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the two bond per patch limit†
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In recent experimental work on spherical colloidal particles decorated with two hydrophobic poles

separated by an electrically charged middle band (triblock Janus particles)—when particles are

confined by gravity at the bottom of the sample holder—self-assembly into a Kagome two dimensional

lattice has been documented [Qian Chen, Sung Chul Bae and Steve Granick, Nature, 2011, 469, 381].

Here, we assess the ability of a simple two-patch effective potential to reproduce the experimental

findings. The model parameters are selected to match the experimental values, with a short-range

attraction mimicking hydrophobic interactions and a patch width that allows for a maximum of two

contacts per patch. We show that the effective potential is able to reproduce the observed crystallisation

pathway in the Kagome structure. On the basis of free energy calculations, we also show that the

Kagome lattice is stable at low temperature and low pressure, but that it transforms into a hexagonal

lattice with alternating attractive and repulsive bands on increasing pressure.
I. Introduction

Chemical or physical surface patterning provides an effective

way of modulating the interaction between colloidal particles.

The possibility of designing particles that interact via a non-

spherical potential opens up a wealth of new possibilities, as

envisioned in the anisotropy axis space by Glotzer and

Solomon.1 The challenge faced by physicists, chemical engineers

and materials scientists is to organise these new geometries into

structures for functional materials and devices via self-assembly,

the spontaneous organisation of matter into desired arrange-

ments. The aim is to achieve—via the rational design of

elementary building blocks (i.e. the particles)—pre-defined

specific, ordered or disordered, structures.2 Research in this

direction is very active,3 even though most of the experimental

efforts are still focused on acquiring control over the desired

distribution of patch widths and numbers4–6 more than on the

collective behaviour of the particle themselves (with noteworthy

exceptions7–10). Self-assembly of patchy particles has been the

focus of a large number of theoretical and numerical investiga-

tions1,11–18 which have revealed a wealth of novel physical

phenomena, some of which have analogues in atomic or molec-

ular systems.19–21
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Very recent experimental work—based on spherical colloidal

particles decorated with two hydrophobic poles of a tunable area

separated by an electrically charged middle band (triblock Janus

particles)22—provides an excellent example of the accurate

synthesis of two-patch particles accompanied by a study of their

self-assembly into an ordered structure when deposited on a flat

surface. Interestingly, the electric charge of the particles allows

for a controlled switch of the interaction through the addition of

salt, which effectively screens the overall repulsion allowing the

hydrophobic attractions between patches to gradually increase in

prominence. After the addition of the salt, particles organise

themselves into a Kagome lattice and their crystallisation

kinetics has been followed in real space in full detail.22 The patch

width in the experimental system, of the order of 65 degrees,

allows for simultaneous bonding of two particles per patch,

stabilising the locally four-coordinated structure of the Kagome

lattice (see Fig. 1). Experiments also show that when more than

one layer of particles sediment, stacked Kagome planes form. As

discussed in ref. 22, such alternating Kagome planes could have

a potential application as selective filters, where selection is

controlled by the two different typical sizes of the basic Kagome

structure (the triangle and the hexagon) as well as by the differing

chemical character of the two holes (hydrophilic and

hydrophobic).

The three dimensional collective behaviour of two-patch

particles, modelled by the Kern–Frenkel potential,23 has been

studied recently24 as a function of the patch width, interpolating

between the isotropic case, where each patch covers one hemi-

sphere, and the case where each of the two opposite patches can

be involved only in one bond, generating a polydisperse distri-

bution of colloidal chains (equilibrium polymers). In the range of
Soft Matter
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Fig. 1 From left to right: snapshot of a gas, liquid, Kagome lattice and hexagonal lattice. The Kagome and the hexagonal crystals are formed at low and

high pressures, respectively. Attractive patches are coloured red; the hard-core remaining particle surface is coloured yellow. Particles are free to rotate in

three dimensions, but are constrained to move on a flat surface.
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patch width compatible with only two bonds per patch (analo-

gously to the aforementioned experimental system), the sponta-

neous formation of an ordered phase in a fully bonded close

packed hexagonal lattice with alternating attractive bands

(see Fig. 1) was reported. While a close comparison between

experiment and simulation in three dimensions is not currently

possible, a theoretical study of the phase diagram of the same

model in two dimensions—but retaining the full three dimen-

sional orientational properties—can provide a valuable test for

validating the effective potential, as well as for estimating the

relative stability field of the possible crystals and of the fluid

phase.

In this article, we study the phase diagram of the two-patch

Kern–Frenkel model in two dimensions for two different values

of the patch width, both of which are within the range of values

that allows for at most two bonds per patch. In full agreement

with the experiments, we observe, at comparable pressure and

interaction strength, the spontaneous nucleation of a Kagome

lattice. At higher pressure, spontaneous crystal formation in the

dense hexagonal structure is observed. Such facile crystallisation

suggests that in this system crystallisation barriers are compa-

rable to the thermal energy at all pressures. Interestingly, we also

find that for this model a (metastable) gas–liquid phase separa-

tion can be observed for large patch widths.
II. Model and simulation details

We study the Kern–Frenkel23 two-patch model where two

attractive patches are symmetrically arranged as polar caps on

a hard sphere of diameter s. Each patch can thus be visualised as

the intersection of the sphere surface with a cone of aperture q

(the patch angular size being 2q) and vertex at the centre of the

sphere. In this model, a bond with interaction energy �u0 is

established between two particles when their centre-to-centre

distance is less than s(1 + d) and the line connecting their centres

crosses two arbitrary patches on distinct particles.

In a formal way, the pair potential F(i, j) can be written as

F(i, j) ¼ fSW(rij)$J(n̂i, n̂j, r̂ij), (1)

where rij indicates the vector connecting the centres of particles i

and j, rij its length, and n̂i the normalised vector that identifies the

position of one patch on particle i (the other patch is thus

identified by the vector �n̂i). fSW(rij) is a square well potential

defined as
Soft Matter
fSWðrijÞ ¼
8<
:

N if rij\s

�u 0 if s\rij\ð1þ dÞs
0 if rij . ð1þ dÞs

(2)

andJ(n̂i, n̂j, r̂ij) is a switch function which is equal to 1 if particles

i and j have two patch favourably aligned and 0 otherwise, i.e.

Jðn̂i; n̂ j ; r̂ijÞ ¼
�
1 if

��n̂i$r̂ij��$ cosq and
��n̂ j$r̂ij

��$ cosq

0 otherwise
(3)

Reduced units will be used throughout this work, with kB ¼ 1,

temperature T in units of u0/kB, pressure P in units of s�2u0 and

number density r in units of s�2. The model has been extensively

investigated in simulation and theoretical studies of patchy

particles,23–27 including integral equations24,26 as well as pertur-

bation theories28 for anisotropic potentials. Here, we focus on the

short–range value d ¼ 0.05 (comparable to the experimental

value) and two values of the patch width: the experimental value

cos q¼ 0.84 and the largest possible value consistent with the two

bond per patch condition, cos q ¼ 0.524.

To numerically compute the free energies of the fluid and the

crystals and their coexistence lines, we follow the guidelines given

in a recent clear and detailed review.29 The starting point of the

procedure requires the identification of a state point in the

pressure-temperature plane where two phases, I and II, share

the same chemical potential, mI(P, T) ¼ mII(P, T). The chemical

potential of the fluid can be computed by thermodynamic inte-

gration using the ideal gas as a reference state; this can be done

by integrating the equation of state, P(r), at fixed temperature as

follows:

bf ðT ; rÞ ¼ logðrs 2Þ � 1þ
ðr
0

bP=r0 � 1

r0
dr0 (4)

where f is the Helmholtz energy per particle; thus

bm(P(r), T) ¼ bf(P(r), T) + bP(r)/r. (5)

To compute the chemical potential of a crystal at fixed P and

T, one must first compute its free energy at fixed T and r.

Subsequent integration of the equation of state provides the

chemical potential. To compute the free energy, we use the

Frenkel–Ladd procedure; that is, we perform thermodynamic

integration using an ideal Einstein crystal as the reference system.

This procedure is described in full detail in ref. 29 and thus we do

not repeat the description here. We note here that we used

a standard Frenkel–Ladd30 procedure for hard-core models with

a DNh-symmetric Hamiltonian in the reference Einstein crystal.
This journal is ª The Royal Society of Chemistry 2011
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We point out that in the case of the hexagonal lattice, it is

particularly important to anneal all stresses in the reference

configuration31 by allowing the box side to fluctuate indepen-

dently along the two directions. Coexistence lines were computed

with the Gibbs–Duhem32 integration technique using a 4th order

Runge–Kutta algorithm to integrate the Clausius–Clapeyron

equation starting from a coexistence point. Consistency checks

based on direct coexistence33 were performed to validate the

results of free energy calculations. The gas–liquid critical point

and coexistence densities were calculated using the successive

umbrella sampling method.34

We also perform NPT and NVT Monte Carlo (MC) simula-

tions of a system of 1000 particles for several values of P and T to

gather structural information and to study spontaneous crys-

tallisation. MC simulation runs were carried out for at least 106

MC cycles, a third of which were used for equilibration. The

translational, rotational and volume trial displacements were

calibrated during equilibration to have global acceptance ratios

of 0.5, 0.5 and 0.25, respectively.
Fig. 3 Probability of the density fluctuations P(r) close to the metastable

gas-liquid critical point for the wide-patch model (cos q ¼ 0.524). The

formation of two different liquid-like and gas-like states in coexistence is

clearly seen. Note that for r > 0.8 a third peak (not shown) corresponding

to the crystal is present. For T < 0.1729 crystallisation is so effective that

it is impossible to gather enough statistics to evaluate P(r).
III. Results

Fig. 2 shows the phase diagram for the two investigated values of

cos q. In the range of T and P considered here, two fully bonded

crystals can be predicted to form: the Kagome and the hexagonal

lattices (see Fig. 1). The open Kagome structure is stable at low P

and the dense hexagonal one at high P. At high T, a fluid phase is

stable. We note that on increasing P beyond the range reported in

Fig. 2 and outside the scope of the present article, more crystal

phases appear at high T and P, including an orientationally

disordered (i.e. not bonded) hexagonal phase and a distorted

hexagonal phase with particles that are aligned to form only one

bond per patch. The topology of the phase diagram is essentially
Fig. 2 Phase diagrams in the P–T plane (left column) and T–r plane (right

Boundaries between stable phases are drawn as solid black lines and metasta

indicate the (metastable) gas–liquid critical point. The dashed line in panel (d)

red circles indicate the highest temperature at which spontaneous crystallisatio

corresponding pressure or density. Crosses indicate the coexistence points ch

This journal is ª The Royal Society of Chemistry 2011
identical for the two patch widths considered, with the coexis-

tence lines shifted to higher P and higher T for the larger width as

expected on the basis of the larger bonding volume (which

correspondingly reflects a larger virial coefficient). In agreement

with the experimental system, the Kagome structure becomes

stable when the patch-patch interaction strength becomes five to

ten times the thermal energy: a range of values at which bonds

can still be thermally broken, providing an effective way of

escaping kinetic traps and accurately sampling the phase space.

To test if the fluid phase exhibits gas–liquid phase separation

at low T, we investigated the behaviour of the density fluctua-

tions. Fig. 3 shows that the distribution of the density in the

grand canonical (constant volume, temperature and chemical

potential) ensemble34 acquires the typical bimodal shape of

coexisting gas-like and liquid-like regions which characterize

systems close to criticality. Gas configurations are characterised
column) for the narrow (top row) and wide (bottom row) patch model.

ble phase boundaries are dotted. The orange points in panels (c) and (d)

represents the metastable gas–liquid phase separation. Blue diamonds and

n into the Kagome and hexagonal lattice, respectively, was detected at the

ecked via direct coexistence simulations.

Soft Matter
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by small isolated clusters, while liquid-like configurations show

a percolating network of bonds, with many bond loops of

different sizes (see Fig. 1). The critical point, located at Tc z
0.1735 and rc z 0.40, is slightly metastable (see Fig. 2). As noted

in ref. 24, the progressive restriction of the bond angle plays

a role analogous to the reduction of the range in spherically

interacting attractive colloids.35 Critical fluctuations can only be

observed for the large angular width model. In the narrow-patch

model (cos q ¼ 0.84) the possibility of observing the phase

separation is pre-empted by crystallisation, i.e. crystal formation

is so effective that there is no time to establish a time-independent

metastable liquid state and thus to properly evaluate the density

fluctuations. An appropriate choice of the patch width and

interaction range in the experimental system in which particles

can be optically tracked could thus provide a way of directly

observing critical fluctuations in a two dimensional system in real

space.

Fig. 2 also shows the points where spontaneous crystal

formation in one of the two crystal forms is observed during

a constant-NPT simulation. Interestingly, around P z 0.1, the

Kagome crystal develops (as a metastable form) in the region of

stability of the denser crystal, consistently with Ostwald’s rule,36

which states that in general it is the least stable polymorph that

crystallizes first. In the present case, the difference in chemical

potential between the hexagonal lattice and the Kagome lattice is

only of the order of 0.03kBT at P z 0.1 and T ( 0.2 and hence

can not really control the preferential crystallisation into the less

stable lattice structure. We suggest that the preferential forma-

tion of the Kagome structure at P ¼ 0.1 is the result of the fluid

having a density closer to that of the Kagome lattice than that of

the hexagonal lattice.

More relevant for colloidal applications is the phase diagram in

the T-r plane. For the studied model, the fully bonded Kagome

structure can exist only for ð ffiffiffi
3

p
=2Þ=ð1þ dÞ2\rs 2\

ffiffiffi
3

p
=2, where

the upper bound is controlled by excluded volume and the lower

bound by the range of the interaction potential. The Kagome

structure is thus stable, strictly speaking, only in a small density

window but it can nevertheless realised in a very wide density

range in coexistence with an extremely diluted gas.

The crystallisation kinetics of triblock Janus particles has been

investigated experimentally by optical microscopy, providing

a detailed description of the formation of the Kagome lattice. To

provide evidence that the Kern–Frenkel potential is able to

reproduce not only the thermodynamic properties, but also the
Fig. 4 Configurations identified to study the crystallisation pathway of the K

in the centre is identified as chain-like since it has exactly one bond per patch

have two neighbours which are bonded; (d) the particle in the centre is identifi

part of a hexagonal lattice. Please note that |j6| is close to one in both geometri

depends on the number of neighbours.

Soft Matter
crystallisation pathway, we compare simulation and experi-

mental data for the time evolution of the fraction of crystalline

particles as well as the time dependence of the concentration of

particular geometrical arrangements of the particles. Specifically,

we focus (following ref. 22) on particles in chains, particles

forming triangular bond loops (the unit element of the Kagome

lattice), and free particles. Operationally, we identify particles

that are involved in no interaction as monomers, and particles

that are involved in two interactions, exactly one per patch, as

chain–like. Particle i is identified as triangularly bonded if it has

at least two bonded neighbours that are also bonded to each

other. Fig. 4 provides a schematic example of such classification.

Solid-like particles were detected by means of the two dimen-

sional local bond order parameter j6; again following ref. 22, to

each particle i we assign a complex number j6(i), defined as

j6ðiÞ h
1

ni

Xni
1

e i6qik ; (6)

the index k in the sum runs over the ni neighbours of particle i,

identified as all the particles such that rik < (1 + d)s. i is the

imaginary unit and qik is defined as the angle between the vector

rik and an arbitrary axis, in our case the x-axis.

The local bond order parameter j6 is such that if the neigh-

bours of particle i are placed on the vertices of an hexagon

centred on particle i itself, its magnitude approaches one, while it

is small if the neighbour particles are randomly placed around

particle i. We identify particle i to be part of a crystalline cluster if

|j6(i)| > 0.7. The crystal is classified as Kagome if particle i has

exactly four neighbours and hexagonal if i has exactly six

neighbours.

Fig. 5 shows the time evolution of the number of free, chain–

like and triangularly bonded particles. As time progresses, the

number of free particles decreases in favour of the formation of

chains of oppositely bonded particles which then restructure

themselves to form the triangular elements of the ordered lattice.

Amovie of the crystallisation process in the numerical simulation

is available in the ESI†. Comparing Fig. 5 with Fig. 2 and 3 of

ref. 22, one sees that, indeed, the effective potential properly

describes the kinetics of crystal formation.

Before concluding, we note that a recent study of a three

dimensional tetrahedral patchy model37 has shown that particles

with narrow patches readily crystallise, while particles with wide

patches never crystallise in computer simulations. Ref. 37 sug-

gested a thermodynamic explanation based on the analysis of the
agome lattice; (a) two particles in a bonded configuration; (b) the particle

; (c) all three particles are identified as triangularly bonded, since they all

ed as part of a Kagome lattice; (e) the particle in the centre is identified as

es (d) and (e); classification of the crystal structure (Kagome or hexagonal)

This journal is ª The Royal Society of Chemistry 2011
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Fig. 5 Analysis of the crystallisation process of the Kagome lattice. In

(a), the fraction f of solid-like particles is shown as a function of the

number of MC cycles. The number of particles in a Kagome lattice

exponentially approaches a plateau. In (b) the relative abundance of

monomers, chain-bonded and triangularly bonded particles (fm, fc and ft
respectively) is shown as a function of simulation time. The crystallisation

of the Kagome lattice is preceded by the formation of extensive chain-like

bonding in the system. Both (a) and (b) show a striking resemblance to

the experimental system. In both panels, the results of nine independent

NVT runs are reported. In all the runs, d ¼ 0.05, cos q ¼ 0.84, N ¼ 1000,

r ¼ 0.6 and T ¼ 0.125.

Fig. 6 Chemical potential of the fluid (solid lines) and Kagome lattice

(dashed lines) for the narrow-patch (cos q ¼ 0.84, blue lines) and wide-

patch (cos q ¼ 0.524, red lines) systems at P¼ 0.03. As the temperature is

lowered, the difference in chemical potential between the two phases

grows much more quickly in the wide–patch model.
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chemical potential at constant pressure of the fluid and the

crystal; in the wide-patch model, the chemical potential of the

fluid and the crystal are almost parallel at coexistence and it is

thus impossible to create a large enough driving force for crys-

tallisation by undercooling the liquid. By contrast, in the narrow-

patch model, the two chemical potentials have a very different

slope at coexistence and thus a large driving force is created by

lowering the temperature. Although in the present two dimen-

sional model both wide-patch and narrow-patch particles crys-

tallise, the same argument still applies. As we show in Fig. 6, the

difference in bm between the two phases grows much faster as the

temperature is lowered below coexistence in the narrow-patch

model.

IV. Conclusions and summary

To summarise, particles made by a repulsive core and attractive

patches are amongst the most promising model systems for

generating specific structures by rational design.22 The versatility
This journal is ª The Royal Society of Chemistry 2011
of the method has already been proven for one- and two-patch

particles, revealing in both cases interesting assembly processes.

Particles with one attractive patch aggregate in micelles or in

branched linear clusters.8,9 Interestingly, also in the one-patch

case, the simple Kern–Frenkel potential has been shown to

reproduce the experimentally observed structures.38 The ability

of accurately describing Janus triblock particles with the same

model by only changing the patch geometry to match that of the

experimental system is particularly rewarding and provides

a strong support for the use of such models for predicting the

self–assembly properties of this class of patchy colloids. The

possibility of numerically exploring the sensitivity of the phase

diagram to the parameters (patch width and interaction range) of

the interaction potential provides an important instrument and

a guide to the design of these new particles to obtain specific

structures by self-assembly.

It is interesting to observe the analogies between the two

dimensional phase diagram of these two-patch two-bonds

particles with the three dimensional phase diagram of tetrahedral

particles in which each patch can be engaged in only one

bond.15,16 In both cases, the phase diagram is characterised by the

competition between an open (diamond in 3D, Kagome in 2D)

crystal and a denser one (BCC in 3D, hexagonal in 2D). Also in

both cases, narrower patches favour crystal formation,

completely pre-empting the possibility of forming a metastable

liquid state. Also in ref. 37, the propensity for crystallisation

arises from a significant difference in the slope of bm against T at

the melting temperature.

In this paper, we have focused on the phase diagram of

a system confined to move in two dimensions, showing that the

open Kagome structure is stable at low P and T. An accurate

study based on the comparison of the free energy of the different

crystal forms of the corresponding three dimensional system has

not yet been performed. Hence, it is not clear if the Kagome

structure would still self-assemble if the system were not confined

by gravity on a surface. After the validation of the model

reported here, theoretical evaluation can help in answering this

important question. The fact that the Kern–Frenkel model is

able to provide such an accurate description of the thermo-

dynamics and the kinetics of a fairly complex system is in our

opinion due to the fact that the physics is dominated by the

effects of short-range, reversible bonding. The fraction of the

surface that promotes bonding is the essential parameter in

describing the liquid phase,25 while the crystal structures are

dictated by the geometric arrangement of the possible crystal

contacts. One clever way of tuning both these parameters is to

alter the patch width, as done in ref. 22. There the choice of 65

degrees allows for no more than two contacts per particle (in two

dimensions), effectively selecting the Kagome structure as the

stable one at low r and T. A possible experimental realisation of

the hexagonal lattice at higher densities, predicted by the present

study, could further validate the Kern–Frenkel model as a simple

and effective tool in studying the thermodynamics and the self-

assembly of patchy colloids. This is particularly important in

trying to exploit the potential of triblock Janus particles to self-

assemble in three dimensional ordered structures, since computer

simulations can greatly help in predicting the stable lattices, as

well as the optimum potential parameters and ambient condi-

tions for the self-assembly process to take place.2
Soft Matter
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