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Through extensive state-of-the-art numerical simulations, we study the behavior of the dipolar hard

sphere model at low temperatures and low densities, shedding light on a region of the phase diagram

where a topological phase transition has long been thought to occur. We show that the system exhibits

remarkable and unusual behaviors, like a very low density percolation locus and a stabilization of rings

over chain structures. This unexpected abundance of rings comes from a delicate balance between the

lower ring energy and the end-to-end chain entropy, and hints at a possible mechanism for the

suppression of the gas–liquid phase separation. Our results open the possibility for refined theoretical

approaches which, in addition to the previously encompassed chain and branched geometries, must

also include the significant contribution arising from ring formation.
I. Introduction

The dipolar hard sphere (DHS) model is of paramount impor-

tance in the physics of disordered systems.1–5 It consists of a point

dipole embedded in the center of a hard sphere, and it is the

simplest model which incorporates anisotropic long-range

interactions. Notwithstanding its simplicity, the DHS model is

still the subject of thorough investigations, aimed in particular at

understanding its low-temperature (T) and low-density (r)

behaviour. From a theoretical point of view, the main difficulty

arises from the fact that at low T and low r the phase behaviour

of the model is determined by the competition between

condensation and self-assembly. The condensation of dipolar

particles, analogous to the usual gas–liquid phase transition, was

first predicted by de Gennes and Pincus6 after observing that the

spherically averaged interaction between dipoles is attractive. On

the other hand, dipolar particles self-assemble into linear and

branched structures with the dipoles aligned in the (energetically

favorable) nose-to-tail geometry.2,7–10 The anisotropic aggrega-

tion of particles which results from the self-assembly process was

long thought to be the mechanism responsible for the suppres-

sion of isotropic condensation and the absence of a phase tran-

sition between disordered states. This belief was completely

reverted by theoretical studies11 which showed that self-assembly

alone is capable of sustaining a phase transition. Such a topo-

logical phase transition originates from the effective interactions

between topological defects on the self-assembled dipolar chains.

The topological defects relevant to the phase transition are the
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chain ends, which provide an effective repulsion between the

chains,11 and the Y-shaped junctions, which instead provide an

effective attraction. The essential properties of the topological

phase transition can be studied both by mean-field theories11 and

thermodynamic perturbation theories,12,13 showing that criti-

cality arises only if the ratio between the energy cost of junction

formation over the energy cost of chain-end formation is within

a specific range of values. Whether such an energy ratio in the

DHS potential is consistent with the possibility of observing

a topological phase transition is still unknown.

The low-T and low-r properties of the zero-field DHS model

in three dimensions (3D) are not only hard to grasp from

a theoretical point of view, but also pose significant challenges to

both experimental and computational studies. From an experi-

mental point of view, one is faced with the difficulty of generating

single crystal magnetic cores of suitable size and without any

residual isotropic attraction (which would artificially promote

the condensation of the dipoles). From a computational point of

view, the major challenges come from the expensive long range

electrostatic calculations and from the long relaxation times of

the structures (chains and networks) into which the dipoles self-

assemble. Most of the simulation studies have thus been plagued

by equilibration issues or severe finite size effects. These diffi-

culties have inspired a lot of work studying model systems that

are easier to solve numerically and that converge asymptotically

on the DHS as a function of some parameter.3,14–16 Another line

of research concentrated on the study of temperature-dependent

valence models,12,13 successfully locating the topological phase

transition, and finding very good agreement with the theoretical

predictions.

Recently, we have reported17 a numerical study of the density

fluctuations in the DHS, finding no evidence of the putative gas–

liquid critical point in the region of densities and temperatures
Soft Matter
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where the transition was predicted to occur.3,14–16,18 Even more

interestingly, the reason for the absence of the topological phase

transition in such a region was not related to the high energy cost

of junction formation, as in one of the expected theoretical

scenarios, but to the breakdown of the mean-field approxima-

tions at low T and low r. These results open up a new scenario for

the DHS model, where new theoretical modeling is needed in

order to explain its phase behaviour. In the present work we

carefully study the structural properties of the DHS fluid at lowT

and low r, as a first step in this endeavour. We use highly efficient

MC simulation techniques and extended computational

resources to access, in equilibrium in the isothermal–isochoric

ensemble, the unexplored T and r region where previous

attempts had incorrectly predicted a gas–liquid coexistence. We

provide detailed structural information as well as a study of the

aggregate topologies to provide accurate data for refined theo-

retical modelling. In particular, we focus on chains and rings,

which are the most common structures found in low-T, low-r

DHS fluids.19,20 The interplay between these structures has been

the center of numerous studies. Small-angle neutron scat-

tering21–23 and TEM24 experiments have shown that the structure

factor at small wavelengths displays a power-law behaviour due

to the aggregation of particles in finite-size and long-lived clus-

ters. Many simulations and theoretical approaches were devoted

to interpreting the structural signatures of low-T ferrofluids.25–30

Simulations in quasi two dimensions suggested that at very low T

and r the system is mainly composed of isolated rings. Indeed, it

has been theoretically shown that the ground state in the quasi-

2D system is a single ideal ring31 for sizes larger than 4. As the

density is increased, the average size of rings increases until they

break into open chains32 due to entropic effects. As the density is

further increased the chains start branching until they form

a percolated network.19

We aim to generate information which can be used to provide

appropriate parameters which can help to map the DHS model

onto patchy particle models33 that can be analytically solved

within the Wertheim formalism.34,35 We find that the DHS model

at low T exhibits remarkable and unusual behaviors, like a very

low density percolation locus and a stabilization of rings over

chains, resulting in a depletion of the number of chain ends. We

speculate that this excess number of rings is a possible mecha-

nism for suppressing the gas–liquid phase separation.

The paper is organized as follows. In Section II the model and

the simulation methods are presented. Section III shows the

results and Section IV contains a brief summary and a discussion

of the results.
Fig. 1 (a) Nose-to-tail contact configuration corresponding to an

absolute minimum in the interaction energy of u ¼ �2 (in natural units).

The arrows represent the point dipole embedded in the hard spheres. (b)

Antiparallel contact configuration corresponding to a relative minimum

of u ¼ �1. (c) A single DHS with northern (blue) and southern (red)

virtual bonding regions highlighted.
II. Methods

A. Model and computational details

The pair interaction potential between two dipolar hard spheres

i and j is

uði; jÞ ¼ uHS

�
rij
�þ mi$mj � 3

�
mi$r̂ij

��
mj$r̂ij

�
r3ij

(1)

where rij is the vector connecting the centers of particles i and j,

rij ¼ |rij|, uHS(rij) is the hard sphere potential and mi is the dipole

moment of particle i. In the following, the Boltzmann constant
Soft Matter
kB ¼ 1, b ¼ 1/T, lengths are measured in units of particle

diameter s and energy in units of m2/s3. In these units, the most

energetically favorable configuration is the nose-to-tail contact

geometry, with an energy contribution of u¼�2 (Fig. 1(a)). This

absolute minimum is responsible for the characteristic chain-like

structures which become prominent at low T. A relative

minimum arises from the side-to-side antiparallel geometry,

corresponding to a pair interaction energy of u ¼ �1

(Fig. 1(b)).

The long range nature of the dipolar interaction and the

clustering process hinders the possibility of carrying out equi-

librium simulations in the low T (T ( 0.2), low r region via

conventional methods. Indeed, when thermal fluctuations

become of the order of one tenth of the nose-to-tail energy,

a significant chaining process starts to take place. In order to

explore the low-T and low-r region in equilibrium we implement

special Monte Carlo state-of-the-art moves and techniques

specifically aimed at the DHS system.

One of the biggest difficulties in the simulation of self-assembly

processes is the fact that the structures that are formed are

located in a very small region of the phase space, and are thus

difficult to sample. Moreover, once these structures are formed,

the breaking of bonds becomes a rare event, which prevents the

sampling of independent configurations. An efficient way to

overcome these difficulties is to facilitate the formation and

breakage of bonds via biased Monte Carlo moves.36 In this work

we adapt the aggregation-volume-bias (AVB) algorithm37 which,

given the definition of the region around each particle where

bonds are stronger, accelerates both bond formation and bond

breakage by moving particles into and out of these regions.

For the DHS model the most favourable bonding configura-

tions correspond to the head–tail geometry, as shown in

Fig. 1(a), and we thus define two virtual bonding regions (BR) on

the poles of each particle. A bonding move consists in selecting

the bonding region of a particle (say for example the north pole),

and then moving the complementary pole (south pole) of another

particle into this region. The reverse move consists instead in

moving a particle out of the bonding region to a random location

in the sample. Following the Kern–Frenkel idea,38 the bonding

regions are shaped as truncated cones (Fig. 1(c)) of angular width

q ¼ 0.873 rad (cos(q) ¼ 0.64) and range d ¼ 0.4 s. Two particles

i and j are considered virtually bonded if their relative distance is
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Bond–bond autocorrelation function Cb as a function of the

number of MC steps #MC for four different densities and T ¼ 0.125 (full

lines), T ¼ 0.155 (dashed-dotted lines) and T ¼ 0.170 (dashed lines).
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smaller than s + d and if mi$mj > cosq, corresponding to a volume

VAVB ¼ 4

3
p
h
ðsþ dÞ3 � s3

i 1� cos q

2
¼ 1:3s3. We define Ni as

the number of particles which are in the BR of i. More precisely,

two AVB moves are introduced:37

1. With probability pAVB we choose a random particle i and

then we choose, randomly, another particle j which is in the BR

of i. We move particle j out of the BR of particle i, inserting it

with a random orientation. If no particles are found in the BR of

i, the move is a priori rejected. We accept the move with

probability

pin/out ¼ 1� pAVB

pAVB

Nið4pV � VAVBÞ
ðN �NiÞVAVB

e�bDU

2. With probability 1 � pAVB we choose a random particle

i and a random particle jwhich is not inside the BR of i. We move

particle j into the BR of particle i with a proper orientation to

guarantee virtual bonding. We accept the move with probability

pout/in ¼ pAVB

1� pAVB

ðN �Ni � 1ÞVAVB

ðNi þ 1Þð4pV � VAVBÞ e
�bDU

The value of pAVB can be used to tune the relative acceptance

probabilities for these two moves. A value of pAVB ¼ 0.5 was

adopted throughout this work. We have thoroughly tested the

AVB algorithm for models of associating particles where

chaining and branching are dominant.12,13 We found that

the AVB moves allow for equilibration down to temperatures

kBT/ub x 0.060, where ub is the typical bonding energy. This

maps onto T z 0.12 for the DHS case, where ub z 2. Note that

the implemented AVB algorithm only acts on the process of

forming and breaking chain structures. The process of breaking/

forming branching points is equilibrated by standard Monte

Carlo roto-translational moves, i.e. moves in which a random

displacement and/or rotation is applied to each particle. Indeed,

branched configurations are characterized by ub values smaller

than the nose-to-tail ones. This has been checked in the context

of associating particle models12,13 the AVB algorithm does not

result in any significant speed-up when also encoded for

branching interactions. We fix a 1 : 1 frequency ratio between

rotations/translations and biased moves. In the following, we

define a MC step asN attempts to perform a rotation/translation

or an AVB move (where N is the number of particles in the

system). A measure of the efficiency of the AVB method will

be provided in the following section, where the bond–bond

autocorrelation function is reported.

Long range dipolar interactions are taken into account using

Ewald sums with conducting boundary conditions.36 In order to

improve performance we used a mesh-based cubic spline inter-

polation for cosine and sine calculations, resulting in a �30%

speed-up. Such an approximation results in a precision in the

energy evaluation of 10�6.

We study a system composed of N ¼ 5000 particles at six

different densities (rs3 ¼ 0.007, 0.028, 0.056, 0.084, 0.114, 0.140)

and four different temperatures (T ¼ 0.125, 0.140, 0.155, 0.170).

For T < 0.125, equilibration times become prohibitive with

present numerical resources. The lowest investigated T required

10 months of calculations on a Xeon 5050 core.
This journal is ª The Royal Society of Chemistry 2012
We note that the box sizes employed in the simulations (whose

values range from 33 to 90, depending on the density) are about

one order of magnitude larger than the average chain persistence

length (see Section IIID). In addition, we check that the chains

never percolate. Moreover, when a percolated network is

present, the mesh size of its structure is always significantly

smaller than the box length.
B. Bond definition and cluster classification

To quantify the connectivity properties of the system, a definition

of a bond between a pair of particles is required. Given the

continuous nature of the dipole–dipole interaction, bonding

cannot be unambiguously defined. In the past, criteria based on

cut-off distances3,19 or pair interaction energy thresh-

olds3,4,25,27,39–41 have been proposed. Since sharp energy thresholds

may lead to an underestimation of the branching, which is a key

factor in topological phase transitions, and since the position rb of

the first minimum of the g(r) is not very sensible on T or r (see

Section 3.2), we combine the two approaches and define particles

i and j as being bonded if rij< rb¼ 1.3 andu(i,j) <0.This criterion is

somewhat similar to the ‘‘entropic’’ criterion proposed by Holm

et al.,27 with the difference being that the criterion employed here

also takes into account the role of the branching due to anti-

parallel geometry, which is not allowed by the former. Since this

type of branching occurs only at intermediate (rT 0.05) densities,

the two criteria are equivalent in the low-r limit.

To provide evidence that the length of our simulations is

sufficient to probe equilibrium states, we evaluate the bond–bond

autocorrelation function Cb(#MC). This quantity is defined as the

probability that a bond existing at the beginning also exists after

#MC steps, quantifying how fast the network topology rear-

ranges. Fig. 2 shows Cb(#MC) for three temperatures: T ¼ 0.125,

0.155 and 0.170. It is interesting to observe that, at very low T,

the system loses the memory of its initial state faster at higher r.

This is consistent with the fact that, at low T, the lowest energy

geometry is the one in which a particle is in the core of an isolated

infinitely long chain. We also note that the shape of the corre-

lation function can be properly modelled via a weakly stretched

exponential (stretching parameter z 0.9), reflecting the different

local bonding geometries.
Soft Matter
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Fig. 4 Potential energy per particle U(r) as a function of r for different

T. Points are simulation results. Dashed lines are a guide for the eye.

Inset: height of the plateau Up for T ¼ 0.125, 0.140 and 0.155.
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Employing the previous bonding criterion, we classify all

clusters according to their bonding topologies in three groups: (i)

chains: clusters containing two ends (i.e. particles with just one

bonded neighbor) connected by particles with only two bonded

neighbors; (ii) rings: clusters containing only particles with two

bonded neighbors; (iii) branched structures: clusters containing at

least one particle with more than two bonded neighbors.

III. Results

To provide a pictorial representation of the studied systems,

Fig. 3 shows snapshots of equilibrium configurations of DHS

systems at three different values of T and for the whole range of

studied r. Two trends are already clearly distinguishable. First,

as r increases, both chains and rings progressively merge together

to form branched structures. Secondly, a decrease in T is

accompanied with an increase in the number of rings, at the

expense of the chain structures.

In the following we study in detail the structural properties at

all these state points.

A. Potential energy

Fig. 4 shows the configurational potential energy per particle U

as a function of r for all studied T. The energy shows a very weak

r dependence, especially on lowering T, a clear signature of the

onset of a self-assembly process.8,42 Indeed, self-assembly is

characterized by the formation in the fluid phase of well defined

structures (clusters), in which particles have a characteristic

energy. When increasing density results only in an increase in the
Fig. 3 Typical snapshots of equilibrium configurations of DHS at T ¼ 0.12

topologies are depicted with different colors: chains (blue), rings (red) and br

Soft Matter
number of such structures, then the energy does not depend

significantly on density.

To provide hints on the origin of the energy saturation with r,

we examine the energy of clusters of different sizes. We first

partition particles into clusters and separate them into three

groups: chains, rings and branched structures, as discussed in

section II B. As we will discuss in more detail in the following, at

the lowest r most of the particles are in chains and rings. On

increasing r, the number of particles in chains and rings drops in

favor of extended branched structures, which percolate beyond

a critical r. Here we focus primarily on chains and rings. The

intra-cluster energy of chains and rings in the context of the DHS

model has been previously addressed.19 An expression for the

ground state energy per particle ec(s) in a chain of size s has been
5, 0.140, 0.155 and r ¼ 0.007, 0.028, 0.056, 0.140. The different cluster

anched structures (green).

This journal is ª The Royal Society of Chemistry 2012
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Fig. 6 Fit parameters ec1 (dashed lines) and er1 (full lines) for all the state

points.
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proposed, based on the assumption that chaining produces

a rescaling by a factor a (to take into account beyond-nearest

neighbor interactions), of the dimer head-to-tail ground state

energy 2m2/s3. According to this assumption, each bond

contributes an energy a(2m2/s3). Since there are s � 1 bonds in

a chain, ec
�
s;T ¼ 0

� ¼ a
�
2m2=s3

� s� 1

s
. This ground state

expression has been generalized at finite T19 by retaining the s

dependence as:

ecðsÞ ¼ �ec0 þ
ec1
s
: (2)

Here ec0 is the bond energy for infinitely long chains and ec1
accounts for finite size effects.

A similar approach can be applied to rings. Since the angle

between the dipole moments of two nearest-neighbor particles in

a ring of size s is 2p/s, the ring energy at T ¼ 0 can be written as

að2m2=s3Þ
�
3þ cos

�
2p

s

���
4, whose finite T generalization

reads19

erðsÞ ¼ �er0 þ
er1
s2
: (3)

All the coefficients, namely ec0, e
r
0, e

c
1, and er1, are expected to

depend only on T.

Fig. 5 shows er(s) and ec(s) as functions of the cluster size for

a system at T ¼ 0.125 and r ¼ 0.007, and the corresponding fit

according to eqn (2) and 3. The fit properly represents the s

dependence of the particle energy. The asymptotic value ec0,

representing the average bond energy in large chains, is reached

only when sT 100. The asymptotic value er0, referring to rings, is

instead reached when s T 50, as expected on the basis of the s�2

dependence in er(s). e
c
0 and er0 are almost r independent and the fit

provides the same value e0 within statistical error. The T

dependence of e0 is presented in the inset of Fig. 5. e0 decreases

with T, possibly due to the reduced vibrational contribution to

the potential energy. To confirm the vibrational nature of the T

dependence of e0 we evaluate the inherent structures (IS),
43,44 by
Fig. 5 Potential energy of particles in chains (open circles) and rings

(open squares) of size s at r ¼ 0.007 and T ¼ 0.125 and for the inherent

structure (full symbols). Lines are fit to the simulation data according to

eqn (2) (orange dashed and full lines) and (3) (green dashed and full lines).

Inset: e0 at r ¼ 0.007 for all studied T and for the inherent structure

(triangles). To provide evidence of the r independence of e0 we also show

the corresponding value for all investigated densities (small black circles).

The brown curve is a quadratic fit to the triangle points in which the

harmonic linear term 2.5T has been fixed.

This journal is ª The Royal Society of Chemistry 2012
minimizing the energy of a set of equilibrium configurations at

r ¼ 0.007 and T ¼ 0.125. The functional form describing the s

dependence of the chains and rings remains identical. The

average bond energy in the IS configuration is �2.33, to be

compared to the value of the energy per particle in the close-

packed anti-ferromagnetic configuration, equal to �2.56.6 The

inset also shows that the T dependence of e0, including the T ¼
0 inherent structure value, can be modelled assuming a weak

anharmonicity as e0 (T) ¼ �2.34 + 2.5 kBT + 3.84(kBT)
2.

The best-fit values of the remaining fitting parameters

(ec1 and er1) are shown in Fig. 6. Such values are very similar to the

ones found in quasi-2D DHS.19

B. g(r) and S(q)

To quantify the structural changes of the DHS fluid at different T

and r, we compute the radial distribution function g(r). The g(r)

provides information on the relative distance between particles

in the system. Fig. 7(a) shows the T effect on g(r) at densities
Fig. 7 (a) g(r) for all the studied temperatures at r ¼ 0.007 (main panel)

and r ¼ 0.140 (inset). (b) g(r) at fixed T ¼ 0.125 for different densities.

Inset: average number of neighbors n(r) for the same state points.

Soft Matter
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r¼ 0.007 and r¼ 0.140 (inset). The g(r) is well structured even at

the highest investigated T. Upon lowering T, the minima deepen

and the height and sharpness of the peaks increase. At large r,

g(r) approaches one from above, reflecting the presence of spacial

inhomogeneities, intrinsic to the cluster structure of the system.

Similarly, the radial positions of the third and following peaks

increase. The first two phenomena highlight the increasing bond

localization which takes place in this T region.17 The shift of the

secondary peaks towards values of r which are multiples of s

suggests that chains become straighter on cooling, or, in other

words, the persistence length of the chains increases. It is inter-

esting to observe that the first peak becomes more and more

resolved on cooling, and that the amplitude of the first minimum

approaches zero. Under these conditions, the definition of

nearest neighbour in terms of the relative distance becomes

precise.

At higher r (inset of Fig. 7(a)), the system always contains

a percolating structure (see Section III C) and the g(r) becomes

more similar to the one observed in simple fluids. Now at large r,

g(r) oscillates around one with a periodicity s. The shape of the

peaks is still asymmetric, reflecting the preferential one-dimen-

sional growth of the equilibrium aggregates.

In order to clarify the effect of r on the structure, we study the

number of neighbors n(r) within a sphere of radius r centered on

an arbitrary particle, defined as

nðrÞ ¼ 4pr

ðr

0

r2gðr0Þdr0: (4)

The result is shown in the inset of Fig. 7(b) for T ¼ 0.125. For

low and intermediate r, a plateau develops for 1 < r < 2 in which

n(r) x 2, clear evidence that, locally, particles are coordinated

with only two neighbors, i.e. that the system associates mostly in

chains and rings. At high r, the number of neighbors in the first

shell increases, signaling the presence of branching and the

formation of more complex structures.

The large value of the low q limit of the structure factor S(q),

calculated as SðqÞ ¼ 1

N

	XN

i¼1

XN

j¼1
eiq$ðri�rjÞ



and presented in

Fig. 8, provides another sign of the strong association occurring

in the system. Indeed, in a system of independent (ideal gas)

clusters, S(q) reflects the properly averaged cluster form factor
Fig. 8 S(q) for all the studied temperatures at r ¼ 0.007 (full lines) and r

¼ 0.140 (dashed lines). The r ¼ 0.007 data has been shifted upwards by

adding 1. Dashed lines are power-law curves with exponents �1 (orange)

and �0.9 (magenta).

Soft Matter
and it approaches the second moment of the mean cluster size

when q / 0. The most visible T effect can be found in the shape

of the first peak, which becomes more and more asymmetric

upon lowering T.45 At larger r, interference between different

clusters (which are now connected in a percolating network),

significantly lowers the small-q value of S(q). Interestingly, no

significant T dependence is observed, suggesting that the system

has reached its final structure and only minor changes take place.

Such a property is characteristic of equilibrium gels.45,46 The only

effect of decreasing T is visible in the small increase in the height

and asymmetry of the first peak.

S(q) shows a clear change of ‘‘scaling’’ behaviors in different

q-windows. The low-q behavior of the structure factor can

often be related to the fractal dimension D of the aggregates via

S(q) f (qs)�D. As Fig. 8 shows, the region where a power-law

behavior is clearly and unambiguously observed is less than one

decade. Under these conditions, it is extremely hard and possibly

misleading to extract exponents. A slope of order one, consistent

with a strong signature from chains, is consistent with the scaling

at small q in the region 0.3 ( q (1.30
C. Connectivity properties and degree of polymerization

We now explore the global connectivity properties of the DHS

model. In particular, we evaluate the percolation locus, sepa-

rating percolating and non-percolating state points. Percolation

(via physical interactions) is a pre-requisite for the onset of

a second-order critical phenomenon.47 Indeed, both in spheri-

cally interacting potentials,48 as well as in limited-valence patchy

interactions,49 on cooling the percolation line is always encoun-

tered before the gas–liquid instability line. We define a state point

as percolating if more than half of its configurations contain

a spanning cluster, i.e. a cluster which is connected to itself via

periodic boundary conditions. The results of this analysis are

summarized in Fig. 9. The percolation threshold extends to very

low r (as low as rz 0.01 for the lowest studied T in equilibrium).

This result once more suggests that the system is composed of

rather long chains connected via branching points.

Another interesting observable in the study of the self-

assembly process is the so-called degree of polymerization F,

commonly defined in self-assembly studies as the fraction of
Fig. 9 Percolating (black circles) and non percolating (red squares) state

points. The percolation line passes near the T ¼ 0.125, r ¼ 0.007 state

point, which has almost half of the configurations (�49%) containing

a spanning cluster. The blue symbols are the state points where the degree

of polymerization is F z 0.99.

This journal is ª The Royal Society of Chemistry 2012
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Fig. 11 Radius of gyrationRg(s) of ringsR
rings
g (s) and chainsRchains

g (s) and

mean end-to-end distance Ree(s) of chains at r ¼ 0.007 for T ¼ 0.140 and

T ¼ 0.170. Lines through the T ¼ 0.140 data are power laws with

exponent 0.7.
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particles associated into clusters50,51 (1 � F is conversely the

fraction of particles in monomers). In the T–r window explored

in the present study, the degree of polymerization is always very

close to one (we find that F > 0.95 for every studied state point

but T ¼ 0.170, r ¼ 0.007). To provide a reference for further

study we report in Fig. 9 the locus F ¼ 0.99.

D. Chains and rings

In this section we investigate the properties of chains and rings at

low r (r¼ 0.007). We aim at providing accurate quantitative data

on the structure of these clusters in the limit in which excluded

volume cluster–cluster interactions are limited and the system

can be, to a first approximation, considered as a mixture of poly-

disperse non-interacting clusters.

The fraction of particles involved in chains, rings and other

branched structures at r ¼ 0.007 and r ¼ 0.028 is shown in

Fig. 10. As shown in the figure, upon lowering T at fixed r, the

fraction of particles in chains diminishes and the majority of the

particles belong to large branched structures. On further cooling,

these particles would give rise to a percolating structure, despite

the small average r. The decrease in the number of particles in

chains on cooling has thus a double origin. On one hand, the

rings becomes more stable than chains (at comparable size) and

indeed the number of particles in rings increases on cooling, and

on the other hand, chains become longer and hence have a larger

probability of branching. Despite this competing effect, even at

the lowest T a significant fraction of particles is still in chains and

rings. This allows us to carry out an analysis of the properties of

such structures, similar to what has been done in the past in the

investigation of equilibrium polymerization, in which ring

formation is allowed.52,53 It is interesting to observe that the

condition nr(Tx) ¼ nc(Tx) implicitly defines a cross-over
Fig. 10 Fraction of particles in chains (circles), rings (squares)

and branched structures (diamonds) for all studied temperatures at (a)

r ¼ 0.007 and (b) r ¼ 0.028.

This journal is ª The Royal Society of Chemistry 2012
temperature Tx, below which rings start to play a significant role.

In the studied r-window we find 0.125 ( Tx ( 0.14, a value

within the range of temperatures previously estimated in quasi

two-dimensional simulations.31

We start by calculating the radius of gyration Rg(s) of rings

and chains of size s (Fig. 11). In the scaling limit, i.e. for large s,

Rg(s) ¼ b$sn, (5)

where the prefactor b is model (and, in principle, T) dependent,

while the exponent n ¼ 0.5 for a random walk and n ¼ 0.588 in

the case of a self-avoiding random walk (SAW).54 Rg(s) appears

to be rather insensitive to T. Indeed, both the chain and ring radii

of gyration do not display any significant change upon lowering

T. In the limit of large s, i.e. s > 20, for both chains and rings

a power-law dependence (eqn (5)) sets in, but with an exponent n

z 0.7 significantly larger than the one expected for a SAW chain.

While we cannot exclude the possibility that we are observing an

intermediate cross-over region, the difference with the SAW

exponent is significantly large to question if dipolar charged

chains and rings belong to a different universality class. Indeed,

in a previous study on the Stockmayer fluid50 (i.e. in which the

hard-sphere potential is replaced by a Lennard-Jones one)

a similar value of n was observed. The average end-to-end

distance of chains, Ree(s), is also shown in Fig. 11. Like Rg(s),

Ree(s) is rather T independent and scales, within numerical

uncertainty, with the same exponent n z 0.7.

To further characterize the chain geometry, we evaluate the

angular correlation hcos(q)i(n), where cos(q) ¼ m̂i$m̂j, i and j are

two particles belonging to the same chain, n is the ‘‘chemical’’

distance between them (i.e. the number of bonds separating the

two particles) and angular brackets indicate an average taken

over all pairs of particles (in the same chain) which are separated

by n. We compare its behavior with the expected functional form

hcosðqÞiðnÞ ¼ exp

�
� n

lp

�
(6)

where lp is the chain persistence length. Fig. 12(a) shows both

hcos(q)i(n) and the best fits to eqn (6). Table 1 reports lp for

all studied T. Unlike b in eqn (5), lowering T from T ¼ 0.170 to

T ¼ 0.125 results in a �100% increase in lp.
Soft Matter
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Fig. 12 (a) Average angular correlation hcosqi(n) between particles as

a function of the chemical distance n along the chain (symbols). Lines are

exponential fits to eqn (6) restricted to small n. (b) Eqn (7) (dashed lines)

and simulation results (symbols) for the mean squared magnetic moment

hmni as a function of the chain length n for two different T.

Table 1 Average chain length �l, persistence length lp and asymptotic
mean internal energy per particle in chains and rings e0 at r¼ 0.007 for all
the studied temperatures

T �l lp e0

0.125 64.2 4.6 �1.98
0.140 37.9 4.44 �1.92
0.155 15.2 2.87 �1.86
0.170 7.25 2.35 �1.79

Fig. 13 (a) Log–log plot of the average chain length �l as a function of r

for all the studied temperatures. (b) Same data but plotted as a function

of the rescaled densityNc/V, whereNc is the number of particles in chains.
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To conclude, we analyze the mean squared magnetic moment

of chains of size n, hmni. Mendelev and Ivanov have provided

a parameter-free expression for hmni in the dilute limit55

hmni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2

K

ð1� KÞ2 ðn� 1þ Kn � nKÞ
s

(7)

where K ¼ coth(b/2) � 2/b. Fig. 12(b) shows simulation results

and predictions from eqn (7) for hmni for two different values of

T and r ¼ 0.007. The theoretical predictions are in rather good

agreement with the numerical results.

Next we focus on the chain distribution nc(s), the number of

chains of size s. We showed elsewhere that for s T 20, nc(s) �
exp(�s/�l).17 Fig. 13(a) shows the first moment of the distribution,

the average chain length �l for all studied state points. Interest-

ingly, at high T, �l shows a non-monotonic dependence as

a function of r. This is in stark contrast to what is expected from

an equilibrium polymerization process, in which only chaining is

present. In the mean field, �l is predicted to scale as �l � r1/2.56 The
Soft Matter
presence of a maximum stems from the equilibrium trans-

formation of chains into branched structures. Indeed, within

a mean-field description, the density of chains (rc) increases with

the density of chain ends (re) and decreases proportionally to the

density of junctions (rj), thus rc ¼ k1 re � k2 rj, where k1 and k2

are proportionality factors and �l � r�1
c . The corresponding

scaling of ends and junctions is:11 re � r1=2e�3e=T , and

rj � r3=2e�3j=T , where 3e and 3j are the energy costs of ends and

junctions, respectively. By taking the derivative of the expression

of the density of chains with respect to r, a minimum in rc

appears, resulting in a maximum for �l at r� � e�ð3e�3jÞ=T . Note

that 3e � 3j is the energy released when a chain end bonds to form

a junction, suggesting indeed that the density maximum is related

to the assembly of the chains in branched networks.

Fig. 13(b) shows the same �l values but as a function of the

reduced number density of particles in chains, rc. In this repre-

sentation, the internal equilibrium within the chain sub-system is

considered, and �l returns to be a growing function of rc, even if

only in a finite interval. In this window, the rc dependence of �l is

consistent with a power law behavior, but with a T-dependent

exponent between 0.6 and 0.75. As recalled before, in linear

polymerization, mean-field approaches predict in the low-T, low-

r region an exponent of 0.5.51,56,57 More accurate approaches

predict, for dilute systems, 0.46 � 0.01.56

The ring cluster size distribution nr(s) is shown in Fig. 14(a).

The number of rings grows significantly on cooling, favored by

the additional energetic stability of rings, as compared to chains

of equal length, provided by the additional bond. It has been

suggested, on the basis of a Flory–Huggins-type mean-field

approximation,52 that nr(s) can be represented as
This journal is ª The Royal Society of Chemistry 2012
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Fig. 14 (a) Number of rings nr(s) of size s $ 10 at r ¼ 0.007 for every

studied temperature (symbols). Lines are best fits to eqn (8) limited to the

region s > 12, with �l taken from Table 1. Imposing h to be equal for all

T results in a value of h x 2, leaving only the amplitude c as a free, T

dependent parameter. (b) r(s) (see eqn (9) for definition) for all studied T

at r¼ 0.007.DE(s) is computed via the calculated er(s) and ec(s) values for

s < 10 and via the associated fit functions (see Section III A) otherwise.
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nrðsÞ ¼ c exp
�
� s

l
�


s�h (8)

where c is a normalization constant and h is a characteristic, T

independent exponent. As shown in Fig. 14(a), imposing the

known �l value, it is possible to properly model nr(s) (for s T 15)

following eqn (8).

By definition, the ratio between nc(s) and nr(s) is equal to the

ratio of the respective partition functions. Three elements

contribute to controlling this ratio: (i) the different free energy

contributions which arise from the different number of bonds in

chains and rings of equal size. Assuming that at low T the

dominant contribution is energetic, we expect that the ratio will

depend on e�bDE(s), where DE(s) h s(er(s) � ec(s)) is the energy

difference between a ring and a chain of equal size s; (ii) the

number of distinct modes which convert a ring to a chain, equal

to the total number of bonds in the ring, s; (iii) the different

entropy of a chain compared to a ring, which can be approxi-

mated by the volume explored by the chain ends, R3
ee(s).

Fig. 14(b) shows the ratio,

rðsÞhnrðsÞ
ncðsÞ sR

3
eeðsÞe�bDEðsÞ (9)

for all the studied T. Apart from deviation at very small and very

large s values, associated with the significant numerical noise

under these extreme conditions, all the curves collapse on a single

master curve for small and intermediate s. Even if the large s

behavior is plagued by numerical uncertainties arising from the
This journal is ª The Royal Society of Chemistry 2012
small number of aggregates with such a large size, it appears

plausible that r(s) has a weak (or even no) dependence on s for

large s, in agreement with previous results derived for equilib-

rium polymerization.52 We also note that eqn (9) is consistent

with eqn (8), since it predicts that the ring distribution function is

the product of the chain distribution function (and hence of an

exponential function decaying with �l) times a power law in s,

which accounts for the asymptotic behavior of the end-to-end

cube distance, the linear s dependence as well as any residual s

dependence in the bond energy, which has not yet reached its

asymptotic value (see Fig. 5).
IV. Conclusions

The present study reports an in-depth characterization of

the structural properties of DHS for 0.125 # T # 0.17 and

0.007 # r # 0.14, a window of T and r which, despite its rele-

vance, was never explored before in simulation studies. To

investigate such a region we have introduced specialized Monte

Carlo biased moves, which favor the breaking and reforming of

bonds, allowing us to effectively sample low-T and low-r

configurations in equilibrium. Our results provide several hints

on why no evidence of the phase transition, which was long

thought to be hidden in this region, was recently found.17

Indeed, the theoretical approaches developed to predict the

low T DHS behavior focused on the competition between

bonding and chaining as the basic elements which control the

thermodynamics of the system.11 A new element brought in by

the present study is the presence, in addition to chains and

branched structures, of ring-shaped clusters. We have found

that, at low T and r, rings become more probable than chains,

since the additional energy gain of forming the additional bond

which converts a chain into a ring compensates for the entropic

loss associated with exploration of the volume available to the

chain ends.

The dominance of rings over chains could affect the gas–liquid

phase separation. Rings in fact have a negligible net magnetic

moment and are thus weakly interacting objects. More impor-

tantly, they deprive the fluid phase of chain ends, which were

predicted to sustain the topological phase separation.11 In

general, an energy-driven phase-transition relies on the energy

gain of the fluid to form aggregates to overcome the entropy

penalty of condensation. With rings being the majority cluster at

low-r, there is virtually no energy gain in the transformation of

the gas of rings into a branched liquid-like network. This can also

be seen by considering the surface tension of the aggregates,

which, at low-T (where entropy plays a minor role), is propor-

tional to the energy difference between particles on the surface of

the aggregate and particles inside the aggregate. The loss of chain

ends due to ring formation lowers the surface tension of the fluid

phase to a value close to zero, potentially suppressing the driving

force to condensation.

Of course, a phase transition is still an open possibility for

values of T lower than the ones we have investigated. In this case,

the results of our study can be used to guide future theoretical

modeling in the search of a mechanism which could sustain

criticality. If the phase transition between a liquid and a gas

indeed exists at lower temperatures than the one we have been

able to explore,17 the gas phase should be modelled as a phase
Soft Matter
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rich in rings and not as a phase rich in chain ends, as has been

assumed until now.

As an example of such modeling, the mapping of the DHS

properties onto a patchy particle model appears to be a prom-

ising route,33 especially if the model can be extended to incor-

porate the chain–ring equilibrium. In principle, it is possible to

envision an asymmetric patchy particle model33 in which the

bond angle is comparable to the one characteristic of DHS (i.e.

which give rises to similar Ree(s) and hcos(q)i(n) to the one

reported in Fig. 11 and 12) and in which the relative weight of

rings and chains is controlled by the same ratio as the one dis-

cussed in eqn (9). Such a model, if properly benchmarked against

the data reported in this article, could perhaps shed some light on

the phase behavior of very low-T DHS systems.
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