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We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype

model for liquids that present the same thermodynamic anomalies which characterize liquid water.

Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an

accurate density of states for different system sizes and determine the size-dependent critical parameters.

Extrapolation to infinite size provides estimates of the bulk critical values for this model. The finite-size

study allows us to establish that critical fluctuations are consistent with the Ising universality class and

to provide definitive evidence for the existence of a liquid-liquid critical point in the Jagla potential. This

finding supports the possibility of the existence of a genuine liquid-liquid critical point in anomalous

one-component liquids like water.
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The question of whether supercooled water would
undergo a liquid-liquid (LL) first order transition terminat-
ing in a second order LL critical point (LLCP) if crystal-
lization could be prevented is still highly debated [1–5].
The LLCP hypothesis, formulated back in 1992, was put
forward to interpret molecular dynamics simulations of the
classical ST2 model [6] for water which showed evidence
of a van der Waals loop observed in low temperature T
supercooled isotherms [7]. Such unconventional behavior
has since then been confirmed in more detailed studies of
the same model [3,4,8] as well as in studies of different
water models [9–11]. The idea of a LLCP and the associ-
ated elegant explanation of water anomalies (including the
density maximum and the compressibility minimum) and
of the amorphous forms of water has been supported, with
no definitive proof, by experiments [12–16] and theoretical
studies [2]. It has also been suggested that the LLCP can
be a feature of several network forming liquids, including
silica [17], silicon [18–21], and tetrahedral DNA constructs
[22]. A second critical point (besides the ordinary gas-
liquid one) has also been discussed as a feature of models
in which a competition between two local structures of
distinct density, differing in local order (entropy) and
energy, exists. Spherical models with competing length
scales [23–26] and in particular ramp potentials [27]
have indeed been proposed as candidates for investigating
the physics of LL transitions.

Recently, Limmer and Chandler [1] questioned the idea
of a LLCP in the ST2 model, calling attention on the
absence of any finite-size scaling study of the critical fluc-
tuations close to the LLCP. Indeed, interference from both
the close-by glass transition, which makes equilibration of
the low density phase difficult, as well as the spontaneous
nucleation of ice, the rate of which is proportional to the
system size, makes finite-size scaling studies very difficult

for classical water models, even if electrostatic forces are
treated with the computationally less expensive reaction
fieldmethod. The criticisms posed byLimmer andChandler
can be applied to all models, including the spherical
ones, challenging the accumulated evidence in favor of
LL transitions. In light of such criticisms, it is thus parti-
cularly important to establish whether the existence of a
LLCP can be unambiguously proved with a proper finite-
size scaling investigation. In this Letter, we report a detailed
numerical study of the critical fluctuations for the Jagla
potential [28–30], a model which shows both water anoma-
lies and polyamorphism in the glass phase [31]. Evidence
of a LLCP, located in the stability field of the fluid has
been reported in previous studies [32–34]. By investigating
systems of different sizes (from 100 to 1600 particles), we
are able to prove that such a LLCP does exist and that the
behavior of the fluctuations close to the critical point is
consistent with the Ising universality class. Extrapolating
the size-dependent critical parameters we evaluate the loca-
tion of the bulk critical point. We thus provide an unmistak-
able evidence of a LLCP in a one component system.
The pair-wise Jagla ramp interaction potential [28–30]

is shown in Fig. 1. It has two characteristic lengths, the
hard-core distance r ¼ a and the soft-core distance r ¼ b.
The minimum of the energy U0 corresponds to the soft-
core distance. An attractive tail extends up to r ¼ c. In the
present Letter, the parameters of the ramp potential have
been set to b=a ¼ 1:72 and c=a ¼ 3. UR ¼ 3:56U0 is
defined as the value of the potential energy at r ¼ a [33].
Quantities in the following are expressed in reduced units.
Distances are in units of a, energies in units of U0. The
density, defined as � � N=L3, where N is the number of
particles and L is the edge of the cubic simulation box, is
measured in units of a�3, the pressure in units of U0=a

3,
and the temperature in units of U0=kB, where kB is the
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Boltzmann constant. Molecular dynamics simulations
suggest that with this choice of the parameters, a LLCP
occurs at TC ¼ 0:375, �C ¼ 0:37, and PC ¼ 0:243 [32], in
a region where the liquid is stable (as opposed to meta-
stable) with respect to crystal ordering [32,33]. For a
different choice of parameters, isothermal-isobaric
constant-NPT Monte Carlosimulations also suggest the
existence of a LLCP in the stable liquid phase at
TC ¼ 0:076, �C ¼ 0:378, and PC ¼ 0:0341 [34].

To evaluate the distribution of density and energy
fluctuations close to the critical point we perform grand
canonical Monte Carlo (GCMC) simulations in a cubic box
of side L at fixed T and chemical potential �. Translation,
insertion, and deletion moves are attempted with ratios
200:1:1. The translation move consists of randomly dis-
placing a particle up to 0.1a in each direction. To effec-
tively harvest the computational abilities offered by
computer clusters and to sample all possible states with
similar statistics, we implement the successive umbrella
sampling (SUS) technique [35]. In the SUS technique the
range of number of particles investigated is divided into
many small overlapping windows (N, N þ �N). For each
window, a separate GCMC simulation monitors how often
a state of N particles is visited. Deletions or insertions that
would cause N to vary outside the range assigned to that
window are rejected. Since the windows are independent,
simulations can be run in parallel, with a gain in through-
put that scales linearly with the number of processors
employed. In our case, approximately 30 years on a single
CPU are required to obtain the data presented here. By
imposing the equality of the probability at the overlapping
boundaries, the energy and particle histograms for each

window Pð�; EÞ can be combined to obtain the full Pð�; EÞ
histogram. Such a coupled density-energy histogram allows
us to estimate Pð�Þ at different T and � using temperature
reweighting techniques [36], changing the fugacity z ¼ e��

aswell asT.We have selected�N ¼ 1 forL ¼ 8, 10, and 12
and�N ¼ 2 for theL ¼ 15 system. Table I reports the range
of number of particles spanned during our SUS GCMC
simulations for each box, and the values of T and z at which
the systems were simulated.
Figure 2 shows Pð�Þ calculated starting from the raw

SUS GCMC data for the L ¼ 8 system at T ¼ 0:363 and
z ¼ 6:30� 10�6 (see Table I). It also shows different
curves calculated at the low-density liquid high-density
liquid coexistence via data reweighting, imposing equal
area under the two peaks, up to the size-dependent LLCP.
The location of the critical point for each size is esti-

mated through best-fit comparison of the probability
distribution of the ordering operator M at the critical point

TABLE I. SUS GCMC simulations performed close to the
size-dependent LLCP. We report the box size, the interval in
the number of particles (NMin � NMax) studied, the temperature
T and the fugacity z selected in the simulations.

Box Size NMin NMax T z

8 100 291 0.363 6:30� 10�6

10 250 537 0.368 7:98� 10�6

12 466 808 0.370 8:50� 10�6

15 1000 1600 0.370 8:61� 10�6

FIG. 1 (color online). Representation of the radial dependence
of the Jagla ramp potential for the parameters chosen in the
present study.

FIG. 2 (color online). Density distribution functions Pð�Þ for
L ¼ 8. The filled symbols show the raw Pð�Þ resulting from the
GCMC simulation at T ¼ 0:363 and z ¼ 6:30� 10�6. The lines
show Pð�Þ along the LL coexistence, obtained via T and z
reweighting of the filled symbols. The lowest curve is the critical
density distribution.
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with the universal distribution characterizing the Ising
universality class [37]. The ordering operator M of the LL
transition is considered to be, analogously to the gas-liquid
transition, a linear combination M� �-su, where u is the
energy density of the system and s is the field-mixing
parameter. Exactly at the critical point, fluctuations of M
follow a known universal distribution, the same that char-
acterizes the fluctuations of the magnetization in the Ising
model. The result of the fitting procedure provides values
for TC, zC, s and implicitly also for �C. In all cases, the
size-independent parameter s has been found to assume
values close to zero, so that for the present modelM� � to
a good approximation.

Figure 3 shows the distribution of density fluctuations
at the (size-dependent) critical point for all investigated
system sizes. All the distributions are shown as a function

of the rescaled variable x ¼ a�1
M L�=�ðM�MCÞ. Here � is

the critical exponent of the correlation length and � the
critical exponent of the order parameter. For the three
dimensional Ising universality class � ¼ 0:629 and � ¼
0:326 [38]. All curves follow the Ising universal distribu-
tion very precisely.

Finite-size scaling predicts TC � L�ð�þ1Þ=� and �C �
L�ð�þ1Þ=�, where � ¼ 0:54 is the universal correction to
the scaling exponent [37]. Finite-size scaling also predicts

�C � L�ðd�1=�Þ. The size dependence of (TC, �C, �C) is
shown in Fig. 4. As we can see the size dependence of
the critical parameters is consistent with the Ising 3D
universality class. By extrapolating the behavior of the
critical parameters to L ! 1, we find Tbulk

C ¼ 0:3751ð3Þ,

�bulk
C ¼ �4:2999ð1Þ, and �bulk

C ¼ 0:377ð5Þ, in very good

agreement with the corresponding values estimated from
molecular dynamics simulations for the same model [32].
We have used for the extrapolation only the three largest

FIG. 3 (color online). Matching to the Ising distribution (con-
tinuous line) of all the density distribution function at the critical
point (symbols) for all the box sizes (L ¼ 8, 10, 12, and 15). The
factor a�1

M ¼ 0:34 has been chosen to scale PðxÞ to unit variance.
The theoretical curve is from Ref. [38].

FIG. 4 (color online). Size dependence of the apparent critical
temperature, chemical potential, and density (symbols) for the
four sizes, 8, 10, 12, and 15, investigated. The lines are best fit to
straight lines and are performed considering only the three
largest sizes, L ¼ 10, 12, and 15.

FIG. 5 (color online). Liquid-liquid coexistence as calculated
from histogram reweighting for all box sizes and LLCP as
calculated from finite-size scaling. In the inset, the values of
the chemical potential at coexistence and at the LLCP are also
reported as a function of temperature.
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systems to be sure to be within the range of L for which the
scaling is valid.

Further implementing histogram reweighting techniques,
it is possible to calculate the LL coexistence for all the
investigated sizes, by estimating for each T the value of z
at which the area under the peaks of the two phases are
identical (see Fig. 2). Fig. 5 shows the LL coexistence curve
in (T, �) as well as the values of the chemical potential along
the coexistence curve. The coexistence lines of all sizes
superpose far from the critical point, confirming that finite-
size effects are progressively more and more negligible.

The data reported in this Letter rigorously prove
via finite-size scaling that a second order LLCP, consistent
with the three-dimensional Ising universality class—i.e.,
the same universality class of the gas-liquid transition—
does exist in the one-component Jagla model. The present
findings also prove that stable (or metastable) LLCPs can
indeed exist in models with competing structures. By anal-
ogy our Letter supports the interpretation of the observed
shape of the critical fluctuations recently reported for the
case of long-range water models [3,5,8] in terms of a
genuine LLCP.
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