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We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simu-
lation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and
inhomogeneous versions of Wertheim’s first order perturbation theory for the association free en-
ergy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the
fluid and analyze the surface properties for two isochores, one of which is close to the liquid side
of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from
a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore
close to coexistence. We relate this behavior to the properties of the bulk network liquid and find
that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures,
however, an almost fully bonded network is formed, and the simulations reveal a second adsorption
regime which is not captured by DFT. We trace this failure to the neglect of orientational correla-
tions of the particles, which are found to exhibit surface induced orientational order in this regime.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4746428]

I. INTRODUCTION

Colloidal particles with patterned surfaces—better
known as patchy particles1–4—have been studied extensively
in recent years owing to their ability to self-assemble in a rich
number of cluster, gel, glassy, and crystalline phases. Under-
standing how the surface pattern influences the self-assembly
mechanism is crucial to a bottom-up strategy for designing
new materials where the desired macroscopic behavior is en-
coded in the microscopic properties of the building-blocks.5

Patchy particles represent a valuable model system for in-
vestigating and understanding the behavior of more complex
constituents such as amphiphilic molecules, colloidal clays,
proteins, and DNA nano-assemblies.6–10 New concepts, as
equilibrium gel,4 optimal network density,11 and empty liq-
uid have arisen from the study of the phase diagrams12, 13 of
patchy particles with limited valence.14, 15 These models em-
phasize the role of the number of bonds between the particles
in determining the equilibrium as well as the static and dy-
namic behavior of the system in and out of equilibrium.16

Homogeneous patchy particle fluids are described
satisfactorily by Wertheim’s first order thermodynamic
perturbation theory17–20 that provides an expression for the
free energy per particle with np patches, which are treated
independently. Less known are the properties of patchy parti-

a)nicoletta.gnan@roma1.infn.it.

cle fluids in confined geometries. Understanding the behavior
of patchy particles close to surfaces has direct impact on
a number of different applications which require patchy
particles to self-assemble in confined geometries. We recall
for instance the templated self-assembly technique21 where
confined geometries are used to orient bulk structures or to
induce the formation of novel morphologies. Moreover recent
studies have focused on effective forces between colloids
generated by confined critical patchy particles aiming to
control colloid stability.22 Finally, such systems may be stud-
ied with small-angle neutron scattering23 and atomic force
microscopy24 and thus a quantitative microscopic description
of patchy particles in confined geometries is highly desirable.

The description of confined associating fluids has been
addressed in the past. Density functional theory (DFT) based
on a perturbation of the inhomogeneous hard-sphere (HS)
fluid was used to describe the structure of inhomogeneous
associating fluids. An early example is the work of Se-
gura et al.25 for particles with four patches close to a hard
wall where the weighted density approximation (WDA) of
Tarazona26, 27 was combined with Wertheim’s theory to obtain
a DFT description of associating fluids. In the original DFT
formulation both homogeneous and inhomogeneous versions
of Wertheim’s first order perturbation theory were used to ac-
count for the association free energy of the particles and it
was found that the homogeneous theory—where the law of
mass action is identical to that of the bulk system with the
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density replaced by the averaged local density—yields satis-
factory results over the whole range of parameters. By con-
trast, the inhomogeneous version of Wertheim’s theory was
found to overestimate badly the layering of the particles near
the wall. The reasons for this discrepancy are not fully under-
stood but they appear to be related to the difficulty of imple-
menting Wertheim’s law of mass action in the inhomogeneous
system. This approach was extended to mixtures of associat-
ing and neutral equi-sized hard-spheres.28

A second approach for the same model–particles with
four patches–was developed by Yu and Wu.29 They employed
a modified fundamental measure theory (FMT)30 based on
Rosenfeld’s functional for inhomogeneous hard-sphere fluids
and an inhomogeneous version of Wertheim’s free energy for
association. Yu and Wu29 employed an inhomogeneous ver-
sion of the law of mass action which was shown to give com-
parable results to the homogeneous theory of Segura et al. for
intermediate densities. Yu and Wu’s theory, however, is more
accurate at the highest densities and can be extended to binary
mixtures of particles with different sizes. More importantly, it
reveals that the inhomogeneous version of Wertheim’s first
order perturbation theory depends crucially on the general-
ization of the law of mass action for inhomogeneous patchy
particle systems.

Both theories were applied to systems where bonding is
not fully developed, i.e., at temperatures that are not too low,
and the relation between surface and bulk properties has not
been investigated. In this paper, we focus on the self-assembly
of patchy particles with np = 3 at a planar hard wall, and ex-
tend our calculations to the region where a fully bonded opti-
mal network develops. We have simulated the system by fix-
ing the density and scanning the temperature down to very low
temperatures. We compare the simulation results to the results
of two density functional theories: a homogeneous WDA ap-
proach similar to that of Segura et al. and the inhomogeneous
FMT approach of Yu and Wu, which were shown to be equiva-
lent for hard-spheres in the range of densities considered here.
For the three-patch particle model the theories give similar
results at moderate to high temperatures, by contrast to the
low-temperature regime, relevant to the formation of arrested
states, where both theories break down. We trace this failure
to the assumption of independent patches and stress the need
for the development of density functionals that account for the
directionality of the bonding, which plays a crucial role in the
low-temperature regime.

The paper is organized as follows: in Sec. II we describe
the model and the simulation techniques. Moreover, a brief
comparison of the results of Wertheim’s theory and the sim-
ulation results for the bulk fluid are presented and discussed.
In Sec. III, we describe the two density functional approaches
and in Sec. IV we discuss their validity and limitations, with
emphasis on the low-temperature regime.

II. BACKGROUND

A. Model and simulation methods

Patchy colloidal particles are modeled as hard spheres of
diameter σ with np = 3 equidistant bonding sites on the par-

FIG. 1. Phase diagram of patchy particles with valence np = 3. Symbols are
results from MC simulations. Squares depict the gas-liquid coexistence line.
Diamonds indicate cluster fluid states (pb < 0.5), while triangles indicate per-
colating fluid states. Solid lines are the results from Wertheim’s theory for the
coexistence line and from Flory-Stockmayer theory for the percolation line.
Dashed lines indicate the isochores investigated in this study. Patchy particles
are modeled as hard spheres with 3 equidistant bonding sites (patches) on the
particle equator (inset).

ticle equator (see the inset of Fig. 1). The interaction between
two patches Vij belonging to particles i and j is given by the
Kern-Frenkel potential:31

Vij = VSW (|�rij |)G(r̂ij , r̂i , r̂j ), (1)

where �rij is the vector between the centers of particles i and j,
and r̂i is the unit vector from the center of particle i to the cen-
ter of one patch on its surface. VSW is a square well potential,

VSW (|�rij |) =

⎧⎪⎨
⎪⎩

∞ if |�rij | < σ,

−ε if σ ≤ |�rij | ≤ σ + δ,

0 otherwise,

(2)

and G is the angular part:

G(r̂ij , r̂i , r̂j ) =

⎧⎪⎨
⎪⎩

1 if

{
r̂ij · r̂i > cos(θmax),

−r̂ij · r̂j > cos(θmax),

0 otherwise.

(3)

The interaction energy between sites ε sets the energy scale.
The spatial range δ and the angle θmax control the volume
available for bonding, vb, which is

vb = πσ 3

3
[(1 + δ/σ )3 − 1][1 − cos(θmax)]2. (4)

We fix the parameters δ = 0.119σ and cos θmax = 0.895,
fulfilling the single bond per patch condition assumed in
Wertheim’s first order perturbation theory.

We perform Gibbs ensemble Monte Carlo (GEMC)32

simulations to locate the gas-liquid coexistence line and
grand-canonical Monte Carlo (GCMC) simulations33 to es-
timate the critical point. In the GEMC method, a Monte Carlo
(MC) step consists on average of 4000 roto-translation at-
tempts, 400 particle swap attempts and one volume change.
About 300 particles in a volume V = 2880σ 3 were simulated.
In the GCMC method, we consider boxes with L = 6σ to
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L = 14σ , and a MC step consists of 500 roto-translation at-
tempts and one insertion/deletion attempt. For the largest box,
the number of particles fluctuates between 0 and 800. We scan
the chemical potential μ and temperature T to locate the re-
gion where the system exhibits large fluctuations in the num-
ber of particles N and in the energy E, which signal the pres-
ence of a critical point. The appropriate combination of these
fluctuations, at the critical point, follows the order parameter
distribution of the Ising universality class.34, 35

The surface properties are investigated by canonical en-
semble MC simulations, at different temperatures and densi-
ties, by introducing a surface in the middle of the simulation
box and periodic boundary conditions. The surface is mod-
eled by a planar hard wall acting on the particles through a
hard-core repulsion, i.e., the interaction between the particles
and the surface is purely entropic. The density profiles close to
the wall are calculated at two bulk densities, at temperatures
T above and below the percolation line.

B. Wertheim theory

Within Wertheim’s theory, the free energy for a homoge-
neous system is the sum of two contributions. The free energy
of the hard-sphere reference system and the bonding contribu-
tion Fbond(ρ, T) which arises from considering certain graphs
in the Mayer expansion.36 For the present single-component
model, the bonding contribution can be expressed in terms of
the bonding probability pb (fraction of bonded sites) as

βFbond/N = np ln(1 − pb) + 1

2
nppb, (5)

where β = 1/kT with k the Boltzmann constant. Assuming
that all sites have the same probability of bonding, Wertheim’s
theory predicts that pb is determined by the law of mass
action:

pb

(1 − pb)2
= ρnp	, (6)

where 	 is the equilibrium constant of the “reaction” (bond-
ing) between two patches and ρ is the density. To evaluate 	

for the present model, we assume that the radial distribution
function of the reference HS fluid gHS(r) is approximated by37

gHS(r) = (A0 + A1) + A1(r/σ − 1), (7)

where

A0 = 1 − 0.5η

(1 − η)3
+ 4.5η(1 + η)

(1 − η)3
, (8)

A1 = −4.5η(1 + η)

(1 − η)3
. (9)

As a result,

	 = 4πχ2

[
(1 + δ)3 − 1

3
A0 + (1 + δ)4 − 1

4
A1

]
(10)

×[exp(βε) − 1].

where η = πρσ 3

6 is the packing fraction and χ = 0.5(1
− cos (θmax)) is the fraction of surface covered by the patch.

0 0.1 0.2 0.3 0.4
kT/ε

0

0.2

0.4

0.6

0.8

1

p b

ρσ3
=0.30

ρσ3
=0.40

ρσ3
=0.50

ρσ3
=0.60

ρσ3=0.70
ρσ3

=0.80

FIG. 2. Comparison of the bonding probability pb from Monte Carlo simu-
lations (symbols) and Wertheim’s theory (Eq. (6), lines).

Note that the linear approximation of Eq. (7) is highly accu-
rate in the relevant r range, i.e., within the well of the square-
well potential.

The phase diagram is then calculated straightforwardly.
It includes a gas-liquid first order phase transition that ends
at a critical point at low T and ρ. The coexisting homoge-
neous phases have different densities and fractions of un-
bonded sites. The percolation line is calculated using the
Flory-Stockmayer (FS) theory of polymerization38–40 which
gives for the percolation threshold,

pb = 1

np − 1
. (11)

C. Bulk behavior

Figure 1 shows the phase diagram obtained via GCMC
and GEMC simulations and compares it with the theoretical
results from Wertheim’s theory. The figure also shows the
FS percolation line. The high density phase is always per-
colated, in the sense that there is a non-zero probability of
finding an infinite cluster that contains almost all the parti-
cles. The percolation line (i.e., the line that separates perco-
lated from non-percolated states) intercepts the binodal on
the low-density phase, near the critical point. As shown in
Fig. 1, the percolation line starts on the left of the critical
point and the temperature increases monotonically with the
density. In Fig. 2 we plot the bonding probability as a func-
tion of temperature for different densities. The agreement
between Wertheim’s theory and Monte Carlo simulations is
quite good both for the phase diagram and for the bonding
probability.

III. DENSITY FUNCTIONAL THEORY

As usual in density functional theory, we split the
Helmholtz free-energy functional into the ideal and excess
parts:

F [ρ(�r)] = Fid [ρ(�r)] + Fexc[ρ(�r)], (12)

where ρ(�r) is the number density. Here and in what follows,
we assume that the single-particle distribution function ρ(�r)
depends on the spatial but not on the orientational coordinates.
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σ

ρ
σ3

ε = 0.15

σ

ρ
σ3

ε = ∞

σ

ρ
σ3

ε = 0.3

σ

ρ
σ3

ε = 0.08

σ

ρ
σ3

ε = 0.1

ε

ρ 0σ3

FIG. 3. Density profiles as a function of the distance from the wall at different temperatures for ρbσ
3 = 0.70: (a) kT/ε → ∞, (b) kT/ε = 0.30, (c) kT/ε = 0.15,

(d) kT/ε = 0.10, and (e) kT/ε = 0.08. The full circles are Monte Carlo simulation results. The lines are the results from density functional theory: FMT (red
solid line) and WDA (dashed blue line). (f) Contact density as a function of temperature.

Note that the arrangement of patches on the equator breaks the
rotational symmetry of the particles, and therefore states with
a preferred orientation of the particles cannot be ruled out. In
fact, this is a crude approximation that will break down at low
temperatures, as we will discuss later.

The ideal part is given by

βFid [ρ(�r)] =
∫

d3rρ(�r)[ln(ρ(�r)V) − 1], (13)

where V is the thermal volume. The integral is over the
volume V .

Fexc contains the excluded volume interactions between
HS and the bonding free energy due to bond formation be-
tween the particles. We have used two different approxima-
tions for Fexc: a modified version41 of the local WDA intro-
duced by Segura et al.25 and the FMT for associating fluids
developed by Yu and Wu.29

In the WDA method, the HS and the association term in
the free-energy per particle are evaluated for a homogeneous
system at the same weighted density. The latter is calculated
for a fluid of HS.41 The Carnahan-Starling36 approximation is
employed for the HS contribution, while the association free
energy is given by Wertheim’s first-order perturbation theory
for a homogeneous system (Eq. (5)).

In the FMT proposed by Yu and Wu,29 Wertheim’s free-
energy functional for the inhomogeneous system is used and
thus the two contributions are treated separately. The HS ref-
erence fluid is described by the Rosenfeld FMT approach
while the association contribution is given by an appropriate
inhomogeneous Wertheim’s term. A detailed description of
both methods is found in Appendices A and B, respectively.

IV. RESULTS

We focus on the surface properties of the fluid at two
bulk densities (ρbσ

3 = 0.70 and ρbσ
3 = 0.40) in contact with

a neutral hard-wall, and consider different temperatures (see
Fig. 1). The main results are reported in Figs. 3 and 4.

The density profiles calculated from MC simulations for
ρbσ

3 = 0.70, are plotted together with FMT and WDA the-
oretical results in Fig. 3. The limiting case of HS is also in-
cluded for reference (panel (a) of Fig. 3). Panels (b)–(d) of
Fig. 3 show the results for three different reduced tempera-
tures T above and below the percolation line. The main differ-
ence between the associating fluid (finite temperature) and the
reference HS fluid (T → ∞) is the reduction in the adsorption
of particles near the wall. This effect can be understood as
follows: at very high temperatures almost all the particles are
fully unbonded, and there is a strong adsorption of particles
near the wall due to entropic reasons (gain in configurational
entropy). As we decrease the temperature, the level of associ-
ation between particles increases. The probability of bonding
at distances of order σ from the wall is lower than at larger
distances (the wall is neutral). The contribution to the bond-
ing free energy of the particles near the wall is lower than
the contribution due to the other particles, resulting in a re-
duction of the adsorption of patchy particles at the wall when
compared to the adsorption of hard-spheres (see the contact
density, i.e., the value of the density at z/σ = 0.5, in panel (f)
of Fig. 3).

The WDA provides a fairly good description of the den-
sity profiles down to kT/ε = 0.15, i.e., well inside the per-
colation region (see Fig. 1). At this temperature WDA seems
slightly more accurate than FMT, providing a good estimate
of the contact density. The agreement is lost at kT/ε = 0.10
and below (Figs. 3(d) and 3(e)) where both theories underes-
timate the contact density and do not account for the strong
fluid layering on increasing the distance from the wall. At this
density, we find that patchy particles are adsorbed on the wall
at all T (although the adsorption decreases as the temperature
decreases). No changes with further cooling are expected at
lower temperatures since pb(kT/ε = 0.08) ≈ 0.98, meaning
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FIG. 4. Density profiles as a function of the distance from the wall at different temperatures for ρbσ
3 = 0.40: (a) T → ∞, (b) kT/ε = 0.30, (c) kT/ε

= 0.20, (d) kT/ε = 0.15, (e) kT/ε = 0.12, (f) kT/ε = 0.10, and (g) kT/ε = 0.08. The full circles are Monte Carlo simulation results. Lines are density functional
theory results: FMT (red solid line) and WDA (dashed blue line). (h) Contact density as a function of temperature.
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that the liquid has reached an almost fully bonded configu-
ration and thus the structural properties become essentially
T-independent.4, 42

In Fig. 4, panels (a)–(g), we plot the density profiles for
ρbσ

3 = 0.40. Panel (a) illustrates the HS fluid corresponding
to T → ∞. At kT/ε = 0.3 (b) and kT/ε = 0.2 (c) both, FMT
and WDA, are in reasonable agreement with the MC simu-
lation results. FMT yields slightly better results than WDA
for kT/ε = 0.2. Again, the two density profiles indicate an
adsorption of particles near the wall. The adsorption, due to
the excluded volume, is small compared to the adsorption
of HS (Fig. 4(a)). Figure 4(d) illustrates the system at kT/ε
= 0.15 (slightly below the percolation threshold). The MC
and FMT density profiles are almost uniform. Patchy parti-
cles are slightly desorbed from the wall, indicating the can-
cellation between the effects due to excluded volume and as-
sociation. At this temperature WDA predicts a desorption of
particles very close to the wall, but it also predicts the for-
mation of a more or less well-defined layer of particles at
approximately z/σ = 1 from the wall. Panels (e)–(g) illus-
trate the low temperatures: kT/ε = 0.12 (e), kT/ε = 0.10 (f),
and kT/ε = 0.08 (g). At these T the association of particles
is very high (see the fraction of unbonded sites in Fig. 6),
and the energy of bonding dominates the behavior of the sys-
tem. As a result, FMT predicts a strong desorption of particles
from the wall. However, the simulation shows the opposite
behavior; there is a well-defined layer of particles near the
wall. The layer grows and approaches the wall as the tem-
perature decreases. This desorption-adsorption crossover is
also reflected in the contact density depicted in panel (h) of
Fig. 4. WDA predicts the presence of a layer of particles at
approximately z ≈ σ for low T. Nevertheless, the peak heights
do not vary significantly with T, by contrast to the simulation
results.

The overall T dependence of the contact density at ρbσ
3

= 0.40 is significantly different from the system at ρbσ
3

= 0.70. Indeed, for ρbσ
3 = 0.40, the contact density changes

continuously from the HS adsorption limit to the low T des-
orption, while in the ρbσ

3 = 0.70 system only adsorption is
present. To rationalize this behavior we recall the thermody-
namics of the bulk system, and in particular the gas-liquid
coexistence. In limited valence systems, the liquid side of the
gas-liquid coexistence is almost vertical in the T − ρ plane.
The associated density provides a quantification of the so-
called optimal network density, i.e., the density at which par-
ticles in the liquid (actually a gel at low T) are not stressed.
At the same time, the small value of the density of the gas-
phase indicates that the coexisting pressure is rather small.
The contact density, at a hard-wall, is a direct measure of the
pressure in the system. Hence, close to the coexisting liquid
branch, the contact density decreases as T decreases, resulting
in the reported desorption. On increasing ρ at constant low T,
the formation of an extended network of bonds causes the in-
crease of stresses in the system and the pressure increases.
This results in a significantly large value of the contact den-
sity, driving the adsorption phenomenon.

To pin down the origin of the discrepancies between the
DFT results and MC simulations which build up on cool-
ing, we plot in Fig. 5(a) the uniaxial order parameter pro-

σ

ε
ε
ε
ε

θ

θ

θ
σ

ε
ε
ε
ε

θ)

θ

σ
σ
σ
σ
σ

ε = 0.10

θ

FIG. 5. (a) Orientational order parameter SN(z) near the wall extracted from
MC canonical simulation of patchy particles for different T and ρbσ

3 = 0.40.
(b) Probability distributions P(θ , z) as a function of θ for z = 0.75σ at the
same T and ρ as in panel (a). (c) Probability distributions P(θ , z) as a function
of the distance from the wall z evaluated at kT/ε = 0.1 and ρσ 3 = 0.4. θ

is evaluated at different distances from the wall by dividing the simulation
box into “slices” of size L × L × 	z where 	z = 0.5σ . Notice that when
orientational isotropy is restored (high T), P(θ ) ∼ sin (θ ). Lines are guides to
the eye.

file SN(z) for the system at ρbσ
3 = 0.40. This is defined as

SN (z) = ∫
d�̂ h(�̂, z) P2(cos (θ )) where h(�̂, z) is the ori-

entational distribution function at distance z from the wall,
P2(cos (θ )) is the second Legendre polynomial and θ is the
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angle between the unit vector �u normal to the wall and the
unit vector �p normal to the plane containing the patches. SN(z)
provides information on the orientation of particles as a func-
tion of the distance z from the wall. As shown in Fig. 5, SN(z)
grows significantly close to the wall on cooling. The value of
SN(z) signals a crossover from an isotropic fluid to a nematic-
like phase near the wall. To highlight the particles orientation
close to the wall, we show in Fig. 5(b) the probability distribu-
tions P(θ , z), confirming that at low T the particles are oriented
near the wall, with the plane containing the patches parallel
to the wall. This geometry maximizes the bonding proba-
bility by moving the patches away from the neutral wall.
The average orientational angle close to the wall decreases
continuously with T and it should approaches θ = 0 for per-
fect order. We note indeed that the finite bonding volume al-
lows for a flexibility in the orientation of the particles, con-
tributing to a small but non-zero average angle even in highly
bonded conditions close to the wall. At high T the particles
are randomly oriented (see Figs. 5(a) and 5(b)) and P(θ , z)
∼ sin (θ ). Finally, we note that far from the wall (Fig. 5(c))
the particles undergo a continuous change from a state with
preferred orientation to an isotropic one.

We stress that both DFT approaches neglect the orienta-
tional order that develops in the system at low T, since the
free-energy depends on the number density but not on the ori-
entation of the particles.

Finally, we comment on the difference between the re-
sults of the two DFT approaches at low T for ρbσ

3 = 0.40.
Even though the agreement with the numerical results is poor
in both cases, WDA describes qualitatively the layering of the
particles near the wall at low T while this feature is absent
in the FMT results. Such layering is related—in part—to the
orientation of the particles (which is neglected in both DFTs)
in order to minimize the fraction of unbonded sites X(z) (i.e.,
1 − pb) of particles near the wall. Figure 6 shows X(z) along
z as predicted by FMT (solid lines) and WDA (dashed lines).
Symbols are the results from MC simulations. At low T, X(z)
obtained from the homogeneous Wertheim theory (WDA) ex-
hibits a trend similar to the MC results, while X(z) calculated
using the inhomogeneous Wertheim theory (FMT) increases
sharply near the wall. The WDA X(z) follows the density pro-
file, increasing over the bulk value when ρ(z) > ρb, which
appears to describe more accurately the z dependence of X.
A somewhat related but more drastic failure of an inhomo-
geneous version of Wertheim theory was reported by Segura
et al.25

V. CONCLUDING REMARKS

In this work we have studied the properties of a fluid of
patchy particles with np = 3 patches. We have located the gas-
liquid coexistence line, the critical point and the percolation
line, providing a full characterization of the thermodynamics
and structure of the fluid phases. We have also shown that, for
this patchy model, Wertheim’s theory for homogeneous fluids
is accurate. We have then studied the surface properties of this
fluid in contact with a neutral hard-wall using MC simulation
and two DFT approaches.

We have investigated the behavior of the system at two
different densities, one close to the liquid branch of the coex-

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
z / σ

0

0.2

0.4

0.6

0.8

X
(z

)

kT/ε=0.20
kT/ε=0.15
kT/ε=0.10
kT/ε=0.08

(d)

(b)

(a)

(c)

FIG. 6. Fraction of unbonded sites as a function of the normal distance from
the wall at different Ts and ρbσ

3 = 0.40. Symbols are results from MC
simulation. Solid lines are results from the FMT-inhomogeneous Wertheim
theory (Eq. (B20)). Dashed lines are obtained from the WDA-homogeneous
Wertheim theory (Eq. (6)).

istence curve and one about 70% higher, for several T, cover-
ing the structural change of the system from a monomer solu-
tion to an almost fully bonded network state. We have shown
that at low ρb, the wall adsorbs particles at high T which des-
orb as T is lowered. The physical mechanism responsible for
the adsorption-desorption crossover is understood in terms of
the proximity to the gas-liquid coexistence curve. Indeed, at
low T, close to the liquid branch, the liquid coexists with a gas
at very low density and the pressure is small. Since the con-
tact density at the hard wall is a measure of this pressure, at
small ρb desorption must occur. On increasing T the pressure
increases and for T above the percolation threshold the parti-
cles are adsorbed at the wall. Such crossover is not observed
at the higher ρb where the density at the wall is always larger
than the bulk density. Indeed, even at low T, the price to pay
for the formation of a distorted network leads to an increase of
the pressure and hence to a large contact density, even when
pb → 1.

Not surprisingly, the description using density functional
theory is consistent with simulations and with the results re-
ported in Refs. 28 and 29 at high and intermediate T, but it
fails at low T. We have traced this failure to the inadequacy
of describing the orientational degrees of freedom of the par-
ticles. Indeed, close to the wall, the particles are oriented in
such a way that the plane containing the bonding sites is al-
most parallel to the wall. It appears that the orientational de-
grees of freedom and an appropriate coupling to the density
profile need to be taken into account in future work in order
to describe the structure of associating fluids (and gels) close
to a hard wall at low temperatures.
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APPENDIX A: WEIGHTED DENSITY FUNCTIONAL

The weighted density functional approach is based on the
idea that the free energy of the inhomogeneous system, char-
acterized by the single-particle density ρ(�r), may be written
in terms of the free energy of a homogeneous fluid with an
effective density that is evaluated through an appropriate av-
eraging procedure. The approach was proposed by Tarazona27

and was used and modified by several authors.30, 43, 44

The excess free energy functional of the inhomogeneous
fluid is written as

Fexc[ρ] =
∫

d�rρ(�r)f [ρ; �r], (A1)

where f [ρ; �r] is the local excess free energy functional per
particle. f [ρ; �r] can be written as a function of the density ρ̄,
a functional of the single-particle density, which satisfies

f [ρ; �r] = f (ρ̄(�r)), (A2)

where f (ρ̄(�r)) is the local free-energy density of the homo-
geneous system and ρ̄(�r) is the weighted density defined by

ρ̄(�r) =
∫

d�r ′ρ(�r ′)ω(�r − �r ′; ρ̃(�r)). (A3)

In Eq. (A3) ρ̃(�r) is the difference between the density and
its weighted counterpart and ω is the weight function satisfy-
ing the constraint∫

d�r ′ω(�r − �r ′, ρ̃(�r)) = 1. (A4)

The weight function, which encodes the non-local character
of the functional, is related via nonlinear differential equa-
tions to the direct correlation function of the inhomogeneous
fluid. An approximation to the weight function is obtained by
requiring that the second functional derivative of the excess
free-energy

c(2)(r1, r2; ρ) = − βδ2Fex[ρ]

δρ(r1)δρ(r2)
(A5)

gives an accurate description of the correlations of the homo-
geneous fluid.

Different WDA functionals result from different approx-
imations for the weight function. We use a modified version
of the WDA proposed by Tarazona, developed by Kim et al.41

In this approximation

ρ̃(�r) =
∫

d �r ′ρ(�r ′)ω(�r − �r ′, ρb), (A6)

where ρb is the bulk density. Following Tarazona, ω(�r, ρ) is
expanded in powers of ρ in order to reduce the computational

effort:

ω(r, ρ) = ω0(r) + ω1(r)ρ + ω2(r)ρ2. (A7)

The same is done for ρ̄(�r):

ρ̄(�r) = ρ0(�r) + ρ1(�r)ρ̃(�r) + ρ2(�r)ρ̃(�r)2, (A8)

where

ρ̃(�r) = ρ0(�r) + ρ1(�r)ρb + ρ2(�r)ρ2
b , (A9)

with

ρi(�r) =
∫

d�r ′ρ(�r ′)ωi(�r − �r ′) i = 0, 1, 2. (A10)

The grand potential functional

β�[ρ] = βF [ρ] + β

∫
d�r (Vext (�r) − μ)ρ(�r) (A11)

is minimized with respect to variations of ρ(�r):

βδ�[ρ]

δρ(�r)
= βδF [ρ]

δρ(�r)
− β(μ − Vext (�r)) = 0, (A12)

which yields the equation for the equilibrium density profile,

βδF [ρ]

δρ(�r)
= βμ − βVext (�r). (A13)

The first derivative of the excess free energy functional
is the single-particle direct correlation function c(1)(�r) and
putting together Eqs. (13) and (A1)–(A3) we obtain

βμ − βVext (�r) = ln ρ(�r) − c(1)[�r; ρ], (A14)

with

c(1)[�r; ρ] = −βf (ρ̄(�r)) − β

∫
d�r ′ρ(�r ′)f ′(ρ̄(�r))

δρ̄(�r ′)
δρ(�r)

,

(A15)
and

δρ̄(�r ′)
δρ(�r)

= ω(�r − �r ′, ρ̃(�r ′))

+ω(�r − �r ′, ρb)
∫

d�r ′′ρ(�r ′′)ω′(�r ′ − �r ′′, ρ̃(�r ′)).

(A16)

The chemical potential μ is evaluated from the homoge-
neous version of Eq. (A15):

βμ = ln ρb − c(1)(ρb)

= ln ρb − βf (ρb) − βρbf
′(ρb). (A17)

Finally, combining Eqs. (A14) and (A17), we obtain the den-
sity profile:

ρ(�r) = ρb exp[−βVext (�r) + c(1)[�r; ρ] − c(1)(ρb)]. (A18)

The excess free energy is the sum of the free energy of
HS given by the Carnahan-Starling approximation36 and the
bonding contribution given by Eq. (5).

At a planar hard-wall, the external field is Vext = 0 for
z > 0 and infinite otherwise, and the density profile depends
only on the distance z from the wall:

ρ(z) = ρb exp[c(1)(z; [ρ]) − c(1)(ρb)] z > σ/2,

= 0 z < σ/2. (A19)
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The weight functions ωi(�r) for this system, defined in
Ref. 41, are

ω0(z) = 3

4πσ 3
, |z| < σ,

= 0 otherwise, (A20)

ω1(z) = 0.21σ 2 − 1.49z2 − 0.18

(
z2

σ

)2

+ 1.36
|z|3
σ

, z < σ

= −0.11σ 2 + 2.9z2 + 0.29

(
z2

s

)2

− 1.81σ |z|

−1.6
z3

σ
σ ≤ z ≤ 2σ,

= 0 otherwise, (A21)

and

ω2(z) = 10π2

576
σ (σ 4 − 12(σz)2 − 5z4 + 16σ |z|3), |z| < σ,

= 0 otherwise. (A22)

APPENDIX B: FUNDAMENTAL MEASURE
DENSITY FUNCTIONAL

A second approach, uses a geometry-based density-
functional to describe the excluded volume between spheres
as well as the inhomogeneous associating free-energy. It was
proposed by Yu and Wu29 to describe inhomogeneous mix-
tures of hard-spheres (HS) with an arbitrary set of interaction
sites. In the following we consider a single-component fluid
of HS with np identical patches, in which case, the excess free-
energy reads:

βFexc[ρ(�r)] =
∫

d3r {βfHS[nα(�r)] + βfbond [nα(�r)]} , (B1)

where fHS is the reduced excess free-energy of the fluid of
HS, and fbond is the free-energy arising from the association
of the particles. Both quantities depend on a set of weighted
densities {nα(�r)} (see later).

1. Hard sphere fluid

The excluded volume interactions between HS are de-
scribed by the Rosenfeld functional:30

βfHS = − n0 ln(1 − n3) + n1n2 − �nυ1 · �nυ2

1 − n3

+ (n2)3 − 3n2�nυ2 · �nυ2

24π (1 − n3)2
,

(B2)

where we have dropped the spatial dependence of the
weighted densities for convenience. nα(�r) are convolutions of
the density with the weight functions wα(�r), which are related
to geometrical properties of the particles:

nα(�r) = wα(�r) ∗ ρ(�r), (B3)

where * denotes the three-dimensional convolution
h(�r) ∗ g(�r) = ∫

d3xh(�x)g(�x − �r). For HS the weight
functions are:

w3(�r) = �(RS − |�r|), (B4)

w2(�r) = δ(RS − |�r|), (B5)

w1(�r) = w2(�r)/(4πRS), (B6)

w0(�r) = w2(�r)/(4πR2
S), (B7)

�wυ2(�r) = w2(�r)
�r
|�r| , (B8)

�wυ1(�r) = �wυ2(�r)/(4πRS). (B9)

δ( · ) is the Dirac-delta distribution and �( · ) is the Heaviside
step function. RS = σ /2 is the sphere radius. In planar geom-
etry the one particle distribution function depends only on the
normal distance from the wall, z. The weight functions are
obtained integrating over the lateral coordinates,

wα(z) =
∫

dx

∫
dywα(�r). (B10)

The resulting weight functions are

w3(z) = π
(
R2

S − z2) �(RS − |z|), (B11)

w2(z) = 2πRS�(RS − |z|), (B12)

w1(z) = w2(z)/(4πRS), (B13)

w0(z) = w2(4πR2
S), (B14)

�wυ2 = 2πz�(RS − |z|)ẑ, (B15)

�wυ1 = wυ2/(4πRS), (B16)

with ẑ the unit vector normal to the wall.

2. Wertheim’s inhomogeneous free-energy

The bulk free energy of a fluid of particles with np identi-
cal sites (Eq. (5)) can be rewritten in terms of the bulk fraction
of unbonded sites Xb ≡ 1 − pb as17–20

βfbond = npρb

(
ln Xb − Xb

2
+ 1

2

)
(B17)

with ρb the bulk density, and Xb the bulk fraction of unbonded
sites, related to the thermodynamic variables through the law
of mass action:

Xb = (1 + npρbXb	)−1. (B18)

Yu and Wu29 generalized the bulk free energy,
Eq. (B17), to inhomogeneous systems by including a new fac-
tor ζ = 1 − �nυ2�nυ2/n2

2 that incorporates the vectorial weight

Downloaded 02 Jan 2013 to 151.100.47.133. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



084704-10 Gnan et al. J. Chem. Phys. 137, 084704 (2012)

densities into the associating part of the free energy. The
bonding free energy for inhomogeneous fluids reads

βfbond [nα(�r)] = npn0(�r)ζ (�r)

(
ln X(�r) − X(�r)

2
+ 1

2

)
,

(B19)
where X(�r) is the fraction of unbonded sites at position �r
given by the modified law of mass action:

X(�r) = (1 + npn0(�r)ζ (�r)X(�r)	(�r))−1. (B20)

The interaction between two sites determines 	. For
the Kernel-Frenkel potential (where orientational and transla-
tional degrees of freedom are decoupled) 	 is given in terms
of gHS(�r), the pair correlation function of the reference HS
fluid, and fM, the Mayer function:

	(�r) =
∫

d3rgHS(�r)fM, (B21)

where fM = exp (βε) − 1, and the integral is over the bonding
volume vb. Following Yu and Wu29 we use a modified contact
value for the pair correlation function:

gHS(�r) = 1

1 − n3
+ σn2ζ

4(1 − n3)
+ σ 2(n2)2ζ

72(1 − n3)2
. (B22)

Assuming that the pair correlation function is constant over
the bonding volume, we approximate Eq. (B21) by

	(�r) = vbgHS(�r)fM. (B23)

Finally, we minimize the grand potential,

�[ρ] = F [ρ] − μ

∫
d3rρ(�r), (B24)

to obtain the equilibrium density profiles. μ is the chemi-
cal potential and the integrals are computed using the trape-
zoidal rule and a step size 	z = 0.01σ . We use a standard
conjugated-gradients method to minimize �.
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