ is the position of the center of particle i at
time t and q ¼ ~q

�� ��. The behavior of the correlation
functions is shown in Figure 4 as a function of T for
two different wavevector values (panels (a) and (b))
and as a function of q at T¼ 0.10 (panel (c)). To help
comparing the characteristic time scales, the bond
autocorrelation function is also reported. The long
time decay of these functions can be rather well
modeled via stretched exponentials,

Fsðq, tÞ ¼ f sq e
�ðt=�sðqÞÞ

	sq
ð7Þ

where f sq plays the role of the non-ergodicity factor,
�s(q) is the characteristic decay time and 	sq is the
stretching exponent. The wavevector dependence of fsq,
�s(q) and 	

s
q is reported in Figure 5. The non-ergodicity

parameter shows the typical Gaussian shape, but with
an amplitude that is clearly T dependent, confirming
that the cage volume decreases on cooling. A similar
effect is also observed in glasses, but only below the
so-called mode-coupling critical temperature [27], sug-
gesting that somehow network liquids remain suffi-
ciently fluid to be observed well below the point where
dynamics crosses from power-law to Arrhenius. The
stretching exponent is also T dependent and varies
significantly on varying q. At small q, where dynamics
has to convert to diffusive dynamics, 	sq approaches
one and �sðqÞ � q�2. Finally, Figure 5(c) shows �s(q)
and Figure 5(d) shows �sðqÞq

2. It also shows the
corresponding lifetime of the bond. Interestingly, the
crossing between �b and �s(q) takes place to larger and
larger q values on cooling, suggesting that the dynam-
ics on smaller and smaller time scales becomes more
and more slaved to the bond breaking process. Only
when time has become longer than the bond-breaking
time particles are able to restructure themselves and
relax the density fluctuations. Figure 5(d) also shows
that at the lowest investigated T, the approach to the
diffusive limit is not clearly reached within the
wavevector range which can be explored by our
simulation.

3.5. Collective dynamics

To analyze the collective particle motion in wavevector
~q space, we evaluate the coherent intermediate scatter-

ing functions Fcðq, tÞ, defined as

Fcð~q, tÞ ¼
1

N

XN
i,j¼1

e�i~q�ð~riðtÞ�~rj ð0ÞÞ

* +
: ð8Þ

As for the self-case, we show in Figure 6 the q and T

dependence of the collective correlation function.
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Figure 4. (a) Fsðq, tÞ at different temperatures for q� ¼ 0:48.
(b) Fsðq, tÞ at different temperatures for q�¼ 4.59 (corre-
sponding to the first peak in the S(q), see Figure 5e). (c)
Fsðq, tÞ at T¼ 0.10 for different values of the wavevector q�
(0.24, 2.1, 3.9, 5.7, 7.5, 9.3, 11, 13, 15, 17, 18, 20, 22, 24). Also
shown is the Cb(t) at the same temperature (dashed red line).
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The data are significantly more noisy, reflecting the
absence of the average over the distinct tagged parti-
cles. Despite the noise, some trends are clear and worth
discussing. At low temperatures, very long times and
small wavevectors, Fcðq, tÞ shows an oscillatory behav-
ior which has been tentatively attributed to the
presence of acoustic sound modes [8]. If we use
Equation (7) to fit these curves, we can note that also
the collective non-ergodicity parameter shows a clear T
dependence at low T. The values of f cq oscillate around

the self ones, in phase with the position of the peaks of
the structure factor S(q) (see Figure 5e), similarly to
what has been observed for glasses [28–30]. Beside the
main peak at q� � 8, the structure factor shows a pre-
peak characteristic of tetrahedral networks, where the
slowest collective modes are found. In passing, we note
that the T dependence of S(q) tends to saturate at low
T (S(q) at T¼ 0.10 and T¼ 0.105 are identical within
the noise) suggesting that the system structure does not
significantly evolve any longer with T. This saturation
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Figure 5. Fit results for the self (solid lines) and collective (symbols) intermediate scattering functions for different temperatures
as functions of the wavevector. (a) Non-ergodicity factors. (b) Stretched exponents. (c) Characteristic decay times (dashed lines
are �b, added for comparison). (d) Characteristic decay times multiplied q2. (e) Structure factors for the lowest temperatures.
(Colour online).
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of S(q) at small T has been interpreted as evidence of

an equilibrium gel state [5,31].
Interestingly, the decay of the density fluctuations

does not always require the breaking of bonds. For

example, at T¼ 0.115, �c(q) is always smaller than �b,
suggesting that the decay of the density fluctuations at

small q happens at a fixed network structure. On

further cooling, �c(q) and �b get closer, and at T¼ 0.10

�cðqÞ0�b for intermediate and large values of q.

This means that the breathing modes of the network,

diffusive in nature, are of sufficient amplitude to relax
the density fluctuations at large wavelength. Only at
very low T does the gel becomes so stiff that the decay
of the density fluctuations takes place on a time scale
comparable to or longer than �b. This is more clearly
shown in Figure 7: at T¼ 0.115 the bond–bond
autocorrelation decays faster than the density fluctu-
ations at q�¼ 4.59; at T¼ 0.105 the two times are
similar while at T¼ 0.10 the opposite behavior is
observed and the decay of the density fluctuations
requires the breaking of the network to take place.

4. Conclusions

We have reported a study of the self- and collective
dynamics of a simple tetrahedral patchy model for
colloidal particles decorated by four attractive sites,
located on the vertex of a tetrahedron. The shape and
range of the site–site interaction is chosen in such a
way that particles can form at most one bond per site.
On cooling, the system progresses from a collection of
isolated clusters to an essentially fully bonded tetrahe-
dral network, in which most of the particles are
engaged in four bonds. We have investigated the
model at fixed density, in the optimal network density
region. Indeed, the presence of a limited number of
strong directional interactions determines a limited
range of densities which are compatible with the
possibility of satisfying all possible interacting sites.
This optimal density region is limited at low density by
the presence of gas–liquid coexistence and at high
density by increasing packing, preventing the possibil-
ity of approaching the fully bonded network state.
Along this isochore, the dynamics progressively slows
down, first with a super-Arrhenius T dependence
(around percolation), then crossing to an Arrhenius
dependence at low T. The behavior is similar to that
reported for silica and water, where also a cross-over
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Figure 6. (a) Fcðq, tÞ at different temperatures for q�¼ 0.48.
(b) Fcðq, tÞ at different temperatures for q�¼ 4.59. (c) Fcðq, tÞ
at T¼ 0.10 for different values of the wavevector. Also
shown is the Cb(t) at the same temperature (dashed magenta
line). (Colour online).
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from super-Arrhenius to Arrhenius behavior has been
observed in connection with the establishment of an
extensively connected network [32,33]. In the case of
silica this cross-over has been interpreted as a mani-
festation of the mode coupling temperature [34]. In this
model, in which bonding is unambiguously defined, it
appears that Arrhenius dynamics sets in when most of
the particles belong to the spanning cluster.
Interestingly, the comparison between the time scales
of bond-breaking events and diffusional processes
clearly shows that diffusion over long distances
(as detected by Fsðq, tÞ) is slaved to the bond lifetime
and a truly diffusional process (such that �sq

2 is
approximately constant) can be observed at very small
wavevectors only. The characteristic time scale of the
collective dynamics shows oscillations in phase with
the structure factor, similarly to what has been found
in the case of atomic and molecular glass formers
[28–30]. Interestingly, the decay of the density fluctu-
ations does not always require the breaking of bonds.
Only at very low T has the gel become so stiff that the
decay of the density fluctuations, even on length scales
comparable to the particle size, requires the prelimi-
nary breakdown of the bond network. Under these
conditions, the self- and collective dynamics become
slaved to the time scale set by �b.
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