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Abstract
We perform molecular dynamics simulations of ‘floating bond’ (FB) models of
network-forming liquids and compare the structure and dynamics against the BKS model of
silica (van Beest et al 1990 Phys. Rev. Lett. 64 1955), with the aim of gaining a better
understanding of glassy silica in terms of the variety of non-ergodic states seen in colloids. At
low densities, all the models form tetrahedral networks. At higher densities, tailoring the FB
model to allow a higher number of bonds does not capture the structure seen in BKS. Upon
rescaling the time and length in order to compare mean squared displacements between models,
we find that there are significant differences in the temperature dependence of the diffusion
coefficient at high density. Additionally, the FB models show a greater range in variability in
the behavior of the non-ergodicity parameter and caging length, quantities used to distinguish
colloidal gels and glasses. Hence, we find that the glassy behavior of BKS silica can be
interpreted as a ‘gel’ at low densities, with only a marginal gel-to-glass crossover at higher
densities.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, researchers have introduced simplified
models to better understand the essential elements behind
the unconventional thermodynamic and dynamic properties
of silica, water and tetrahedral network-forming liquids in
general, as well as the differences between them, such as
why silica is such a good glass-former, while water readily
crystallizes. Compared to atomistic models such as the BKS
model of silica [1] and the SPC/E model for water [2],
these simpler models condense the long-range electrostatic
interactions into short-range ones but, following the pioneering
work of Kolafa and Nezbeda on water [3], explicitly enforce a
tetrahedral valence by decorating hard spheres with four sticky
spots for water or one-component tetrahedral particles [3–5],
or by employing a 1:2 mixture of spheres with four and two
sticky spots representing Si and O atoms in silica [6, 7].

Interestingly, these types of simpler models have recently
become relevant for colloidal systems, especially in the
framework of newly synthesized patchy particles [8–11] or

for functionalized particles, either via DNA-binding [12–14]
or through specific attraction [15, 16]. Networks can also be
studied by simulating binary mixtures of particles interacting
with isotropic interactions, where one species provides the
network nodes and the other one acts as a collection of
‘floating bonds’ (FBs) [17–20]. Tetrahedrality is attained
by stoichiometry and a judicious choice of the potential
parameters, and could potentially be achieved experimentally
with mixtures of oppositely charged particles [21].

Recently, it was noticed that generic four-valence models,
including primitive models of water [3] and silica [6], DNA
dendrimers [12], the limited valency model [22, 23], as well
as the FB model [18, 19], share a similar phase diagram [24]
both in terms of the location of the gas–liquid spinodal and
in the behavior of the iso-diffusivity lines, once temperature
and density are correctly scaled respectively to the critical
temperature and to the number density of network nodes. This
phase diagram was also compared to those of well-studied
models of water (SPC/E and ST2) as well as to BKS silica,
again showing striking similarities [24]. Building on this
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correspondence, we provide in this article a direct comparison
between the more realistic and well-studied model for silica—
the BKS model—and two simpler FB models, mimicking
tetrahedral-forming colloidal particles.

The BKS model consists of short-range pairwise additive
forces along with long-range Coulomb interactions, and
reproduces to varying degrees of accuracy the physical
properties of silica we are seeking to understand with (short-
range) FB models. While the coefficients used in the BKS
potential can be refined to improve its comparison with
experiments [25, 26] (indeed BKS is an improvement over
the TTAM potential [27]) and further improvements can
be achieved through adding three-body forces and variable
charges [28], the BKS model has become a standard for
computational studies of the static and dynamic properties of
silica [29, 30], and serves as a point of comparison for further
improvements [31]. Modifications to BKS-like potentials
have shed insight into the physics of the network-forming
liquids MX2, such as was done in [32], in which the authors
connected anion polarizability, M–X–M bond angle, local and
intermediate-range order and glass-forming fragility.

Modifications to the Stillinger–Weber model of sili-
con [33], a monatomic tetrahedral liquid, have also shed
light on the importance of bond angle and local coordination
constraints on phase behavior, glassy dynamics, gel formation
and liquid–liquid phase separation [34–36]. However, we
find it more expedient to initially map FB models onto BKS
(a mixture), rather than to a system with explicit three-body
interactions.

By directly comparing structural and dynamical properties
of BKS and FB models, we want to investigate whether
the similarity of phase diagrams can be pushed beyond a
qualitative agreement. In particular, we focus on the study
of the different systems close to the arrest line at several
densities, in order to establish a connection between silica
glass, which is the prototype of a ‘strong’ glass-former, and
the variety of non-ergodic states that are found in colloidal
systems, in particular gels, as well as attractive and repulsive
glasses [37–39]. Indeed, upon increasing the density, silica is
known to become a more ‘fragile’ glass-former, and it would be
interesting to connect this transition to that between a (strong)
gel and a (fragile) glass [24, 40].

We note that in this paper we are referring to equilibrium
gels [37], where the bond strength is of the order of the
thermal energy. Although in silica the bonds possess a covalent
character, we are studying them at a temperature scale for
which the bonds can form reversibly and have a finite lifetime.

The first model (FBH, floating bond hard), described in
detail in [18], is based on (non-additive) hard-core repulsions
and square well attractions of depth u0, with attraction only
between particles of different types. In FBH, the effective
directional attraction gives rise to tetrahedral structure in a
limited window of densities, the so-called optimal network-
forming region, where at low temperatures the system develops
a fully bonded tetrahedral network. The second model (FBS,
floating bond soft), introduced here, replaces the non-additive
hard sphere interaction between floating bonds of model FBH
with a finite shoulder and a smaller hard core, to allow for

network interpenetration and increased coordination, as occurs
in silica at higher densities.

For simplicity, we focus on two fluid isochores at either
end of the density ρ range of BKS. The first isochore, at
ρlow = 2.3 g cm−3 (near the ambient density of real silica),
is located in the optimal network region, close to the liquid–
gas spinodal [41], where at low temperature T the tetrahedral
network forms and the dynamics is becoming strong. The
second isochore is located at ρhigh = 3.9 g cm−3, where the
liquid is no longer tetrahedral, exhibits fragile glassy dynamics,
is on the high density side of both the diffusivity maximum
and any possible liquid–liquid critical point occurring in the
model [42] and is approaching the density where spontaneous
crystallization to stishovite prevents us from deeply probing
the supercooled regime [43]. In this way we explore the
largest variation, in terms of density, of the slowing down of
supercooled liquid silica and we try to connect our findings
with the behavior of colloidal systems.

In the remainder of this paper, we present our analysis of
the models, discuss the results and finish with conclusions and
ideas for future work.

2. Models and simulations

The FBH model was initially studied in [18, 19]. The FBS
model, introduced here, also consists of Np = 1000 ‘node’
particles (modeling Si atoms, labeled 1) that interact with each
other via a hard sphere interaction of diameter σ , and 2000
‘floating bonds’ (O atoms, labeled 2). For both FBH and FBS,
particles of types 1 and 2 interact through a short-range square
well

V12(r) =

⎧
⎪⎨

⎪⎩

∞ r < σ12

−u0 σ12 < r < σ12 + δ

0 r > σ12 + δ,

(1)

where σ12 = 0.55σ , and δ/(1 + δ) = 0.03σ12. For FBH, type
2 particles interact with a hard sphere repulsion of diameter
σ22 = 0.8σ . For FBS, the potential between particles of type 2
is softened to a finite shoulder via

V S
22(r) =

⎧
⎪⎨

⎪⎩

∞ r < σsmall

u0 σsmall < r < σ22

0 r > σ22,

(2)

where σsmall = 0.1σ . Both types of particle have mass m. The
FBH and FBS models are studied by extensive event-driven
molecular dynamics simulations.

A detailed comparison between BKS and the FB models
requires a mapping of the length and time scales. In the
following we use the network node–node distance σeff (the
equivalent of the Si–Si distance in BKS), taken to be the
location of the first peak in the Si–Si partial radial distribution
function, as a unit of length. For BKS, σeff = 0.31 nm
and for the FB models σeff = 1.05σ . With this unit, the
scaled number densities ρ∗ = Npσ

3
eff/V (again, Np is the

number of node (Si) particles and V is the volume) for the
BKS isochores are ρ∗

low = 0.69 and ρ∗
high = 1.16. We also

scale time by teff, the approximate time at which the ballistic
motion of the node atoms crosses to diffusive motion. For BKS
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Figure 1. Si–Si partial structure factors S(q) for BKS silica at
(a) low and (b) high density, compared with FB models; parentheses
indicate (ρ∗, T ∗) pairs. σeff is the position of the first peak of the
Si–Si (node–node) radial distribution function: for BKS
σeff = 0.31 nm; for FBH and FBS σeff = 1.05σ (σ is the node
particle diameter).

silica, this corresponds to teff = 75 fs. For the FB models,
teff = σ

√
m/u0, i.e. simply the usual definition of unit time.

The temperature for the FB models is reported in reduced units,
T ∗ = kBT/u0.

In order to compare the structure and dynamics, we report
the following quantities: the static structure factor S(q) =
〈ρq(0)ρ−q(0)〉, where ρ�q(t) = N−1/2

p
∑Np

i=1 exp [−i�q · �ri (t)];
the mean square displacement (MSD) of node particles along
with its associated caging length l0, defined as the square
root of the height of the MSD plateau prior to the onset
of diffusive behavior; the non-ergodicity parameter fq and
stretching exponent βq , both of which are obtained from a fit of
the secondary relaxation portion of the intermediate scattering
function F(q, t) = 〈ρq(t)ρ−q (0)〉/S(q) to the fitting function
fq exp [−(t/τq)

β]. All quantities are based on node particles
alone, Si atoms in the case of BKS silica and the larger particles
in the FBH and FBS systems.

3. Results

In figure 1(a) we compare S(q) for low T and low density for
BKS and FBH. At low density, S(q) for FBS is not discernible
from FBH, and is therefore not shown. The pre-peak in S(q)

displayed by BKS silica at ρ∗
low is a signature of the developed

tetrahedral network. It is also found in the FB models at
ρ∗ = 0.66, with a slightly lower intensity. Hence in terms of
static structure, there seems to be quite a good correspondence
between the models (also in terms of ρ∗).

At higher density the situation is different, as illustrated
in figure 1(b). Now the BKS structure is very different from
that of either FBH or FBS near comparable densities. Indeed,
the splitting of the first S(q) peak in BKS persists up to high
density despite six-fold coordination, suggesting the presence
of a locally ordered octahedral network. On the other hand, in
the FB models, geometrical preference is lost with increasing

density, even in the case of FBS, where the model would allow
for the formation of six bonds per particle.

To compare the FB and BKS dynamics, we begin by
finding state points in FBS and FBH that match the mean
square displacement of BKS at the lowest T for both isochores,
both in terms of diffusion coefficient and plateau height. In
figure 2(a), we see that for ρlow at T = 3000 K, the MSD is
matched by both FBH and FBS at (ρ∗, T ∗) = (0.88, 0.10)

(a density considerably larger than ρ∗
low), while for ρhigh at

T = 2400 K, the MSD is matched by FBH at (ρ∗, T ∗) =
(1.05, 0.15), and by FBS at (1.15, 0.15). This matching
procedure operated at the lowest BKS studied temperature
provides us with a conversion value to compare the full T -
dependence of the dynamics in the different models. It is
found that such a procedure implicitly assumes a conversion
factor for T which is density dependent, providing the scaling
factors TS = 3000/0.1 at ρ∗

low and TS = 2400/0.15 at ρ∗
high.

In this way, we report in figure 2(b) the T dependence of
the self-diffusion coefficient D, evaluated from the long time
limit of the MSD, normalized by σ 2

eff/teff. The FB models at
ρ∗ = 0.88, at low T , match the ρ∗

low BKS isochore quite well,
being nearly parallel for more than two orders of magnitude
in D. For the ρ∗

high BKS isochore, the agreement with the FB
models is worse. While in BKS the T -dependence of D is
non-Arrhenius, D for the FB models shows a clear Arrhenius
dependence at low T . The two FB models show fairly good
agreement with each other.

Figure 3 shows the caging length as a function of density
along the isotherms T = 3000 K for BKS and T ∗ = 0.10
for the FB models. It is evident that ρ∗ � 0.88 marks the
threshold above which the two FB models become different.
Above this value, the soft-core interactions enter into play as
the packing increases, although, as we have seen in figure 1,
the structures remain quite similar. It is quite clear that for
similar changes in density, BKS shows much less change in
l0 than the FB models. The similarity between FBH and
FBS is highlighted in the inset of figure 3, where we show
the pressure dependence of l0. While the two FB curves
collapse, BKS shows a strong departure. Here, in order to
compare the models, we have reduced the pressures by a factor
mSi/(t2

effσeff), which is 2.68 × 1010 Pa for silica. We note
that the BKS model exhibits negative pressures for densities
near ρlow at 3000 K—a drawback that can be addressed by
reparameterizing the potential [25, 26].

We now try to gain a deeper understanding of the nature
of the dynamical arrest occurring at different densities, viewing
silica through the eyes of colloidal systems. Indeed, as alluded
to in the beginning, the FB models could perhaps be realized
with colloidal particles. The behavior of l0, extracted from the
MSD, already indicates an increasing length scale associated
with arrest as the density decreases. To better characterize the
underlying arrest mechanisms in terms of the different length
scales, it is instructive to monitor the so-called non-ergodicity
parameter fq , i.e. the plateau height of the collective density
correlation function. This typically oscillates in phase with
S(q) and is non-zero in a finite range of q , providing direct
evidence of the characteristic length scales over which the
system becomes non-ergodic. While for a standard glass fq
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Figure 2. Dynamics of BKS and FB models, characterized by (a) the MSD (parentheses indicate (ρ∗, T ∗) pairs), (b) the T dependence of the
diffusion coefficient (density given by symbols as in (a); TS = 30 000 K for ρlow and 16 000 K for ρhigh for BKS, in order to match state points
in (a)).

Figure 3. Caging length l0 along isotherms for BKS, FBH and FBS.
The inset shows l0 as a function of reduced pressure
P∗ = Pt2

effσeff/m.

is significantly different from zero at all physically relevant q-
values, implying that all length scales are arrested, gels exhibit
a very different behavior [22, 44]. Indeed, fq is finite only
at small q , providing evidence that only large length scales,
typically of the order of the mesh of the gel network, are
arrested, while on smaller scales (including nearest-neighbor
ones) the system remains ergodic. Previous studies have also
shown that, with increasing density, a gel-to-glass crossover is
observed, signaled by a growth of fq at all q [40].

We now ask whether we can classify arrested states of
silica as gel or glass by comparing the behavior of fq to
that of the FB models. We also monitor the behavior of the
stretching exponents βq . Colloidal gels can be viewed [24]
as the counterpart of strong glasses (βq nearer to 1) [45],
while colloidal glasses are similar to fragile glasses (βq smaller
than 1).

Figure 4 shows fq for state points that match the MSD in
BKS, FBS and FBH (the same as in figure 2(a)). We see that

Figure 4. The non-ergodicity parameter for BKS and FB models.
The signature gel and glass curves (FBH) are taken from
(ρ∗, T ∗) = (0.66, 0.09) and (1.15, 0.09), respectively. Inset:
stretching exponent.

for both ρ∗
low and ρ∗

high, a match in the MSD corresponds also
to a match in terms of fq and βq . Also shown in figure 4 are
fq curves for FBH at ρ∗ = 0.66 and 1.15, in order to underline
the dramatic variation in the range of fq over a similar range
in density as chosen for BKS. These two curves illustrate the
signatures of gels and glasses in terms of fq . The softening
of the non-additive repulsion between floating bonds in FBS
reduces the extent of fq to that seen in BKS at a comparably
high density. As the density is lowered, BKS does not achieve
the same degree of narrowing of fq as the FB models. Thus we
can conclude from figure 4 that if we can associate a narrow
fq with gels and an extended one with repulsive glasses, the
‘gel-to-glass’ crossover is much more muted in BKS. However,
using FBS does shift the colloidal model toward the behavior
of BKS.
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4. Discussion

In the present paper, we compare BKS silica and two floating
bond models, one that maintains tetravalent bonding to high
densities (FBH) and one that allows more bonds to form as
the density increases (FBS). The modifications present in FBS
only seem to matter beyond ρ∗ = 0.88; at lower ρ∗ the two
models are practically the same.

At comparably low reduced number densities, ρ∗
low = 0.69

for BKS and ρ∗ = 0.66 for both FBS and FBH, tetrahedral
order is present in all models. However, in terms of dynamics,
as shown by the caging length and the shape of the MSD,
a better match to ρ∗

low BKS is attained at ρ∗ = 0.88 in the
FB models, by which point the structure factors for the FB
models are considerably different from BKS. Nonetheless, the
T dependence of the dynamics of FBH and FBS at ρ∗ = 0.88,
as presented through D, is quite similar to that of BKS at
ρ∗

low: see figure 2(b), upper curves, where the slopes of the
curves are not that different. At high density, BKS silica
is quite non-Arrhenius while the FB models retain Arrhenius
dynamics, indicating that the energetic barrier to diffusion is
still increasing in BKS, while for the FB models it is well
defined by the square well bond energy.

We also see that in the regime where the FB models form
a tetrahedral network structure, the caging length is too large
in comparison to BKS. Our understanding of the relationship
between the parameters of the model and the caging length (or
the degree of splitting of the first peak in S(q)) is lacking, and
thus would naturally be a target of future study.

As a function of density, the caging length of BKS is fairly
invariant compared to the range seen for the FB models. It
is interesting to note that while BKS does show a diffusivity
anomaly within the studied density range, l0 along a curve of
constant D is monotonic; it appears that the caging length is
not directly coupled to D across the density. While FBS does
exhibit less localization (larger l0) at higher ρ∗ than FBH, its
range in l0 is still quite broad compared to BKS.

One motivation for this work was the idea of comparing
glassy BKS to the non-ergodic states seen in colloidal models,
primarily the low density gel and the high density repulsive
glass. The dynamic signatures of gels include a large l0, a small
range in q for which fq is appreciably non-zero and a value of
the stretching exponent βq close to unity. Conversely, repulsive
glasses have a short l0, a large range of fq and βq closer to
1/2. We find that while BKS does have a gel-to-repulsive glass
trend, at least in terms of the range of fq and values of βq , the
effect is relatively small compared to FBH, or even to FBS.

Thus, while glassy silica can be interpreted as a ‘gel’ at
low density, it does not show a clear crossover to a glass on
increasing ρ, i.e., the behaviors of l0 and fq are much less
dependent on density than in colloidal systems. As a first
step toward a better understanding of this difference, FBS does
exhibit a reduced density dependence of these quantities.

5. Conclusions

In this paper, we have exploited the similarity of the phase
diagrams for generic tetrahedral models [24] in order to

connect silica to simpler models relevant to colloidal systems.
Working with reduced quantities, we find that the structure of
the FB models maps fairly well to that of BKS at low density.
However, there seems to be a mismatch in the density at which
the dynamics are most similar.

The trend in the dynamics for BKS in going from low
to high density is suggestive of the crossover from gel-to-
repulsive glass seen in colloidal models, i.e. fq broadens in
its extent, βq decreases although l0 remains rather constant.
However, the trend is not striking considering the behavior
FBH and FBS exhibit over a similar range in ρ∗. While
replacing the hard sphere repulsion with a shoulder in the
FB model does not lead to anomalous behavior in density or
diffusivity, it does change the dynamics (and the pressure)
beyond ρ∗ ≈ 0.88 significantly, while only subtly changing the
structure. The reduced pinning of tetrahedral centers provided
by the shoulder brings FBS closer to the dynamical behavior
of BKS, even though the splitting of the first peak in S(q) is
lost. The non-Arrhenius behavior of D for BKS suggests a
still-changing energy landscape at low T , particularly at ρhigh,
which could be better captured by even softer FB models.

It would be interesting to know to what extent the
lack of strong gel-to-glass signatures and the appearance of
non-Arrhenius dynamics can be captured by models with
short-range interactions, or whether longer-range forces are
necessary.
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