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Thenumberofpotentially relevantmaterials resulting fromtheaggregationofelementaryunitswitha
finite functionality continues to increase. The growthof branched clusters andnetworksmayproceed
through the formation of reversible (physical) or irreversible (chemical) bonds. The kinetics of bond
formation is sensitive both to the intrinsic rate of the bonding process, controlled by the chemistry of
the system, and to the encounter rate of clusters, controlled by cluster diffusion. In this Highlight we
review a series of our recent numerical simulation studies designed to investigate the connections
between chemical and physical aggregation and the crossover from a chemically controlled to
diffusion-controlled regime. It is shown that in the chemically controlled limit, it is possible to formally
correlate elapsed time during irreversible aggregation with equilibrium temperature in reversible
aggregation. The diffusion-controlled regime sets in well-beyond percolation and the effect of
diffusioncanbedescribedby introducingasingleadditional timescale, relatedtotheaveragediffusion
time. This concept can be readily generalized to interpret the experimental data.
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Fig. 1 Graphical representation of the model

particles (reactive sites are shown as yellow

spheres on the surface of the hard-core ellip-

soid), and snapshots of an irreversibly aggre-

gating binary mixture at three values of the

extent of aggregation p, beyond percolation.

The percolating cluster (colored in red)

progressively incorporates all particles in the

system. Figure redrawn from ref. 31.
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I. Introduction

Several natural and synthetic materials, as

well as biological structures, result from

the aggregation into branched clusters or

into a network of elementary units with a

finite functionality, i.e. with a fixed

number of bonding sites. This process,

known under the names of polymeriza-

tion, self-assembling, aggregation or

clustering depending on the context, is

receiving considerable attention in two

fast-growing fields: supramolecular

chemistry1–3 and collective behavior of

patchy and functionalized colloidal

particles,4,5 among the most promising

building blocks of new materials. The

process of formation of an extended

three-dimensional network of bonds

connecting independent molecules,

proteins or colloidal particles is named

gelation and the resulting material a

gel.6–8 At the gel point, an infinite

(percolating) network of bonded particles

first appears, which provides elasticity to

the system and prevents it from flowing;

yet, the system is not dynamically arrested

on a mesoscopic length scale, and hence,

glassy behaviour is not fully established.

In many cases of interest the elemen-

tary units (whether they are molecules or

colloids) are particles with a small func-

tionality. Two aspects of the aggregation

process of small-functionality particle

systems are the focus of this Highlight:

(A) the nature of the bonding process

(reversible or irreversible) and (B) the

nature of the kinetics of aggregation

(chemically or diffusion-controlled).

(A) Aggregation processes can be clas-

sified on the basis of the strength of the

attraction between bonding sites, quanti-

fied by the ratio between the bond energy
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u0 and the thermal energy kBT (where kB
is the Boltzmann constant and T is the

temperature): for covalent bonds (strong

attraction strength, u0/kBT [ 1), bond

formation is irreversible (chemical

bonding) and the number of bonds

continuously grows with time. The

aggregation proceeds via the build up of

larger and larger clusters until an exten-

sively bonded gel is formed. In the case of

weak attraction strength (u0/kBT � 1),

bonds break and reform (physical

bonding) while their number progres-

sively reaches the thermodynamic equi-

librium value, and fluctuates around it.

The temperature at which reversible

aggregation takes place controls the

equilibrium extent of bonding (measured

by the fraction of bonded sites). High

values of T correspond to cluster fluid

phases, low values of T to extensively

connected gels. If the condition u0/kBT �
1 is not met, and T is significantly smaller

than the attraction strength, then the

process of reversible aggregation turns

into an irreversible one, since the thermal

energy is not able to break bonds any

longer. Starting from a monomeric state,

the fraction of bonded sites progressively

increases, and the system visits a sequence

of states in time which may bear some

relation to the states that are explored in

equilibrium at different T values, from a

high to lower values. This establishes a

connection between physical and chem-

ical aggregates, when the systems are

formed by similar particles, which we will

address in this Highlight.

(B) The process of bonding elementary

units with a finite functionality requires as

a first step that the system’s constituents

diffuse through random movements such
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that when they come into contact, a

reaction may be triggered. Therefore, the

kinetics of aggregation is sensitive both to

the encounter rate of clusters bearing the

reactive sites and to the intrinsic rate of

the chemical reaction process between

clusters at contact. According to the

relative importance of these two factors,

the aggregation process is said to take

place in the chemically controlled or in the

diffusion-controlled limit. In the first case,

diffusion is efficient and the rate of

aggregation is controlled by the chemical

mechanism at the basis of bonding. Many

of these reactions occur in low viscosity

solutions in which the aggregation

product does not significantly limit the

transport properties of reactants. In the

second case, the encounter between clus-

ters proceeds much slower than the

bonding step and the aggregation is

dominated by transport limitations. Such

reactions are commonly found in
al is ª The Royal Society of Chemistry 2012
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biochemical processes such as protein

aggregation, enzyme catalysis, and

complexation in cells.9 It often happens

that a transition from the chemically

controlled to diffusion-controlled limit

occurs gradually as the aggregation

product decreases the diffusivities in the

system. Many thermoset materials of

widespread use such as epoxy resins are

the result of polymerization reactions

where such crossover takes place.10 In

supramolecular chemistry the analogue is

a so-called isodesmic polymerization.11

Analytic solutions for the evolution of the

cluster size distribution and the corre-

sponding number of bonds with time are

available for the chemically controlled

case (under the hypothesis of the absence

of bond loops in the aggregates of finite

size),12,13 but these solutions cannot

describe efficiently the kinetics of aggre-

gation when the diffusion contribution to

the rate is not negligible. In general, the

final structure of the aggregates results

from a delicate balance between the

cluster size dependence of the diffusion

process and the probability to stick.

One way to prove the possible connec-

tions between chemical and physical

aggregation and to look at how diffusion

limitations interfere is to simulate model

systems. Simulations offer the possibility

to gradually switch from irreversible to

reversible aggregation by changing the

strength of the particle interactions. Also,

through numerical investigation it is

possible to develop a microscopic picture

of how clusters diffuse and to devise a

strategy to embed the effect of diffusion

into an analytic description of the kinetics

of aggregation. In this Highlight, we

review a series of recent numerical studies

specifically designed to evidence the

analogies between reversible and irre-

versible gelation in small-functionality

particles as well as to investigate the

crossover from chemically controlled to

diffusion-controlled aggregation.
II. A model of chemical
aggregation and its physical
analogue

We have recently introduced a model for

describing both the reversible and the

irreversible aggregation process of a

binary mixture of ellipsoidal particles,

interacting via a small number of
This journal is ª The Royal Society of Chemistry
short-ranged directional interactions.14,15

The model represents two types of mutu-

ally reactive monomers as hard homoge-

neous ellipsoids of revolution whose

surface is decorated by a given number of

bonding sites in a predefined geometry

(Fig. 1). Sites on particles of different

types interact via an attractive potential

that is modeled as a square-well of depth

u0 and interaction range d much smaller

than the particle size. In the numerical

code, two sites, on particles of different

type, form a bond if their distance

becomes smaller than d. Clusters are

defined as groups of bonded particles.

The geometrical parameters of the parti-

cles are chosen to ensure that each site is

engaged at most in one bond. As a refer-

ence case, we consider a 5 : 2 mixture of

bifunctional and pentafunctional ellip-

soids, in which the two types of reactive

sites are initially present in equal number

so that, in principle, there is the possibility

to form a fully bonded state in which all

the sites have reacted. Making use of an

event-driven algorithm, the dynamic

evolution of the system is studied starting

from an initial configuration with no

bonds between particles, at fixed T. The

model offers the possibility to implement

an irreversible (chemical) aggregation

process as well as a reversible (physical)

one: once a bond is formed, it is made

irreversible by switching on an infinite

barrier at distance d between the sites

involved, which constrains the maximum

distance between the two reacted sites to

remain smaller than d and hence prevents

bond breaking. Otherwise, there is a

probability of breaking which depends on

the relative value of the thermal energy

kBT compared to the energy barrier that

must be overcome to escape the potential

well, u0.

Since the number of bonds in the

simulation is measured without ambi-

guity, it is straightforward to evaluate the

extent of aggregation p (or equivalently,

the bond probability) as the number of

bonds in the system over the maximum

number of possible bonds. During irre-

versible aggregation, p increases mono-

tonically with time, although the reaction

never reaches its full extent. In the early

stages of aggregation, particles are only

connected into finite-size clusters (sol).

The size of the clusters grows with time,

progressivelymerging into an infinite (gel)

cluster at the percolation transition when
2012
the bond probability reaches a critical

value pgel. At longer times, a final state is

approached where essentially all particles

belong to the infinite cluster, even if a

number of sites remain unbonded (Fig. 1).

During reversible aggregation, instead,

bonds form and break continuously with

time (and p fluctuates) while the system

evolves toward the equilibrium state,

characterized by an average value peq(T)

of the extent of aggregation. Note that

while in chemical aggregation the

temperature only controls the time scale

of exploration of space (by modulating

the average particle’s velocity), and hence

the rate of formation of new bonds but

not their final number, in physical aggre-

gation the temperature controls the

average number of bonds at very long

times, after the equilibration transient is

over.

A mixture of ellipsoidal patchy parti-

cles is a very simple but effective coarse-

grained model for aggregation, able to

combine directional bonding, selectivity

of interactions and asymmetry in shape,

which are the key features of old and new-

generation aggregating systems. The

model has been realistically inspired by

the three-dimensional step-growth poly-

merization that occurs at the molecular

level, e.g. in epoxy-amine systems,16 but

can also be considered representative of

associating polymers,17–19 functionalized

molecules20 and, moving up in the length

scale of the associated particles, of

systems with bioselective interactions21,22

and patchy colloids.5,23,24 Small modifi-

cation of the model can be implemented

to model vitrimers dynamics.25

Most theoretical predictions for

particle aggregation are derived under the

assumptions that (i) all functional sites of

a given type have equal and independent

reactivity, (ii) the formation of bond

loops within finite clusters (i.e. intra-

cluster bonds connecting particles

belonging to the same cluster) does not

take place, and (iii) the bond-formation

contribution to the rate is dominant as

compared to that of diffusion, i.e. the

aggregation process is chemically

controlled. These conditions are

commonly referred to as Flory–Stock-

mayer (FS) hypotheses. The first condi-

tion is encoded in the model by

construction. The other two are not a

priori implemented: these crucial condi-

tions are highly non-trivial and somehow
Soft Matter
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depend on the functionality, the micro-

scopic dynamics and the modeling of the

site–site interaction. Concerning (ii), there

is numerical evidence that the formation

of bond loops is negligible when the

average functionality is smaller than

three,27 and the no-loop condition is even

more efficiently realized by adding

anisotropy to the particle shape. The

present model, whose average function-

ality is �f ¼ 2.857, therefore disfavors the

formation of loops in finite size clusters.

The absence of loops is further driven by

the elongated shape of the particles, the

asymmetric location of the reactive sites

on their surface and the excluded-volume

effects. Concerning (iii), it should be

noted that only when the bonding volume

is small, the probability that two sites on

distinct clusters will encounter in the

absence of any activation barrier is small.

Hence, the time requested to form a bond

between two nearby clusters can be

significantly longer than the time

requested for two clusters of any size to

diffuse distances comparable to the inter-

cluster distance and the cluster-size

dependence of the diffusion coefficient

can be neglected in the calculation of the

rate constants. The choice of the packing

fraction f is also relevant, since it impacts

significantly on the particle mobility.

Indeed, only when f is relatively small

diffusion is not hampered by crowding

and excluded-volume effects (caging). In

the studied model, the chemically

controlled limit of aggregation is favored

by the short-range site–site interaction

and by choosing f ¼ 0.3, a value cali-

brated on a realistic mixture of epoxy-

amine molecules in their initially fluid

state. As a result, the connectivity prop-

erties of the chemical aggregation model

have been compared in detail to the FS

predictions, and the numerical data are

found to be in very good agreement,

without fit parameters, in a very wide

range of p. The percolation threshold is

found, as predicted by FS theory, at

pgelx 0.5, and the cluster size distribution

observed in the simulations during the

aggregation process coincides with the

theoretical predictions up to p z 0.65,

well beyond percolation. Furthermore,

p(t) is well described, again for p ( 0.65,

by the kinetic equation derived for loop-

less chemically controlled aggregation.

This agreement indicates that the

model provides a close realization of the
Soft Matter
mean-field FS theory, in a wide range of p

extending well beyond percolation.

The departure from the FS predictions for

p T 0.65 are most likely to be ascribed to

a progressive role of diffusion in the

bonding rate.

It is worth noting that the range of p

values in which agreement between

simulations and FS predictions is realized

depends on the functionality, and might

change by changing the packing fraction.

Indeed, the study of a similar model (a

mixture of spherical particles with two

and three patches) with �f ¼ 2.055 and f¼
0.1 shows that the agreement with the

predictions remains valid during the

whole aggregation process, up to the

emergence of a fully bonded state.26 In

general, when the probability of forming

closed bond loops in three-dimension is

negligible the FS approach works very

accurately both in the cluster phase

(before percolation) and in the perco-

lating region, up to an extent of aggrega-

tion which is controlled by the slowing

down of the dynamics, and hence by

diffusion.
III. Connecting chemical and
physical aggregation: time and
temperature

A. Background

One may ask how different are the struc-

ture and connectivity properties of

chemical and physical aggregation states.

The idea of a close connection between

irreversible and reversible aggregation is

rather intuitive, and based on theoretical

grounds. Is it correct? And to what

extent? The idea is intuitive in that

conceptually any model of physical

aggregation may be turned into a chem-

ical model by studying its properties

following a quench to kBT � u0. Theo-

retically, a hint for the possible existence

of a link between chemical and physical

aggregates was formally anticipated by

the early theoretical work of Stock-

mayer.28 Indeed, Stockmayer assumed

that at any time t during chemical aggre-

gation, when the fraction of formed

bonds is p, the concentrations ck(p) of

clusters of k particles can be calculated

following equilibrium statistical

mechanics prescriptions, i.e. maximizing

the entropy with the constraint of a fixed

number of bonds. While this is not
This journ
extensively discussed, the fact that the FS

distributions are the result of a maximum

entropy constraint suggests that these

theoretical predictions may apply only to

cases in which kinetic contributions are

irrelevant. At the same time, Stockmayer

also showed that the very same distribu-

tions result from solving the Smo-

luchowski’s kinetic equations when the

rate of bond-breaking is zero (irreversible

aggregation) and the rate of bond

formation is slaved to the chemical

processes, i.e. depends only on the

number of unreacted sites and not on the

diffusion coefficient of the relative clus-

ters. Van Dongen and Ernst12 extended

the work of Stockmayer to the case in

which bond-breaking processes are also

possible. They were able to show analyt-

ically that in this reversible aggregation

case the time-dependent solutions ck(p(t))

of the Smoluchowski’s kinetic equations

are formally identical to those obtained

by Stockmayer in equilibrium at the

extent of reaction p. The time dependence

of p satisfies the equation

dp

dt
¼ �p

"
ksitebreak � r f ksitebond

ð1� pÞ2
p

#
(1)

where ksitebond and ksitebreak are respectively the

rate constants of forming and breaking a

single bond, r ¼ N/V is the particle

number density and �f is the particle

average functionality. The latter equation

can be solved with p(0) ¼ 0 (i.e. starting

from the absence of bonds) and p(N) ¼
peq, providing an analytical expression of

p(t) during a reversible aggregation

process,

pðtÞ ¼ peq
1� e�Gt

1� peq2e�Gt
(2)

withG¼ r�f ksitebond(1� peq
2)/peq. In the limit

of absence of breaking processes

(ksitebreak / 0 or equivalently peq / 1),

when irreversible aggregation takes place,

the cluster size distribution ck(p(t)),

expressed in terms of p retains the same

form as in equilibrium, while the time

evolution of p reduces to

dp

dt
¼ r f ksitebondð1� pÞ2 (3)

whose solution with the initial condition

p(0) ¼ 0 becomes

pðtÞ ¼ r f ksitebond t

1þ r f ksitebond t
: (4)
al is ª The Royal Society of Chemistry 2012
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Fig. 2 Results illustrating the connection between time during aggregation and temperature in

equilibrium. (a) Red symbols show the T dependence of the fraction of bonds in the system at

equilibrium, blue symbols the time evolution of the fraction of bonds during the aggregation process.

At each time t of the aggregation, the reaction has proceeded establishing a certain fraction of bonds

in the system. The same fraction of bonds is also found in the same system in thermal equilibrium at

the corresponding T (indicated by the arrows). The connectivity (and the structure) of the system in

the two corresponding points (labeled by a star) is identical, and thus the aggregation process can be

thought of as a sequence of equilibrium steps, in which the system is progressively cooled from high

T (at short times) to low T (at large times). [Both T and t are in arbitrary units.] A demonstration is

given in panel (b) and (c), respectively in the case of irreversible aggregation and in the case of

reversible aggregation at T ¼ 0.11. Solid symbols represent the cluster size distribution at different

times during the aggregation process, open symbols the cluster size distribution obtained in equi-

librium at the same fraction of bonds. Lines are the corresponding FS distributions.
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The remarkable result is that the

evolution of ck(t) is entirely contained in

p(t), i.e. the cluster size distribution only

depends on the value of the extent of

aggregation. The distribution of cluster

sizes is predicted to be formally identical

to that observed in a system in equilib-

rium at a T such that the extent of

aggregation peq(T) is identical to p(t). This

amounts to formally establish a link

between chemical and physical aggrega-

tion, through the following relationship

for the extent of aggregation

p(t) ¼ peq(T). (5)

The aging dynamics following a

temperature jump from high T (only

monomers) to a finiteT can be interpreted

as a sequence of equilibrium states and

the progression of time can be properly

seen as a progressive thermalization of the

system toward equilibrium (Fig. 2). This

is valid both when the system is quenched

down to a T where equilibration is still

possible and also in the case of a quench

performed to such a low T that breaking

processes become impossible and aggre-

gation takes place irreversibly.
This journal is ª The Royal Society of Chemistry
The thermodynamic theory of Wer-

theim,29,30 developed to describe the

behavior of associating liquids, provides a

parameter-free expression for the T

dependence of peq, through the indepen-

dent bond mass-action law, peq/(1 �
peq)

2¼ frexp(�bFb), where Fb is the bond

free-energy, i.e. the free energy difference

between the bonded and the un-bonded

state for a pair of reactive sites. Fb can be

evaluated from the potential parameters

and the reference fluid radial distribution

function. The interesting point to notice is

that, independent of the model (which

only enters in the details of the Fb calcu-

lation), the Wertheim theory can be com-

plemented with the kinetic approach of

Smoluchowski, via the equilibrium

condition (i.e. dp/dt ¼ 0) which imposes

the following relationship between the

bonding and breaking coefficients ksitebond

and ksitebreak, r�f k
site
bond/k

site
break ¼ peq/(1 � peq)

2.

As a result, the T dependence of the ratio

between ksitebond and ksitebreak can be predicted,

and hence, except for a constant which

fixes the time scale and depends on the

chosen particle dynamics, the evolution of

the entire aggregation process can be

described without free parameters.
2012
It is worth stressing that all the above-

mentioned predictions require the

absence of bond loops within finite clus-

ters and the absence of diffusional

limitations.
B. Simulation results

According to the theoretical work re-

viewed in the previous section – based on

kinetic equations solved in the limit of

chemically controlled rates and loop-less

aggregation – a system forming progres-

sively larger and larger branched aggre-

gates, through either reversible or

irreversible bonds, evolves in time via a

sequence of states which are identical to

the states explored in equilibrium at

appropriate values of T. The equality in

the fraction of formed bonds p provides

the connection between time during

reversible or irreversible aggregation and

temperature in equilibrium. Numerical

simulations of the binary mixture of

reactive ellipsoids14,15 have confirmed

these theoretical predictions in a wide

range of p, up to an extent of aggregation

well beyond the emergence of a perco-

lating cluster. In particular, the evolution

of the same binary mixture of ellipsoids in

time has been examined during irrevers-

ible aggregation and following several

quenches from a very high temperature

down to lower T values in conditions of

reversible aggregation. The evolution of

p(t) in time has been compared to the Van

Dongen and Ernst predictions both for

reversible and irreversible aggregation

(eqn (2) and (4)), and the theoretical

expressions very well represent the

numerical data, except for pT 0.65 in the

irreversible case and for the lowest studied

temperatures in the reversible case.

Moreover, the connectivity properties of

the system have been compared in

thermal equilibrium and during aging,

exploiting eqn (5). We have indeed

compared ck(t) at specific elapsed times t

during the irreversible bonding process

with the cluster size distribution of a

system in equilibrium at a T correspond-

ing to the same value of p. As shown in

Fig. 2(b), the mapping in eqn (5) is

confirmed. Similar comparison at several

elapsed times during a reversible bonding

process at finite T, starting from an un-

bonded state, is shown in Fig. 2(c),

demonstrating that both chemical and

physical aggregation proceed along a
Soft Matter
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sequence of equilibrium states, accurately

modeled by the FS distributions.
IV. Modeling the crossover
from chemically to diffusion-
controlled aggregation

A. Background

The binary ellipsoid model is a good

candidate to study the role of cluster

diffusion in controlling the late stages of

the aggregation kinetics, since the effect of

diffusion emerges well beyond percola-

tion but still long before all possible bonds

have been formed. Simulations have been

scrutinized to gain insight into the origin

of the crossover from chemically

controlled to diffusion-controlled aggre-

gation.31 The present discussion will limit

to the irreversible aggregation case.

As alluded to previously, the kinetics of

irreversible aggregation can be formally

modeled in terms of the Smoluchowski’s

rate equations, especially for the case in

which the rate of bond-breaking is zero.32

The equations provide the time evolution

of the concentrations ck(t) of clusters of

size k in the form

dck
dt

¼ 1

2

X
iþj¼k

ki; joverallcicj �
XN
j¼1

kk; joverallckcj

(6)

where the first sum represents formation

of k-mers by reactions between pairs of

smaller clusters, and the second term

represents their destruction through

reactions with other clusters. The coagu-

lation kernel ki,joverall represents the rate

coefficient for a specific clustering mech-

anism between clusters of sizes i and j. It is

assumed that both intrinsic chemical

constraints and diffusional limitations to

the bonding can be accounted for by an

appropriate modeling of ki,joverall.
32 Solving

eqn (6) provides a full description of the

aggregation kinetics, as the time depen-

dence of ck(t) comes out to be com-

plemented by the time dependence p(t) of

the fraction of formed bonds (i.e. the

extent of aggregation). In the experi-

mental studies, on the other hand, often

one searches for a simpler description

which drops the information on the

cluster size distribution, and focuses only

on the experimentally more accessible

time dependence of p. In the hypothesis

that all sites have equal reactivity,
Soft Matter
independent of the size of the cluster to

which they are attached, p represents the

bond probability (i.e. the probability that

choosing a site at random in the system, it

has reacted) and then it satisfies

dp

dt
¼ koverallð1� pÞ2 (7)

Different from eqn (3), koverall is here an

overall rate coefficient of forming a single

bond which incorporates all information

on the aggregation process and which

can, in general, depend on p. Eqn (7)

simply states that the probability to form

a bond depends on the probability of

encounter between two unreacted sites,

independent of their spatial location or

local environment. As previously dis-

cussed, in the simplest chemically

controlled case, koverall results to be

constant and equal to kc h �f rksitebond. In

this case, eqn (7) becomes coincident with

eqn (3). The corresponding solution with

p(0) ¼ 0 is given by eqn (4), or using the

present notation, p(t) ¼ kct/(1 + kct).

In view of the experimental cases

considered below, it is worth noting that

more complex chemical mechanisms may

be active in nature, and the description of

such mechanisms, even under the chemi-

cally controlled assumption, may require

more than one rate constant or may result

in a variant of eqn (7). For example,

reactions such as some epoxy-amine

polymerizations have an autocatalytic

nature and this fact, even assuming a

simplified reaction scheme, leads to

koverall ¼ kc1 + kc2p, where kc1 and kc2 are

constants related to the noncatalytic and

autocatalytic pathways of reaction.

Moreover, cases are not unusual where a

phenomenological expression like

dp/dt ¼ (kc1 + kc2p
m)(1 � p)n (8)

withm and n fractional exponents (known

as Kamal equation33) is necessary to

obtain a good description of the experi-

mental data in the chemical regime. In

general, how to best model throughout

the aggregation process the time (or p)

dependence of the kernels ki,joverall, and

koverall in the description of eqn (7) is a

non-trivial problem.
B. Simulation results

As alluded to before, the early stages of

irreversible aggregation of a mixture of
This journ
reactive ellipsoids are properly described

by the chemical approximation, and up to

px 0.65 eqn (3) is strictly obeyed. Beyond

p x 0.65, deviations from the theoretical

predictions are observed whose origin can

be scrutinized by analyzing the numerical

results. The investigation of the diffusion

properties of the system as well as of the

clusters as a function of their size, not

possible experimentally, is the key to

understand the failure of the chemically

controlled approximation. For each value

of p, the overall diffusion coefficient can

be evaluated as D ¼ limt/NhDr2(t)i/6t,
where hDr2(t)i is the mean squared

displacement of all the particles in the

system over the time period t. To provide

an accurate determination of D which is

not affected by the ongoing aggregation

process we exploit the possibility offered

by the numerical simulation of freezing

the aggregation process, and to analyze

the dynamics in a system of fixed cluster-

size composition. More precisely, when

during the simulation a given value of p is

achieved, positions and velocities of all

particles are copied and used to start a

new simulation in which the bonding

pattern is frozen by switching on an in-

finite barrier at distance d between each

pair of mutually reactive sites. In this new

simulation, the formed clusters remain

free to move, while retaining their integ-

rity (i.e. not binding to other clusters),

and D is calculated from the long time

limit of hDr2(t)i, evaluated where a

possible subdiffusive behavior is over and

a linear increase in time is established.

Note that the overall diffusion coefficient

can also be written as D ¼ P
kDkkNk/N,

with Dk the average diffusion coefficient

of clusters of size k and Nk the number of

these clusters, in order to emphasize that

the slowing down of the overall diffusion

arises from two different mechanisms: the

decrease of the diffusion coefficient of

each cluster-size as well as the decrease in

the number of diffusing clusters. Alter-

natively, D can also be split into two

contributions coming from the particles

that belong to the infinite cluster (gel) and

from the remaining material (sol).

The numerical results for the p evolu-

tion of D are well described by a power

law D ¼ D0[(p0 � p)/p0]
g with D0 the

diffusion coefficient at p¼ 0, g the power-

law exponent, and p0 the value of p where

diffusion is expected to vanish. The best-

fit value p0 ¼ 0.902 � 0.005 indicates that
al is ª The Royal Society of Chemistry 2012
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Fig. 3 Rate of bond formation, dp/dt, as function of the fraction p of formed bonds. (a) The case of

a binarymixture of ellipsoidal patchy particles with functionalities 2 and 5 in the stoichiometric ratio

5 : 2. Symbols are the simulation results. The dashed and solid lines represent eqn (7), respectively in

the chemically controlled limit (koverall ¼ kc) and in the case including the effect of diffusion (koverall
given by eqn (10)). In the last case, the diffusion coefficientD(p) [shown in (b)] provides the relevant

time scale entering in koverall, leaving only one free fit-parameter. (c) Time dependence of the fraction

of bonds p. Lines are solution of eqn (7) with the initial condition p(0) ¼ 0, in the chemically

controlled limit (dashed line; analytic solution given by eqn (3)) and in the case including the effect of

diffusion (solid line; numerical solution). (d) The case of an epoxy-amine mixture (DGEBA, func-

tionality ¼ 2 and DETA, functionality ¼ 5) at different values, as indicated, of the epoxy-amine

molar ratio (and different T of reaction). Symbols are the experimental results, obtained by

differential scanning calorimetry. The solid lines represent the best fit of eqn (8) in the case including

the effect of diffusion (koverall,1 and koverall,2 given by eqn (11)). With kc1 and kc2 known from the

early stages of polymerization, and the structural relaxation time s(p) measured by photon-corre-

lation spectroscopy [shown in (e), for the reaction DGEBA/DETA 5 : 2 at T ¼ 28 �C], the fit

procedure only adjusts two parameters, k0 and the fractional exponent x. (f) Time dependence of the

fraction of bonds p for the system DGEBA/DETA 5 : 2 during reaction at T ¼ 28 �C. Lines are
numerical solutions of eqn (8) with the initial condition p(0) ¼ 0, in the chemically controlled limit

(dashed line) and in the case including the effect of diffusion (solid line).
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the arrest of the dynamics occurs before

all available sites have reacted, i.e. that a

fraction of unreacted sites exists in the

arrested gel network. For all cluster sizes,

Dk slows down by one order of magnitude

during the aggregation process and

tends to vanish at approximately the
This journal is ª The Royal Society of Chemistry
same point as the overall diffusion

coefficient.

Analysis of the simulation results also

shows that when the chemical approxi-

mation starts to fail (p� 0.65) most of the

particles in the system belong to the gel,

whose contribution to the diffusion can
2012
be safely neglected since the gel always

retains a subdiffusive motion (i.e. the

mean squared displacement of the gel

center of mass increases less than linearly

in time) and the particles belonging to the

network are always much more localized

than the particles in clusters of finite size.

The bulk diffusion process is thus associ-

ated with the sol phase. In particular, it is

mostly controlled by the monomers,

through their number and diffusivity. The

number of monomers in the system

exceeds the number of dimers and of

clusters of any other size by more than

one order of magnitude throughout the

aggregation process and their diffusivity

stays higher, providing a major contri-

bution to the diffusion coefficient. On

increasing p beyond pgel, the number of

monomers significantly drops but at a

slower pace compared to larger clusters,

quickly becoming the dominant particles

in the sol. Hence, at large values of p, the

percolating cluster coexists with sol

particles, which are mostly found in

monomers and very small aggregates. To

provide a graphical visualization of the

system structure and clustering in the

region where the chemical approximation

breaks down, Fig. 1 shows one configu-

ration at p ¼ 0.65. It appears clearly that

the sol concentration is strongly sup-

pressed and that only very small clusters

are present in this region.

These results can be incorporated into a

simple but effective modeling of the long

time kinetics of aggregation, taking into

account the effect of diffusional limita-

tions. At the level of the less-demanding

description of eqn (7), this corresponds to

devise an expression of koverall which

captures both the properties of the

chemical bonding act and the diffusive

properties of the clusters to which the

reactive sites are attached. Following the

Rabinowitch model for small-molecule

reactions,34 we write

koverall
�1 ¼ kc

�1 + kdiff
�1 (9)

where kc is the intrinsic rate constant

which is given by the chemistry of the

system, and kdiff is the rate coefficient for

a system with no chemical barriers where

reactions occur upon collision of func-

tional groups. This last coefficient

depends on the diffusion time scale, which

is expected to vary with p. Eqn (9) simply

states that the time required to form a new
Soft Matter
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bond is the sum of the time required for

two clusters of any size to approach each

other plus the time required for the

repeated collisions between nearby clus-

ters to become fruitful to bond a reactive

pair. The parallel sum of kc and kdiff
suggests that in the early stages of aggre-

gation, when the system consists mainly

of monomers and oligomers, the particle

mobility is high and the aggregation

proceeds in the absence of diffusional

limitations (kdiff [ kc, hence koverall z
kc). However, on increasing the extent of

reaction, the cluster-size dependence of

the diffusion coefficient starts to limit the

reactivity of unreacted sites, so that, for

large values of p, the rate of aggregation is

primarily determined by the mass

transfer of the reactants (kdiff � kc, hence

koverall z kdiff).

As discussed at length in the previous

sections and shown in Fig. 3a, the early

time kinetics in this system is properly

described within the chemically

controlled regime, and the constant value

of kc is entirely determined by the early

stage of aggregation. Concerning the p

dependence of kdiff, it is reasonable to

assume that the time scale kdiff
�1 is asso-

ciated with the average diffusion time

scaleD�1, or equivalently, that kdiff varies

with p in the same manner as the average

diffusion coefficient D of the reacting

entities, kdiff(p) � D(p). With this ansatz,

it is possible to write

koverall
�1 ¼ kc

�1 þ k0
�1

�
p0 � p

p0

��g

(10)

where k0 is the proportionality constant

between the diffusion rate coefficient and

D/D0, the normalized diffusion coeffi-

cient. Substitution of eqn (10) in eqn (7)

yields a kinetic model that would account

for chemically and diffusion-controlled

regimes of the aggregation and also the

crossover between the two, provided that

the p dependence of D is known. The

description of the entire kinetic process is

then provided by only one additional

parameter, k0, the diffusion rate constant

in the initially (p ¼ 0) unbonded state.

A comparison between the simulation

data for dp/dt vs. p and eqn (7) [with

koverall(p) expressed by eqn (10)] offers a

way to check the sustainability of a mean-

field description, to test the quality of the

approximation and, with the parameters

p0 and g known from D(p), to extract the

best value of k0. The best-fit value is two
Soft Matter
orders of magnitude larger than kc, con-

firming the separation between the two

kinetic regimes. The solid line in Fig. 3a

demonstrates that the mean-field diffu-

sion-controlled rate equation provides an

excellent description of the entire kinetic

process. The close agreement between

simulation and diffusion-corrected

modeling is further stressed in the inset of

Fig. 3a, comparing the numerical solu-

tions of eqn (7) with the initial condition

p(0)¼ 0 in the case koverall¼ kc and koverall
given by eqn (10).
C. Comparison with experiments

The problem of describing the effects of

diffusional limitations on the kinetics of

aggregation in systems with a finite

number of reactive sites has historically

been addressed by studying polymeriza-

tion. The case of epoxy resins is emblem-

atic. The step-growth polyaddition

reaction of an epoxy compound with a

cure agent (e.g. an amino reagent)

progressively changes an initially fluid

small-molecule mixture into an insoluble

network, which is typically solid. In the

early stages the reactions are chemically

controlled. At higher extents of reaction,

the mobility of unreacted groups is more

and more hindered due to cluster-size

effects and the decreasing rate at which

they diffuse within the system in turn

decreases the rate at which they react.

The resulting negative feedback between

the physical process of diffusion and the

chemical process of bonding brings both

processes to vanishing levels, even if the

reaction is not complete. With a good

kinetic model, valid over the entire range

of polymerization, it is possible to predict

how the system will behave during the

process and what its final condition will

be, and consequently to optimize the

processing conditions and control the

performance of the final material. Many

strategies to analyze the entire reaction

kinetics have been employed, as reviewed

in ref. 35.

The first experimental attempts to

analyze the diffusion-controlled kinetics

by replacing each chemical rate constant

with an overall one built on the Rabino-

witch model (eqn (9)) and by assuming

proportionality between kdiff and the

overall diffusion coefficient, date back

many years ago.36–38 The experimental

approach, however, unavoidably suffers
This journ
from certain limitations, as it relies on the

knowledge of the kinetic equation gov-

erning the chemically controlled limit of

the reaction – which in most situations is

complicated by autocatalytic terms,

multiple-reaction effects, or is obtained

on a semiempirical basis – and on the

determination of the diffusion coefficient,

which in most cases cannot be directly

accessed and requires a non-trivial

assumption on the way it is related to the

relaxation time experimentally measured.

These experimental limits are overcome

by simulations, which now provide a

useful reference. The approach discussed

in the previous section and validated via

the comparison with numerical data has

been recently adapted to model diffusion-

control in the experimental studies. As an

example, Fig. 3b shows the rate of bond

formation, dp/dt, as function of p for an

epoxy-amine system with different

proportions of the reagents, during reac-

tion at a constant temperature. The

chemically controlled regime is properly

described by the Kamal equation,33 con-

taining the noncatalytic and autocatalytic

chemical rate constants kc1 and kc2. This

equation, like the simplest eqn (3), always

reaches dp/dt ¼ 0 at p ¼ 1, significantly

departing in the final stage of reaction

from the experimental data (inset of

Fig. 3). In this region the diffusion at

molecular level is increasingly hindered,

as also reflected in the marked increase of

the structural relaxation time s, for

example measured by dielectric39 or

photon-correlation spectroscopy,40–42 and

diffusion-corrected rate constants must

be used. The lack of direct information

about D(p) generally represents the

greatest obstacle to follow the same

strategy of description as emerges from

the simulations. Knowledge of s(p) can be

used to bypass this problem. In fact, the

structural relaxation time s offers a

measure of the ability of the molecules to

rearrange their structure, also related to

their ability to move through the sample,

in a way that an increase of the time

needed to relax corresponds to a decrease

of the diffusion coefficient. In a simplistic

approach, D has been assumed to be

inversely proportional to s, D � s�1.37,38

This assumption, which is referred to as

Debye–Stokes–Einstein relationship,

follows from two equations, both derived

within the theory of macroscopic hydro-

dynamics. As such, D and s should refer
al is ª The Royal Society of Chemistry 2012
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to a macroscopic particle diffusing in a

continuous medium, a limitation that

should not be underestimated. Surpris-

ingly, these equations are well verified in

ordinary liquids and inmany simple glass-

formers, irrespective of the fact that they

should be strictly valid for particles larger

than the surrounding molecules. The

existence of appreciable deviations,

however, is well documented in high

viscosity fluids and when these equations

fail, their modification by the introduc-

tion of a fractional exponent correlates

successfully the experimental data. In

more general terms, the relationship

between the overall diffusion coefficient

of the molecules participating in the

reaction and the structural relaxation

time is better written as a fractional power

law, D � s�x with 0 < x < 1, according to

which, molecular diffusion diverges more

slowly than the structural relaxation.

With this refined assumption, it is possible

to write, for each chemical rate constant

koverall
�1 ¼ kc

�1 + k0
�1s(p)x (11)

where k0 is the proportionality constant

between the diffusion rate coefficient kdiff
and s�x. The solid lines in Fig. 3b are

obtained by fitting to the experimental

data the kinetic equation resulting from

the substitution of eqn (11) into eqn (8),

with the adjustment of only two parame-

ters, i.e. k0 and the fractional exponent x.

Relatively small values of this exponent (x

< 0.5) are typically found. With such

values, the fit function is able to repro-

duce very well the behavior of p vs. t and

dp/dt vs. p over the whole reaction range,

describing a smooth transition from the

chemical to the diffusion-controlled

regime. On the other hand, the structural

arrest is generally so rapid that an equally

rapid evolution of the molecular diffusion

coefficient (x ¼ 1) would make the fit

function overestimate the reaction rate in

the first part of the reaction, and to

compensate afterwards, describing an all

too abrupt deceleration in the final stage

with a non-negligible deviation from the

experimental data. The key to accurately

reproduce the kinetics of reaction in the

experimental case is to give up the

common assumption that the relaxation

rate provides a reasonable estimate of the

diffusional rate. The agreement shown in

Fig. 3b is significantly better than

previous models, and has been similarly
This journal is ª The Royal Society of Chemistry
obtained for a large number of systems

over the entire range of polymerization, in

a wide range of reaction temperatures,35

thus providing experimental support to

the numerical strategy of data analysis.

V. Conclusions and
perspectives

In this Highlight we have discussed the

kinetics of aggregation of a mixture of

asymmetric reactive ellipsoids, in which

particles can form a limited number of

bonds with their neighbors giving rise to a

gelation process and finally an arrested

dynamics. The key feature of this model is

that bonding can be switched from the

irreversible (chemical) to the reversible

(physical) case.

Comparing the two modes of bonding,

it was shown that there exist ‘‘corre-

sponding states’’, i.e. states characterized

by identical cluster size distributions at a

certain period of time during irreversible

aggregation and at a certain T under

equilibrium conditions, and the associ-

ated possibility to convert time during

aggregation into an effective equilibrium

temperature, envisioning aggregation as a

progressive cooling of the corresponding

physical model. The equality in the frac-

tion of formed bonds p represents the

condition of the corresponding states.

The possibility of defining ‘‘correspond-

ing states’’ allows one to make use of

theories developed for equilibrium

systems and of results derived using

statistical mechanics methods and

computer simulations, to describe irre-

versible aggregation phenomena, and vice

versa.

During irreversible aggregation, the

system evolves in a chemically controlled

regime in the early stages and then

progressively crosses to a diffusion-

controlled regime. The effect of diffusion

emerges only in the later stages of aggre-

gation. It is interesting to discuss why the

chemical limit works for such a long

interval, well beyond percolation. At the

basis of this behavior is the small value of

the chemical rate constant. The origin of

such a small value has to be found in the

essence of the bonding interaction which,

thanks to its short-range nature and

localization, imposes by itself an entropic

barrier to bond formation. Bonding

indeed requires that two reactive sites

become close to each other or, in
2012
equivalent terms, that the two reacting

clusters face each other with the right

orientation. As a consequence, the time

required for two clusters to diffuse and

approach each other is significantly

smaller than the time required to orient

themselves in the right bonding geometry,

thus establishing the chemical regime.

When diffusion becomes relevant – due

to the general mechanism that the average

distance between the unreacted sites

progressively grows, coupled to the

increased size of the diffusing clusters –

the sol clusters which contribute to

diffusion are mostly monomers, which

progressively react with the infinite gel

cluster determining the faster depletion of

their concentration and a rapid decrease

of the average diffusivity (by several

orders of magnitude in a small range of

the extent of aggregation). Such a

decrease, in fact, is mostly driven by the

progressive reduction in the number of

clusters in the sol and, in the interesting

kinetic region where diffusion effects are

dominant, mainly due to the change in the

number of monomers. The higher diffu-

sivity of the monomers results in a

progressive depletion of small clusters as

compared to the predicted concentration

in the reaction-limited case and to the

breakdown of the time–temperature

mapping. Discrepancies between the

cluster size distribution observed in

simulation and the one provided by the

ideal kinetic theory of aggregation are

therefore not easily dismissed as an effect

associated with the omitted spatial infor-

mation in the rate coefficients. Instead,

they are likely to be associated with the

diffusion-altered size-dependent reaction

rates, which favor the depletion of faster,

small clusters and the reduced production

of slower, big clusters.

Finally, we have discussed how a simple

modeling of the entire kinetics of aggre-

gation accounting for the decrease of the

system’s average diffusivity can be devel-

oped by introducing a single character-

istic p-dependent time scale. Such

modeling requires the simultaneous

determination of the extent of reaction as

a function of time p(t), and of the diffu-

sion coefficient as a function of the extent

of reaction D(p). The adjustment of only

one constant parameter is sufficient to

describe the entire evolution of p(t), even

in the last stages of aggregation, where a

small number of finite clusters remain
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interspersed within the frozen structure of

the gel network. We believe these results

will provide a useful guide for the inter-

pretation of the kinetics in real systems.

As a first example, we have discussed how

the evidence derived from the analysis of

the simulation data can help modeling the

experimentally measured extent of reac-

tion in epoxy-resin systems.
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