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We study the interplay between phase separation and self-assembly in chains, rings, and branched

structures in a model of particles with dissimilar patches. We extend Wertheim’s first order perturbation

theory to include the effects of ring formation and to theoretically investigate the thermodynamics of the

model. We find a peculiar shape for the vapor-liquid coexistence, featuring reentrant behavior in both

phases and two critical points, despite the single-component nature of the system. The emergence of the

lower critical point is caused by the self-assembly of rings taking place in the vapor, generating a phase

with lower energy and lower entropy than the liquid. Monte Carlo simulations of the same model fully

support these unconventional theoretical predictions.
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Self-assembly of finite-size aggregates requires strong
interaction energies compared to the thermal energy to
guarantee that the generated structure is persistent. As a
result, self-assembly competes with the ubiquitous macro-
scopic phase separation, the low-temperature tendency
common to atoms, molecules, and larger particles to
maximize the number of bonded neighbors and minimize
the potential energy, giving rise to a condensed (liquid)
state [1]. Soft matter and biology offer several examples
of particles arranging themselves into low energy and
weakly interacting finite-size aggregates (e.g., micelles,
vesicles, capsids [2,3]), completely suppressing phase
separation [4–6].

The possibility of forming ordered structures is facili-
tated by the presence of strong, directional, and saturable
interactions (limited valence) [7–9]. Stimulated by the syn-
thesis of new-generation patchy colloids [10–13], several
studies have deepened our understanding of the competition
between self-assembly and phase separation. More specifi-
cally, we refer to a numerical study of Janus colloids
[14,15], where the formation of energetically stable vesicles
stabilizes at low-temperature T the gas phase, and to a study
of particles forming chains and branched structures
[16–18], introduced to model the phase behavior of dipolar
fluids [19]. In bothmodels, at low T self-assembly opens up
a low-density region of thermodynamic stability in which
no macroscopic phase separation takes place.

In this Letter we investigate the competition between
phase separation and self-assembly in a model specifically
designed to favor the formation of energetically stable
ring structures. Extending Wertheim’s theory to the case
in which chains, branched structures, and rings coexist, we
are able to solve the model, providing a parameter-free
analytic formulation of a thermodynamic system in which

phase separation is suppressed at low T by self-assembly.
We find theoretically, and confirm numerically, that macro-
scopic phase separation can be limited to intermediate
T via the intervention of a closed coexistence loop in the
T � � plane, providing a neat mechanism for understand-
ing the smooth disappearance of the phase separation. Our
results are consistent with and provide a theoretical base to
a recent numerical investigation of a ring-forming model
on a lattice in two dimensions [20].
Model.—We study a modification of the model of patchy

particles which was specifically designed to present a
competition between chains and branched structures. In
Ref. [17] particles were modeled as hard spheres of diame-
ter �, with patches of two types on their surface: 2 patches
of type A on the poles. and n patches of type B equally
spaced over the equator. When two patches of type� and�
(�;� 2 A; B) are close enough and properly oriented
(see Supplemental Material [21] for details), a bond ��
is formed. Each bond �� is characterized by a bonding
energy ��� (the decrease in energy upon bond formation)

and a bonding volume v��. By setting �BB ¼ 0, only AA

and AB bonds are retained: AA bonds correspond to linear
self-assembly (in chains or rings) and AB bonds to branch-
ing points or junctions. As in the previous study [17], we
set �AB < 0:5�AA to make the formation of chains ener-
getically favorable at low T and n ¼ 9 and vAB � vAA to
make branching entropically favorable [18]. The positions
and sizes of the patches are chosen to satisfy the single-
bond-per-patch condition.
Locating the two A patches on the poles (as in [17])

generates very long and persistent chains, effectively sup-
pressing the formation of rings. In this case the competition
between chains and branching originates a liquid vapor
phase separation in which the gas-liquid binodal is
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reentrant: the density of the coexisting liquid approaches
the density of the coexisting gas [17,18,22]. In the present
work we add the possibility of ring formation by selecting
an off-pole position of the A patches [20]. This very simple
modification alters the persistence length of the chains
and favors the formation of rings, structures entropically
unfavored but energetically stabilized by the additional
bond compared to chains of the same size. Moreover,
self-assembly in rings decreases the possibility of forming
junctions. In fact, when two chains assemble to form a
longer chain, two unbounded A patches (capable of form-
ing a junction) still remain, but when a chain folds into a
ring, A patches saturate and become unavailable to form
junctions.

Theory.—Wertheim’s theory has successfully described
the effect of association in the phase diagram of molecular
fluids [23] and has, more recently, provided free-parameter
descriptions of the properties of patchy particle models
[8,18,22,24]. Extensions of the theory to include the effects
of ring formation have been limited to the cases of particles
with two patches [25–29], with one patch, but allowing the
formation of rings with three particles by double bonding
[30] or, very recently, with three patches but with some
limitations [31]. In any case, a single energy scale (the
same for all patches) was considered and no study of
phase diagrams was carried out. In this work, we extend
Wertheim’s first order perturbation theory for patchy par-
ticle models with dissimilar patches to the case where rings
are formed. Rings can be of any size i and are considered to
be sequences of particles bonded through i consecutive AA
bonds, regardless of the presence of branching via the B
patches. The free energy per particle �f is the sum of the
reference hard-sphere free energy and a perturbative term
�fb that includes both the Wertheim’s first order perturba-
tion theory approximation �fW and a ring contribution
�cr, such that �fb ¼ �fW � cr.

Following Wertheim’s nomenclature [32,33], we define
the following quantities: (i) � is the set of patches of each
particle. In the present work, � � fA1; A2; B1 . . .Bng; the
patches of each type are assumed to be equivalent (an
approximation, given the location of the patches over the
hard sphere in the model); (ii) � is a subset of �, i.e., a
group of patches, chosen from �, with no repetition (� can
be the empty set ;); (iii) Pð�Þ is a partition of �; the
elements of Pð�Þ are therefore groups of patches chosen
from � (i.e., sets �, except ;), without repetition and using
all the patches; MðPÞ will denote the number of elements
of the partition; (iv) �� is the density of particles whose

patches contained in � (� � �) are bonded, and �� is the

density of particles whose patches that do not belong to
� are unbonded. These densities are linearly related:
�� ¼ P

�0����0 ; notice that the total density is � � ��.

(v) Using the densities �� and the fact that all patches of

each type are equal, one defines the probabilities
YnAð�Þ;nBð�Þ � ��=�, where nAð�Þ and nBð�Þ are the

number of A and the number of B patches of �, respec-
tively. Yi;j is therefore the probability of finding a particle

with a specific set of 2� i A and n� j B patches
unbonded. fW is a function of the probabilities Yi;j:

�fW ¼ lnY0;0 � 2Y1;n � nY2;n�1 þ 1þ K � cb; (1)

with [32–34]

cb ¼ 2Y2
1;n��AA þ 2nY1;nY2;n�1��AB (2)

and [32,33]

K ¼ X
Pð�Þ

ð�1ÞMðM� 2Þ!Y1�M
0;0

Y
�2Pð�Þ

YnAð�Þ;nBð�Þ: (3)

In Eq. (2), ��� are integrals of the Mayer function of

the interaction between patches � and �, weighted by
the pair correlation function of the reference system [18].
In Eq. (3), the sum is over all possible partitions Pð�Þ with
MðPÞ � 2.
The contribution of rings to the free energy is

cr ¼ G0

�
; (4)

Gk ¼
X
i

ikWið2��AAY0;nÞi: (5)

Here, Gk is the kth moment of the ring density size distri-
bution [28]: G0 is then the total density of rings and G1=�
the fraction of particles in rings. Each term of the sum in
Eq. (5) represents the density of rings of size i. Wi is the
number of configurations of a ring of size i; the formation
of such a ring requires i particles with the two A patches
unbonded (the B’s can be bonded or unbonded), whose
density is �Y0;n ; each of these particles has two possible

orientations and �AA is the probability of forming an AA
bond, once the two A unbonded sites are chosen. The
quantities Wi are calculated numerically, similarly to
what has been done in [28].
The calculation of the approximation for the free energy

proceeds by minimizing�fb¼�fW�cr [Eqs. (1) and (4)]
with respect to all Yi;j with ði; jÞ � ð2; nÞ. This minimiza-

tion is done in two steps: (i) minimization with respect to
the probabilities Yi;j on which the terms cb and cr do not

depend, and (ii) minimization with respect to Y2;n�1, Y1;n

and Y0;n. From minimization (i), the probabilities Yi;j are

obtained as a function of Y2;n�1, Y1;n, Y0;n,

Yi;j ¼ Yi;nY
n�j
2;n�1; (6)

for i ¼ 0, 1, 2. These equations express the independence
of bonding probabilities, which is at the core of Wertheim’s
theory: the probability Yi;j is the product of the probability

of finding a particle with a specific set of 2� i sites A
unbonded, Yi;n, times the probability of finding a particle

with a specific B patch unbonded raised to the power n� j,

Yn�j
2;n�1. After replacing Eq. (6) in Eq. (1), the second
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minimization step is performed and the so-called laws of
mass action are obtained:

X2
A ¼ Y

�
1�G1

�

�
; (7)

1� XA ¼ G1

�
þ n��ABXBXA þ 2��AAX

2
A; (8)

1� XB ¼ 2��ABXAXB; (9)

where we have changed to the simpler notation used in
other works [18,28,34]: XA � Y1;n, XB � Y2;n�1, and Y �
Y0;n. Note that XA and XB are the fraction of unbonded

patches of type A and B, respectively, and Y is the fraction
of particles with both patches A unbonded. Equation (7)
shows that, because of ring formation, the state (bonded or
unbonded) of the patch A1 of a given particle is not
independent of the state of the patch A2, i.e., Y � X2

A.
The other laws of mass action have the usual meaning
[35]: Eq. (8) states that the probability that an A patch is
bonded (1� XA) is equal to the sum of the probabilities
that the particle belongs to a ring (G1=�) and that an
unbonded A patch bonds to a B or to a A patch; similarly,
Eq. (9) states that the probability that a B patch is bonded
(1� XB) equals the probability that an unbonded B patch
bonds to an A patch. After replacing Eqs. (6)–(9) in Eq. (1),
a final expression for the (minimized) free energy is
obtained:

�fb ¼ lnðYXn
BÞ � XA � n

2
XB þ n

2
þ 1�G0

�
: (10)

This set of equations defines the thermodynamics of the
model, within Wertheim’s first order perturbation theory
extended to include rings; the values of XA, XB, and
fr � G1=� (the fraction of particles that belong to rings)
provide information about the self-assembled structures.

Results.—Figure 1 shows the theoretical results for the
gas-liquid coexistence, with and without rings. When rings
are present the theory predicts, in a one-component system,
a closed loop and the existence of two critical points at Tu

c ,
the critical temperature of the upper critical point, and at
Tl
c, that of the lower critical point. The coexistence curve is

characterized by a reentrant behavior in both the liquid and
the vapor sides. Indeed, when T is decreased below a
certain value, the density of the liquid decreases and the
density of the vapor increases. Coexistence is present only
for intermediate T. Below T < Tl

c the system remains
homogeneous for all T, completely suppressing any phase
separation. Varying the parameters of the model, the closed
loop can be progressively shrunk up to the point it dis-
appears, leaving a system for which self-assembly is the
unique mechanism for aggregation.

The structure of the coexisting phases may be investi-
gated through the calculation at coexistence of the fraction
of particles in rings fr, the fraction of ends fe, defined as

the number of unbonded A patches per particle fe � 2XA

[18], and the fraction of junctions fj, defined as the number

of bonded B patches per particle fj � nð1� XBÞ [18].

Figure 2 shows the T dependence of fr, fe, and fj along

the coexistence curve, for both gas and liquid phases. Close
to Tu

c both phases exhibit almost no rings: the vapor is
characterized by smaller fj and larger fe, meaning that it is

formed by relatively short and isolated chains, while the
liquid contains larger branched chains connected by junc-
tions (a network fluid). Coexistence is then obtained
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FIG. 1 (color online). Theoretical phase diagram in the (�, T)
plane, with (full lines) and without (dashed lines) ring clusters
for three different values of the branching energy �AB. Inset:
Theoretical (solid line) and simulation (circles) results for the
�AB ¼ 0:37�AA model. Green and red diamonds mark theoretical
and numerical critical points, respectively.
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between a low-density gas of short chains with a few
junctions and a network of long chains connected through
junctions [17–19,36]. Upon cooling, in the vapor phase fr
increases to significant values, fe decreases significantly,
and fj decreases slightly; this means that isolated chains

start self-assembling into rings. On the other hand, in the
liquid fr remains small and fe and fj decrease slightly,

thus meaning that the network of chains is formed by
longer chains and fewer junctions. Therefore, coexistence
at these intermediate T is between a vapor where rings
dominate and a network fluid formed by chains and junc-
tions. Finally, close to Tl

c, as T decreases, fr decreases
for the vapor phase and increases for the liquid phase, fj
slightly increases for the vapor phase and decreases for the
liquid phase, while fe � 0 for both phases. Thus, these
phases are evolving toward a network of fully connected
chains and rings (i.e., with practically all patches A
bonded, since fe � 0), with more particles in rings
(chains) in the vapor (liquid) phase.

The theoretical evaluation of the differences in entropy
(�S) and in internal energy (�U) between the liquid and
the vapor phases, Fig. 3, is illuminating. It clarifies the
different nature of the two critical points. Just below the
upper critical point the liquid has, as usual, lower entropy
and lower energy than the vapor. On the other hand, close
to the lower critical point, it is the vapor that possesses
lower energy and lower entropy. The self-assembled ring
clusters are very stable energetically and more conforma-
tionally ordered. The loss of entropy associated with clos-
ing a chain into a ring is compensated by the energetic
stabilization introduced by the additional bond. This facil-
itates the replacement of chains by rings in the vapor phase
at low T. Rings have much lower energy and entropy than
chains, causing the inversion of the usual order relation
between the values of these quantities in coexisting phases.

Simulations.—The phase equilibria is investigated with
successive umbrella sampling simulations [37] in the
grand canonical ensemble with specific moves signifi-
cantly speeding up equilibration, allowing for the evalu-
ation of the density of states Pð�;UÞ, at fixed activity z, T,
and volume V. Specifically, we have implemented the
aggregation-volume bias [38] algorithm, its specialization
to the case of chain-forming patchy colloids (end-hopping
move [18]), and a novel cluster-swap move which attempts
to swap chains and rings of the same size. All these
methods are discussed in detail in the Supplemental
Material [21]. With all these techniques and a significant
amount of computation (of the order of 1000 months on a
single core), we have been able to study the behavior of the
system down to T ¼ 0:039. The box side is L ¼ 14 for
T > 0:055 and L ¼ 22:2 otherwise. We use the standard
Bruce-Wilding method to pinpoint the location of the
critical points [39]. In order to properly estimate the lower
critical parameters, we join several Pð�;UÞ computed at
different T by implementing the multiple-histogram
reweighting method [40].
Figures 1–3 show the simulation results for the phase

diagram, fr, fe, and fj, �S and �U along the gas-liquid

coexistence curve. In all cases, the Wertheim theory quali-
tatively, if not quantitatively, properly predicts the behavior
of the system, confirming the unconventional theoretical
predictions. Even the reversal of the entropic and energetic
contribution to the transition is observed numerically. In
addition to the well-known underestimate of the coexisting
liquid density characteristic of Wertheim’s theory, the pro-
posed extension to ring formation appears to overestimate
the amount of rings in the sample (Fig. 2).
Conclusions.—A comparison with simulation results

shows that the parameter-free Wertheim’s theory, extended
to include rings, provides reliable predictions for the inter-
play between phase separation and self-assembly in com-
plex linear structures. The theory offers a powerful
instrument to control the competition between the forma-
tion of rings, chains, and junctions and to evaluate the
resulting phase behavior. The thermodynamic stability at
low T is shown to arise from the building up of noninter-
acting clusters of particles with low energy and low en-
tropy. The theory also provides a theoretical foundation to
the recent numerical observation of a gas reentrance aris-
ing from self-assembly into weakly or noninteracting
aggregates [14,20]. Therefore, it allows us to deeply under-
stand self-assembling in the absence of phase separation, a
phenomenon that can be exploited in a variety of applica-
tions [41,42].
Finally, our results provide a reference system for under-

standing the low-T behavior of dipolar hard spheres
(DHS), the paradigmatic model of anisotropic interactions
[43]. Recent numerical studies of DHS have reported self-
assembly into ring structures, possibly suppressing phase
separation [44–46]. The similarity between the interactions
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FIG. 3 (color online). Difference in internal energy per particle
�U=ðN�AAÞ (blue) and entropy per particle �S=ðNKBÞ (red)
between the liquid and vapor phases, as computed by Wertheim’s
theory (solid lines) and in simulations (symbols and dashed
lines). Inset: Enlargement of simulation results in the region
near the lower critical point.
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and the self-assembled structures formed in the DHS and
those of the patchy model under study [47–51] can hope-
fully be used to establish a quantitative mapping between
both models. The present study suggests that the absence of
gas-liquid phase separation in DHS, despite the branching,
could be a consequence of extensive ring formation.
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