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We performed extensive molecular dynamics (MD) simulations, supplemented by Mode Coupling
Theory (MCT) calculations, for the square shoulder model, a purely repulsive potential where the
hardcore is complemented by a finite shoulder. For the one-component version of this model, MCT
predicted [Sperl et al., Phys. Rev. Lett. 104, 145701 (2010)] the presence of diffusion anomalies both
upon cooling and upon compression and the occurrence of glass-glass transitions. In the simulations,
we focus on a non-crystallising binary mixture, which, at the investigated shoulder width, shows a
non-monotonic behaviour of the diffusion upon cooling but not upon isothermal compression. In ad-
dition, we find the presence of a disconnected glass-glass line in the phase diagram, ending in two
higher order singularities. These points generate a logarithmic dependence of the density correlators
as well as a subdiffusive behaviour of the mean squared displacement, although with the interfer-
ence of the nearby liquid-glass transition. We also perform novel MCT calculations using as input
the partial structure factors obtained within MD, confirming the simulation results. The presence of
two hard sphere glasses, differing only in their hardcore length, is revealed, showing that the sim-
ple competition between the two is sufficient for creating a rather complex dynamical behaviour.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795837]

I. INTRODUCTION

In the last decades, a lot of effort has been devoted to
understand dynamical arrest in soft matter systems. The pio-
neering investigations of hard-sphere (HS) colloids by Pusey
and van Megen1, 2 have shown that the HS glass transition
occurs at a colloidal packing fraction φ ≈ 0.58. This transi-
tion has been interpreted by the ideal Mode Coupling Theory
(MCT)3 for the glass transition. Despite suffering of a shift
of the actual glass transition value, MCT provides a good de-
scription of the experimental data. The mechanism of arrest
is explained in terms of the so-called “cage effect,”3, 4 where
particles at high densities become trapped by their nearest
neighbours for an increasingly long time. This mechanism
manifests itself in the form of a two-step decay of the den-
sity auto-correlation functions approaching the liquid-glass
transition.

Subsequent investigations have focused on HS colloids in
which an additional short-range attraction was added with the
intent of mimicking the effective interaction (i.e., depletion)
arising between colloids in suspension with non-absorbing
polymers.5 A simple square-well (SW) attraction can be used
to imitate these systems. MCT predictions6–8 for the dynam-
ics of the SW model at high densities revealed an intriguing
behaviour. Indeed, when the range of the well width � is re-
duced down to a few percent of the particle diameter, a reen-
trant glass line is observed in the temperature-concentration
phase diagram. This results in two different kind of glasses:
a first glass (named repulsive glass), which is found at high
temperature T, is the HS glass driven by the packing of parti-
cles, while a second glass (named attractive glass) is observed

at low T, when energetic effects are dominant and particles
remain caged in their attractive wells. In between the two
glasses, at intermediate temperatures, a reentrant liquid re-
gion occurs. Therefore, at the same concentration it is possible
to go from one glass to the other by lowering T and passing
through a pocket of liquid states arising from the competition
between energetic and entropic effects occurring at intermedi-
ate T.9 At even higher densities, a glass-glass line is observed,
which terminates at an endpoint named higher order singular-
ity. Associated with these multiple glasses and reentrant melt-
ing, MCT predicts the occurrence of anomalous dynamics,
which results in a logarithmic (rather than two-step) decay of
the density auto-correlation functions approaching the end-
point singularity, as well as in a subdiffusive behaviour of the
particles mean-squared-displacement (MSD). Most of these
predictions have been confirmed by several simulations10–12

and experiments.5, 13 In particular, in simulations, it turns out
to be useful to draw iso-diffusivity lines14 in the phase dia-
gram. These lines maintain the same shape of the MCT glass
line at all (sufficiently small) values of D, so that they pro-
vide a useful reference to establish whether a reentrance (and
eventually associated anomalous dynamics) is present.

The successful predictions of MCT for the SW system
paved the way for applications of the theory in a wide variety
of soft matter systems. In particular, MCT has been used to
describe the arrested behaviour of several, purely repulsive
systems. Among these are star polymers,15 i.e., long poly-
mer chains anchored onto a central core, where the number
of chains (arms) varies the softness of the particles, bridg-
ing HS colloids (in the limit of very large arm number) to
polymer chains (when the arm number is limited to 2). While
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one-component star polymer solutions only display a glass
driven by packing of the stars,16 binary mixtures of stars of
different arm numbers and sizes have been shown to display
multiple glassy states through a combined effort of MCT, sim-
ulations, and experiments.17 Despite indications that anoma-
lous dynamics could be present in these systems,18 a clear ev-
idence from MCT predictions has not been provided. In con-
trast, a recent theoretical study of binary, size-asymmetric HS
mixtures has reported the occurrence of higher order singu-
larities and a variety of different glasses.19

Without necessarily turning to mixtures, it was recently
realised that one-component systems with distinct length
scales in the interaction potential (the so-called core softened
models) are also promising candidates for detecting thermo-
dynamic and dynamic anomalies.20–25 Among these, the sim-
plest model is the square shoulder (SS) model, where the
hardcore is complemented by an additional repulsive corona.
This model has been used to describe the behaviour of some
metallic glasses26 or complex materials like micellar27 or
granular systems,28 as well as primitive model of silica29 and
water.20

Recent MCT calculations reported the existence of mul-
tiple glass transitions also for the SS system both under com-
pression and cooling.30 A peculiar behaviour of the SS model,
with no counterpart in other investigated systems, is the pre-
diction of a disconnected glass-glass transition with two end-
point singularities for certain values of the shoulder width �.
Even though a rich phenomenology has been predicted for the
SS system, numerical simulations aiming to confirm this be-
haviour have not been performed so far. In this work, we pro-
vide an extensive and systematic characterisation of the SS
model by means of event-driven molecular dynamics (MD)
simulations in order to describe its dynamical behaviour. We
examine the one-component system as well as a suitably cho-
sen binary mixture which is considered in order to avoid crys-
tallisation at high densities and low temperatures, and to probe
a sufficiently slow dynamics. The paper is organised as fol-
lows. In Sec. II, we describe the simulation methods and pro-
vide a summary of MCT. Then in Sec. III, we report our main
results in four different subsections: in Sec. III A, we discuss
the behaviour of the self-diffusion coefficient calculated from
the simulations and extract an ideal glass line using power-law
fits of the data; in Sec. III B, we compare with existing MCT
results and perform new calculations for the binary mixture
currently under study to closely compare the theoretical re-
sults with the simulations; in Sec. III C, we then search for the
existence of the predicted MCT higher order singularities; in
Sec. III D, we report results for the non-ergodicity parameters
obtained from theory and simulations to assess the types of
the glasses that the system forms at various packing fractions
and temperatures. Finally, in Sec. IV we discuss our findings
and provide some conclusions and perspectives.

II. METHODS: SIMULATIONS AND THEORY

We study a 50 : 50 mixture of N = 2000 particles of
species A and B interacting via pairwise SS potential

Vij (r) =

⎧⎪⎨
⎪⎩

∞, r < σij

u0, σij ≤ r < (1 + �)σij

0, r ≥ (1 + �)σij ,

(1)

where i, j = A, B, σ AA and σ BB are the particles diameters
(and σ AB = (σ AA + σ BB)/2), �σ ij = 0.15σ ij are the shoulder
widths, and u0 = 1 is the shoulder height (see Fig. 1). The
mass m of both particles is chosen as unit mass, while σ BB

and u0 are the units of length and energy, respectively. T is
measured in units of energy (i.e., kB = 1).

The size ratio between the two species is σ AA/σ BB = 1.2.
We also study the simple monodisperse version of the SS sys-
tem with the same width. However, the one-component sys-
tem crystallises before it has actually entered a sufficiently
slowed-down regime of the dynamics, similar to what gen-
erally observed for one-component glass-formers. The intro-
duction of a small asymmetry in the size of the two species
favors particles rearrangements at state points where the one-
component easily crystallises. This allows us to investigate
states that are several orders of magnitude slower than those
that are possible to explore in the monodisperse case. In this
way, we get as close as possible to the ideal glass line, which
is defined as the locus of points in the packing fraction-
temperature state diagram having diffusivity D → 0.

We perform event-driven MD simulations of the sys-
tem as a function of T and packing fraction, defined as
φ = (π/6)(ρAσ 3

A + ρBσ 3
B), being ρ i = Ni/L3, L is the edge

of the cubic simulation box and Ni is the number of particles
for each species. Simulations are performed in the canonical
and microcanonical ensemble. For the desired packing frac-
tion, an initial configuration is generated randomly and the
particles velocities are extracted from a Maxwell-Boltzmann
distribution corresponding to the desired T. Then, the system
is equilibrated by performing MD simulations in the canoni-
cal ensemble with appropriate rescaling of particle velocities.
After the equilibration, for each state point investigated, NVE
simulations are performed for times ranging from t = 102 for
the highly diffusive state points, to t = 106 for the most vis-
cous state points. For all the simulations, t is measured in units
of σ BB(m/u0)1/2.

A first comparison with MCT results is possible by the
calculation of iso-diffusivity lines, which typically preserve
the shape of the ideal liquid-glass line. These lines, along
which the self-diffusion coefficient D is constant, are evalu-
ated as follows. We first calculate the MSD 〈r2(t)〉 of the par-
ticles at several (φ, T) and extract D from its long-time limit
behaviour, using Einstein relation,

D = lim
t→∞

〈r2(t)〉
6t

. (2)

Then, we identify state points with the same D and connect
them by iso-D lines. Repeating this procedure for lower and
lower values of D, typically covering a few orders of mag-
nitude in D, we can extrapolate the D = 0-ideal glass line.
To do this, we follow MCT predictions for D that should go
to zero at the ideal glass transition with a power-law depen-
dence. This should apply independently on the chosen path,
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and hence both along an isotherm

D ∼| φ − φg(T ) |γ (T ) (3)

and along an isochore

D ∼| T − Tg(φ) |γ (φ) . (4)

Here φg and Tg are, respectively, the critical values of the
packing fraction and temperature at the ideal glass transition,
while γ is a non-universal exponent that is also determined by
the theory. By performing the power-law fits, following Eqs.
(3) and (4), we can then trace the locus of points in the (φ,
T) phase diagram for which D → 0. This line can be directly
compared to the MCT glass line, as previously done for other
systems.17, 31, 32 Indeed, MCT usually overestimates the ten-
dency to form a glass, so that the two lines (numerical and
theoretical) are always shifted by a certain amount in both T
and φ. However, the shape of the two lines has been found,
for all previously investigated systems, to be identical: this
makes possible to establish an effective bilinear mapping be-
tween the two curves so that they scale on top of each other, as
it has been done for the SW model.33 In the presence of singu-
lar state points, such as the MCT higher order singularities,34

the mapping procedure allows to estimate their exact location
on the numerical phase diagram. Indeed, for the SW system,
it was shown31 that one of such singularities does exist by
performing ad hoc simulations near this particular state point.
In the present work, we aim to carry out a similar, detailed
investigation for the SS system.

To clarify some issues that will arise below, we briefly
summarize the main aspects of MCT here. MCT predicts
the occurrence of a glass transition starting from a set
of integro-differential equations for the density correlators
�q(t) = 〈ρq∗ (t)ρq(0)〉/S(q) at different wave numbers q,
where S(q) = 〈ρq∗ (0)ρq(0)〉/N is the static structure factor
and ρq(t) = ∑Ni

j=1 exp[iq · rj (t)]. The MCT equations of mo-
tions (for Newtonian Dynamics)48 read, in the one-component
case, as

�̈q(t) + 	2
q�q(t) + 	2

q

∫ t

0
dt ′mq(t − t ′)�̇q(t ′) = 0, (5)

where 	2
q = q2kBT /mS(q) is a characteristic frequency and

mq ≡ Fq[�k(t)] is the memory kernel.
Taking the long-time limit of Eq. (5) one obtains

fq/(1 − fq) = Fq[fk], (6)

where fq = limt → ∞�q(t) is the so-called non-ergodicity pa-
rameter. Fq[fk] is the mode coupling functional, which is bi-
linear in fq,

Fq[fk] = 1

2

∫
d3k

(2π )3
Vq,kfkf|q−k|, (7)

where

Vq,k ≡ S(q)S(k)S(|q − k|) ρ

q4
[q · kck + q · (q − k)c|q−k|]2

(8)
and ck = 1/[1 − ρS(k)] is the direct correlation function. At
the glass transition MCT predicts that, for t → ∞, the corre-
lator does not decay to zero but reaches a finite plateau value.

From Eq. (8), it is clear that the only inputs needed to
solve Eq. (6) are the number density ρ and the static structure
factor S(q) of the system. The latter can be obtained by solving
the Ornstein-Zernike equation35 through the use of integral
equations or it can be evaluated numerically from simulations.

Besides the occurrence of a liquid-glass transition, un-
der specific conditions, a system can display multiple glassy
states, giving rise to the presence of glass-glass transitions
in the kinetic phase diagram. These multiple glasses occur
as bifurcations of the solutions of Eq. (6) upon variation of
the control parameters. Across a glass-glass transition, the
non-ergodicity parameter jumps discontinuously between two
non-zero values. This transition is found to terminate at an
endpoint, named higher order singularity, beyond which one
can go from one glassy solution to the other continuously.
The higher order singularities can be of type A3, when the
two glasses coalesce already inside the glassy region, and of
type A4 when the two glasses merge also with the liquid so-
lution right on top of the liquid glass line. The latter is a very
special point occurring at (φ*, T*, �*), which can be identi-
fied by finely tuning the value of the control parameter �,8, 30

and in its vicinity the form of the decay of �q(t) is predicted
to be unique.

Solving the full dynamical Eq. (5) close to any point on
the liquid-glass transition, �q(t) is found to follow a typi-
cal two-step decay. A first decay at short times corresponds
to the characteristic time that particles employ to explore the
cages formed by their nearest neighbors. A second decay oc-
curs at longer time, and is characterized by the α-relaxation
time associated with the structural rearrangements necessary
for restoring the ergodicity in the fluid. In between these two
regimes, �q(t) displays a characteristic plateau which is asso-
ciated with the size of the cages in which particles are rattling
before finally escaping. It is well-accepted that the long-time
relaxation of the correlators can be described by a stretched
exponential

�q(t) ∼ fq exp
[ − (t/τq)βq

]
, (9)

where fq, τ q give an estimate, respectively, of the non-
ergodicity parameter, the α-relaxation time, while βq is the
stretching exponent.

While no general analytic solution of the MCT equations
is provided for �q(t), its asymptotic form close to the glass is
known. On approaching the liquid-glass transition, the corre-
lators are described by the Von Schweidler power-law decay.3

However, close to a higher order singularity, �q(t) shows a
peculiar logarithmic dependence

�q(t) ∼ f c
q − h(1)

q ln(t/τq) + h(2)
q ln2(t/τq). (10)

The parameters f c
q , h(1)

q , h(2)
q are the critical non-ergodicity

parameter and critical amplitudes of first and second order
in the expansion in ln (t).4 It is found that a specific value of
the wave vector q* exists, at which h(2)

q is zero, thus allowing
for a pure logarithmic decay of the correlator to be observed.
Hence, the correlators should display a characteristic concave
(convex) shape for q < q* (q > q*) in a logarithmic time
scale.
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FIG. 1. Square shoulder potential for a generic additive binary mixture of
species i, j. Here, σ ij = (1/2)(σ i + σ j) are the hardcores, �σ ij are the shoulder
widths, and u0 = 1 is the shoulder height.

For the SW system, higher order singularities have been
predicted and observed by numerical simulations and exper-
iments. In particular, it was shown8, 36 that MCT predictions
in this case are robust upon the use of different closure rela-
tions such as mean spherical approximation (MSA) or Percus-
Yevick (PY). Different closures only produce a shift of the
glass transition lines with respect to each other.

For the SS system, the situation appears to be more com-
plex. Recent theoretical studies30, 34 have shown that for the
same value of the shoulder width, the use of two different clo-
sures, namely, PY and Rogers-Young (RY), as input to the
theory (from now on denoted as RY-MCT and PY-MCT, re-
spectively), provide qualitatively different results. While the
liquid-glass line obtained within RY-MCT displays two reen-
trances (and hence diffusion minima and maxima) associated
with both cooling (as in the SW system) and compression, no
reentrance is observed using PY-MCT. In the latter case, there
is also no evidence of a glass-glass transition, while RY-MCT
predicts two glass-glass lines each terminating in a higher or-
der singularity. However, for the SS system at the investigated
�, RY is expected to be superior to PY in the description of
its structural and thermodynamic properties. Therefore, one
of the aims of this work will be also to assess the validity of
PY-MCT or RY-MCT predictions in order to establish the cor-
rect scenario for the SS system while approaching the glass
transition.

III. RESULTS

A. Iso-diffusivity lines and ideal liquid-glass line from
simulations

We start by reporting the behaviour of D along isothermal
and isochoric cuts in the (φ,T) phase diagram in order to as-
sess the presence of diffusion anomalies, perhaps such as the
ones observed in other core-softened potentials,21, 22, 37 con-
ceptually similar to the SS system. We remark that all shown
data points do not crystallise and have reached a diffusive be-
haviour at long times, a condition necessary in order to extract
D. In the following, we report results only for A particles, be-
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FIG. 2. Normalized diffusion coefficient DA/D0 as a function of (a) φ for
several isotherms, as reported in the labels. At all investigated T data show
a monotonic decrease with increasing φ, which clearly indicates the absence
of diffusion anomalies associated with compression/expansion. A crossing
of the data at high φ however signals the presence of a diffusivity maximum
associated with cooling; (b) T for several isochores, as reported in the labels.

cause the behaviour of the B particles is qualitatively the same
due to the quasi-one-component nature of the mixture.

Fig. 2(a) shows the normalized self-diffusion coefficient
of A particles DA/D0 as function of φ for several isotherms,
varying from T = 5.0 (close to the HS regime) to T = 0.3
(where the shoulder effect becomes prominent). The normal-
ization factor D0 = σBB

√
T/m is introduced to account for

the T dependence of the particles average velocities. The be-
haviour of DA with φ is similar along all studied isotherms:
from the dilute limit DA decreases monotonically at all T. For
not too low T, the decrease becomes faster with increasing φ

and is compatible with a power-law decay, as discussed be-
low. Notable exceptions are data points for T � 0.35: in these
cases, a robust power-law dependence is not observed with
decreasing T. Indeed, at T = 0.3 the data show a much wider
range of decay. For a deeper investigation, we have performed
simulations for T ≤ 0.3 and many adjacent φ with mesh 0.05
in the range 0.40 ≤ φ ≤ 0.53. This has allowed us to care-
fully check that the behaviour of DA is strictly monotonic
within numerical error at the studied � value of the SS model.
However, despite the absence of a diffusivity maximum, we
are tempted to speculate that at these low T the observed
slower decrease of DA seems to be an effect of the competition

Downloaded 19 Sep 2013 to 141.108.6.119. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



134501-5 Das et al. J. Chem. Phys. 138, 134501 (2013)

between the two length scales in the potential. Indeed, at low
enough φ the system behaves as being composed of effective
HS particles of diameter σ + �, while with increasing φ the
bare hardcore at σ becomes dominant, thereby providing an
intermediate non-trivial φ-dependence of DA. Such scenario
does not exclude the presence of a non-monotonic behaviour
for different values of �, that will be investigated in future
studies.

Next, we investigate the behaviour of DA/D0 with T along
several different isochores, ranging between φ = 0.40 and φ

= 0.59. This is reported in Fig. 2(b). At lower φ the system
does not reach a glass transition even for very low temper-
atures. Indeed, in this limit, it can be considered as an ef-
fective hard sphere of diameter σ + �. Since hard spheres
are expected to undergo a glass transition at φHS

g ∼ 0.58,
we expect for the low-T limit that the system becomes
glassy for [σ/(σ + �)]3 ∼ 0.381, in agreement with our
simulations.

For packing fractions 0.40 ≤ φ ≤ 0.56, the diffusion coef-
ficient decreases monotonically with T. For φ ≥ 0.57, DA/D0

becomes non-monotonic: from the high T limit, it initially in-
creases and then decreases, giving rise to the presence of a
diffusivity (local) maximum at intermediate T. This is also
visible from the crossing of the high-T data (at large φ) in
Fig. 2(a). The anomalous behaviour of DA upon cooling is
similar to that observed for the SW system at high enough
packing fractions when the width of the well is of few percent
of the particle size.11

Compiling all data from Figs. 2(a) and 2(b) we are able to
trace isodiffusivity lines in the phase diagram to be compared
with the MCT glass lines. The monotonic (non-monotonic)
behaviour of DA is reflected in the absence (presence) of a
reentrance in the iso-DA lines.

Fig. 3(a), shows the iso-diffusivity curves for three fixed
values of normalized diffusion coefficients: DA/D0 = 1.0
× 10−3, 1.0 × 10−4 and 1.1 × 10−5. Each curve is obtained
by extrapolating from Figs. 2(a) and 2(b) a set of i states (φi,
Ti) having the same value of DA/D0. As discussed above, we
do not observe a reentrant behaviour along φ even if we con-
sider very low values of DA/D0. On the other hand, for DA/D0

∼ 10−5 a reentrance is observed along T, as highlighted in the
inset of Fig. 3(a). This is in agreement with the presence of a
diffusivity maximum at high enough φ (Fig. 2(b)).

From this analysis, we conclude that the liquid-glass line
shows only a reentrance along T. While the glass at high T cor-
responds to a HS glass, the low-T glass could have a different
nature and its properties will be elucidated in the following.

As said above, the iso-DA lines are precursors of the ideal
liquid-glass line, where DA → 0. We can extrapolate this line
where the simulated system should undergo dynamical arrest
by performing power-law fits of the diffusivity both along iso-
chores and along isotherms, following the MCT predictions
in Eqs. (3) and (4). The fits are shown in Fig. 3(b). In this
way, we can extract both the transition values φg and Tg where
the system arrests and the associated power-law exponents γ .
These values are reported in Table I. Note that no fits are per-
formed for T < 0.35 due to the fact that the data do not show
a clear power-law behaviour. Also for low values of φ some
deviations from power-law dependence are observed at low T.
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FIG. 3. (a) Isodiffusivity lines for DA/D0 = 1.0 × 10−3, 1.0 × 10−4, and 1.1
× 10−5, as well as the extrapolated arrest (DA = 0) lines from the fits DA ∼ |φ
− φg(T)|γ (T) along isotherms and DA ∼ |T − Tgφ|γ (φ) along isochores. The
data display a reentrance in T (inset), while no reentrance in φ is observed;
(b) Power law fits along isotherms (left) and isochores (right).

TABLE I. Extrapolated values of γ (T), φg, γ (φ), and Tg obtained from fit-
ting data of Figs. 3(a) and 3(b) with MCT predictions of Eqs. (3) and (4) for
the diffusion coefficient DA. Error bars of the fit parameters typically amount
to a few percent for the values of φg and Tg, while the γ exponents can
vary systematically over different fit intervals, so they should be taken with
caution.

T γ (T) φg φ γ (φ) Tg

3.0 2.6 0.589 0.40 1.56 0.221
2.5 2.66 0.589 0.425 1.61 0.255
2.0 2.66 0.59 0.45 1.56 0.277
1.0 2.84 0.594 0.50 1.81 0.285
0.8 2.79 0.594 0.525 1.81 0.293
0.6 2.62 0.593 0.55 1.77 0.301
0.5 2.69 0.593 0.56 1.76 0.306
0.45 2.76 0.592 0.57 1.67 0.323
0.4 2.78 0.591 0.58 1.52 0.346
0.35 2.89 0.589 0.585 1.39 0.368
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The resulting ideal glass line is also shown in Fig. 3.
As expected the two branches, extrapolated by the different
paths, merge continuously in the high-φ, low-T region of the
phase diagram and confirm the shape of the isodiffusivity
lines. We note that the power-law exponents obtained along
each isotherm are consistent with previous estimates for HS or
SW system. On the other hand, for the fits along isochores the
γ exponents are systematically lower, sometimes going below
the lowest limit predicted by MCT.3 However, the values of γ

obtained from the fits should be taken with caution due to the
significant variation of results upon change of the chosen fit
interval and relative distance to the transition. Nonetheless,
the values of φg and Tg extracted in the same way show only
little changes (of the order of a few percent), and hence they
are robust.

We note that power-law fits along isochores could not be
performed in most systems with isotropic potentials, where
the exploration of the low-T region is preempted by inter-
vening phase separation. For systems with directional inter-
actions where phase separation is suppressed by using a lim-
ited valence,38, 39 at low T bonding is the dominant mechanism
of arrest so that the dynamics is dominated by an Arrhenius
(strong) behaviour.40 Here, however, we do not find evidence
of an Arrhenius dependence even at very low T in the inves-
tigated window of densities, suggesting that the system re-
mains power-law (fragile). Indeed, in the SS system tempera-
ture does not induce bonding, but rather has an effect on the
excluded volume of particles by changing the effective diam-
eter. In this sense, the arrest at low T remains of the same kind
of the HS glass, so that a similar behaviour (fragile) is then
expected throughout the phase diagram. However, it is then
legitimate to ask, given that the nature of the glass transition
remains the same, whether a simple competition between two
length scales is capable to generate higher order singularities
as those predicted by MCT and related glass-glass transitions.

B. Comparison with old and new MCT results: Role
of the input structure factors and mapping
to simulations

We now compare the MD simulation results for the ideal
glass line with MCT predictions. While a mismatch of φg

and Tg values is expected for the theoretical and numerical
glass lines, the two should share the same shape, as previously
observed for a variety of glass-forming systems.14, 16, 18, 21, 32

However, when referring to the RY-MCT calculations for �

= 0.15,30 it is immediate to notice that while the numerical
curve shows only one reentrance in T, the RY-MCT results
display two of them, as shown in the inset of Fig. 4. No reen-
trance is conversely observed for PY-MCT.49 Under this situ-
ation, we cannot perform a consistent mapping as previously
done for SW systems,31 because the difference in the shape
of the liquid-glass lines cannot be taken into account by a
simple rescaling procedure. This matter thus deserves further
investigation.

For understanding the difference between theory and MD
results, at first we investigate the reliability of the different
closures employed for producing the input S(q) entering in
MCT. In Fig. 4, S(q) evaluated within RY and PY closures
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FIG. 4. Static structure factors for a monodisperse SS system at T = 0.5, φ

= 0.45 calculated by MD simulations as well as solving the Ornstein-Zernike
equation within Rogers-Young (RY) and Percus-Yevick (PY) closures. (Inset)
MCT results for the liquid-glass and glass-glass lines using PY and RY.

is shown together with that calculated directly from simula-
tions of the monodisperse SS system for a representative state
point. As expected, PY provides a rather poor estimate of Sq,
since the height of its peaks and its amplitudes do not agree
with those of the Sq evaluated from MD, while RY reproduces
reasonably well the simulation results, as previously found
for other repulsive potentials.21, 41, 42 The good agreement be-
tween RY and MD S(q) is found for all studied state points.
However, this comparison is limited to the region of the phase
diagram where the monodisperse system does not crystallise.
The quality of the input structure factors is reflected in the bet-
ter agreement of RY-MCT with the simulation iso-diffusivity
lines. It is therefore natural from now on, to refer to RY-MCT
results as the relevant theoretical predictions for the system.

However, although the shape of the RY-MCT liquid-glass
line is more similar to the MD results, with at least one reen-
trance recovered, there is still a discrepancy between RY-
MCT and MD simulations. In fact, both from the analysis of
DA/D0 and from the iso-diffusivity lines we could not detect
the presence of a second reentrance (i.e., a diffusion anomaly)
along φ (at fixed low-T).

Given this situation, we performed additional MCT cal-
culations explicitly incorporating the binary nature of the sys-
tem under investigation. To avoid to rely on a certain closure,
we have used as inputs to the theory the partial structure fac-
tors evaluated from MD simulations SSIM

ij (q). Hence, we have
solved the generalized version of long-time MCT equations
(Eq. (6)) for a binary mixture43 on a discretised grid of 1000
wave vectors up to a cut-off value of qσ BB = 65. This value is
sufficient for the critical non-ergodicity parameters along the
liquid-glass line to decay to zero. In this way, we determine
the liquid-glass and (if any) the glass-glass transition, together
with the associated non-ergodicity parameters.

The resulting liquid-glass line is reported in Fig. 5 to-
gether with the arrest line extrapolated from the fits of DA.
Despite the expected shift in the control parameters, it now
appears that the new MCT results for the mixture are in full
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liquid glass (filled squares) and glass-glass (open squares). Arrest curve
drawn from φg (filled circles) and Tg (filled diamonds) obtained from power-
law fits of DA as in Fig. 3. Mapped MCT lines onto the arrest curve: liquid-
glass (filled triangles) and glass-glass (open triangles). Stars are the two pre-
dicted higher order singularities AL

3 and AH
3 .

qualitative agreement with the simulation line, since the reen-
trance in φ is no longer present. We can now operate a bilinear
transformation, as previously done for the SW system,31, 33

to superimpose the MCT results onto the glass line obtained
from simulations. The parameters are chosen via a best fit pro-
cedure, giving as a result

φ → 1.1046φ + 0.0038,

T → 0.9052T − 0.0111
(11)

and the mapped glass lines are shown in Fig. 5.
MCT calculations predict a “disconnected” glass-glass

line, a scenario that was also present in the one-component
RY-MCT, albeit for lower values of �.30 Luckily, this glass-
glass line lies just inside, but very close to the liquid-glass line
so that signatures of the two A3 endpoints are in principle de-
tectable from simulations. Through our mapping, we can now
estimate the location of the two singularities, that will be re-
ferred from now on as AL

3 and AH
3 , indicating, respectively,

the one at lower and higher φ. We find AL
3 = (φ ∼ 0.53, T

∼ 0.26) and AH
3 = (φ ∼ 0.60, T ∼ 0.49).

C. Searching for higher order singularities

In this section, we investigate the presence of the higher
order singularities predicted by MCT in the numerical phase
diagram. To this aim, we concentrate on distinct paths in the
phase diagram that allows us to approach closely the two A3

points. We recall however, that both points are buried within
the glass region, hence they are not directly accessible in equi-
librium; moreover, the behaviour of the observables that we
examine are influenced also by the presence of the nearby
liquid-glass transition. In the following, we will only concen-
trate on species A, but we stress that the qualitative behaviour
is identical for type B particles.
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FIG. 6. MSD for a particles as a function of scaled time tD0 for φ = 0.525
as a function of T, indicated in the labels. The vertical dotted lines indicate as
guides to the eye the regime of subdiffusive behaviour, which is highlighted
by the dashed line (∝ t0.5).

We start by discussing the presence of AL
3 : we examine

the dynamical behaviour of the system along the isochore φ

= 0.525 with decreasing T. We recall that while the endpoint
should be found at T ∼ 0.26, the system becomes glassy ac-
cording to MCT for T � 0.28 at this volume fraction.

Fig. 6 shows the MSD for A particles 〈r2
AA〉 along this

path. We observe that upon decreasing T the system shows
a peculiar slowing down. Indeed, a characteristic subdiffu-
sive behaviour at intermediate times (0.1 � tD0 � 10) is ob-
served for T < 0.4. Hence, we observe a sort of three-step
behaviour of the MSD: after the ballistic transient, subdif-
fusion takes place for roughly two decades in time, where
〈r2〉 ∼ tα with α ∼ 0.5. At long times the typical pattern of
glass-forming systems takes place: a plateau later followed
by long-time diffusion. Indeed, when T is very low, the sys-
tem is approaching the liquid-glass transition, that manifests
itself in the MSD as the emergence of the plateau. This is
observed for T ≤ 0.3 and occurs at tD0 ∼ 102. The plateau
height is found to be ∼ 0.04σ 2

AA. Its square root, which pro-
vides a measure of the cage or localisation length l0 of the
glass, turns out to be ∼0.2σ AA, roughly twice the typical HS
cage length (lHS

0 ∼ 0.1σ ). Indeed, the packing fraction is sig-
nificantly smaller than that of the HS ideal glass, due to the ef-
fect of the shoulder. While the long-time behaviour, and asso-
ciated plateau, is controlled by the liquid-glass transition, the
additional intermediate behaviour, which indicates the pres-
ence of a sub-diffusive regime, can be associated with the
presence of the higher order singularity.

The presence of subdiffusivity is a hint of a closeby
higher order singularity, but in order to provide a more con-
vincing proof of its existence, we now look at the behaviour
of the density auto-correlations functions. A distinctive fea-
ture is the presence of a pure logarithmic regime for a certain
wave-vector q*, where the second-order term of the asymp-
totic expansion in Eq. (10) vanishes. Below and above q*, the
data should display a typical concave-to-convex transition. To
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FIG. 7. The density autocorrelation functions �AA
q (t) for φ = 0.525 as a

function of time for (a) several wave vectors at T = 0.375. From top to
bottom, qσAA = 1.88, 2.81, 4.68, 5.63, 7.5, 10.32, 13.12, 17.82, 28.13. A
concave-convex shape transition is observed around q*σAA ≈ 7.0, where the
decay of �AA

q (t) is almost purely logarithmic; (b) several T at fixed wave vec-
tor q = q*. From left to right, temperatures are T = 1.0, 0.6, 0.5, 0.4, 0.375,
0.35, 0.3, 0.29.

visualise this behaviour, one should be close enough to the AL
3

point, but far enough from the liquid-glass transition in order
to avoid that the final two-step decay covers most of the time-
window and preempts the observation of the logarithmic be-
haviour. We identify at this φ the optimal temperature obeying
these requisites as T = 0.375, for which we show the collec-
tive normalized density auto-correlations functions �AA

q (t) as
a function of wave-vector in Fig. 7(a). Indeed, at this T we are
able to identify q*σ AA ≈ 7 where the decay of the correlators
is purely logarithmic. Across q*, the concave-to-convex tran-
sition in the shape of �AA

q (t) with time is found. In Fig. 7(b),
the T-dependence of the correlators at fixed q = q* is shown.
It is clear that with further decreasing T the system approaches
the liquid-glass transition, so that the signal of the logarithmic
decay gets lost. Indeed, the range where the logarithmic de-
pendence (dashed line) is valid shrinks upon reducing T. The
evidence reported so far points to the existence of a higher or-
der singularity in the vicinity of the explored path. While we
cannot probe its exact location, since the system falls out of
equilibrium before this can be accessed, it seems to be located
within, but not too far inside, the glassy region, compatibly
with MCT predictions of a disconnected glass-glass line.

Next we investigate the presence of the second singular-
ity AH

3 . To approach it, we monitor the isotherm T = 0.5 and
check the dynamical behaviour with increasing φ. We recall
that the endpoint should be located at φ ∼ 0.6, while the sys-
tem should become glassy around φ ∼ 0.593, as estimated by
the power law fits of DA. We repeat the same analysis as done
for AL

3 and we find very similar results (not shown). Indeed,
also in this case, we observe subdiffusive regime and loga-
rithmic dynamics centred around a similar value of q*. Also
in this case, the interference of the liquid-glass line does not
allow us to probe the anomalous time window for a signifi-
cant amount of time. To shed light on this point, simulations
need to be performed for a system with a larger � where the
glass-glass line merges with the liquid-glass line so that the

anomalous dynamics can be approached in equilibrium. This
investigation is currently in progress.

D. Non-ergodicity parameters from MCT
and simulations

In this section, we show the behaviour of the non-
ergodicity parameters calculated within MCT and extracted
from the fits of the density auto-correlation functions in the
simulations.

We start by showing in Fig. 8, the “critical” non-
ergodicity parameters f AA

q (MCT ) for the A species along the
liquid-glass and the glass-glass lines, calculated within MCT.
The state points at which f AA

q (MCT ) are evaluated are shown
and numbered in the inset of Fig. 8. We find that along the
liquid-glass line the theoretical f AA

q (MCT ) follows two dif-
ferent types of behaviour: for φ ≤ 0.50, f AA

q (MCT ) at first
decreases, showing a shift of the peaks to larger wave vectors
(from state points 1 to 3), while for φ > 0.50 at all tempera-
tures —below and above the reentrance— f AA

q (MCT ) main-
tains its peaks and only grows around them in a continuous
way (from state points 3 to 5). We note that the f AA

q (MCT )
of the lowest and highest T (states 1 and 5) corresponds to
two glasses made, respectively, by effective hard spheres of
diameter σ + � and hard spheres of diameter σ . It fol-
lows that the two f AA

q (MCT ) can be superimposed on top
of each other by simply readjusting the diameters. In between
these two limits, the system experiences the competition be-
tween the two length scales, which results in a non-trivial and
non-monotonic behaviour of the non-ergodicity parameters.
The crossover between the two regimes arises in a region
that cannot be associated with any of the two higher order
singularities.

Furthermore, we also show in Fig. 8 the evolution of
f AA

q (MCT )s for the “disconnected” glass, occurring upon
crossing the glass-glass line. In this case, the non-ergodicity
parameters are much larger and longer ranged in q, indicating
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FIG. 8. Critical non-ergodicity parameters for the A species calculated
within MCT along the liquid-glass (curves labeled from 1 to 5) and along
the glass-glass (curves labeled from 6 to 8) lines. The corresponding state
points and their position on the MCT lines are reported in the inset: a non-
monotonic behaviour with increasing φ is observed for both sets of data.
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FIG. 9. (a): Non-ergodicity parameters obtained from simulations, fitting the
density auto-correlation functions with stretched exponentials, for the state
points reported in the upper inset. The behaviour along the liquid-glass line is
strikingly similar to that of MCT predictions, reported in Fig. 8. (Lower inset)
f AA

q for low φ (and low T) (state point 1) is identical to that of high φ (state
point 6) upon a rescaling by the effective diameter σ + �; (b) Stretching
exponents βAA obtained from the fits as a function of wave vector for the
same state points considered in (a).

more tightly caged glasses, in analogy with previous obser-
vations of repulsive glasses for star polymer mixtures.18 In
the present case, the cage size is approximately one half of
that of the first glass, as it can be estimated by the q-range of
the non-ergodicity parameters. We observe a non-monotonic
behaviour when moving along the glass-glass line from low
to high density, similar to what observed for the liquid-glass
line.

We now extract the non-ergodicity parameters by fitting
the density auto-correlation functions close to the arrest line
via the stretched exponentials of Eq. (9). For simplicity, again
we focus only on species A, since the results are formally
identical for both species.

We show in Fig. 9, the behaviour of f AA
q along the liquid-

glass line (for the state points labeled in the upper inset). We
find a behaviour that is remarkably similar to the MCT predic-
tions. Indeed, again we find that the non-ergodicity parameter
shows a non-monotonic behaviour (at fixed q) with increas-
ing φ. While at low φ and low T, f AA

q is compatible with that
of a HS with effective diameter σ + �, it decreases at first

with a shift of the peaks at larger q for intermediate densi-
ties. Then at a certain point, that we can roughly estimate as
φ ≈ 0.50, the peaks do not move further in q, while f AA

q starts
to increase in magnitude. This continues until it behaves as
the fq typical for HS of diameter σ . This interpretation is rein-
forced by the fact that we can perfectly scale the low-φ f AA

q

on top of the high φ-one by simply scaling it for the effective
diameter (see lower inset). In addition, the behaviour of the
stretching exponents obtained from the fits seems to indicate
an increase of βAA as the system moves along the liquid-glass
line with increasing φ. Hence, glasses found at lower T are
considerably more stretched (βAA � 0.4) than those found at
higher φ.

Finally, we could not estimate numerically the non-
ergodicity parameters close the disconnected glass-glass tran-
sition, due to the fact that this is buried inside the glass phase.
Hence, we do not have a numerical analogue of curves (6–8)
in Fig. 8.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have reported an extensive investigation
by simulations and theory of the SS model. Despite the sim-
plicity of the model, its dynamical behaviour close to the glass
transition had largely remained unexplored, while its thermo-
dynamic phase diagram showing the presence of many crystal
phases has been addressed in a number of publications.44–46

The recent predictions by MCT of a unique behaviour of the
glass transition for the SS model30 is the motivation for the
present work. Given the amount of effort requested to elu-
cidate the various aspects of both liquid-glass transition and
glass-glass lines, we have focused on a single value of the
width of the SS model, referring to future studies to address
the dependence on � of the results presented here.

Our investigation initially focused on searching for the
so-called diffusion anomalies, i.e., a local maximum in the
self-diffusion coefficient, both upon compressing the system
and upon cooling it, as predicted by MCT. We performed the
simulations down to a T-range at the limit of today compu-
tational capabilities and we did not detect the presence of
an anomaly upon compression/expansion in contrast to the-
oretical results, as well as with other studies of core-softened
potentials.21, 22, 37, 47 However, none of these previous studies
involved a potential with sharply defined length scales such
as the SS, so that this might be the reason why a differ-
ent behaviour is observed. Also, it remains to be established
whether such different models share the intriguing glassy
properties of the one-component SS model, as detailed MCT
studies have not been performed. To rule out in the SS model,
the presence of a diffusivity maximum in density we will need
to explore other values of � in the future. Our preliminary in-
vestigations in this direction have also been negative in this
respect, but we believe that we need to perform additional
simulations for significantly slow state points in order to re-
solve this controversial aspect.

The role of the SS width is also crucial within MCT, be-
cause it controls the position of the glass-glass line and its
endpoints with respect to the liquid-glass line. The present
case was predicted to show two glass-glass lines merging
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from the liquid-glass one by RY-MCT for the monodisperse
SS.30 However, we have repeated the MCT calculations for
the binary mixture investigated by MD simulations, which
avoided the onset of crystallisation, and found a different
topology. Namely, a disconnected glass-glass transition lying
all inside the glassy region with two endpoints, i.e., a sce-
nario that RY-MCT attributed to lower values of �. Such a
shift in the control parameters is expected when comparing
with MCT, although for the SW model there was a remarkable
good agreement between theory and simulations at the same
�.31 Also no reentrance in φ was detected within the binary
MCT calculations, in agreement with the simulation results.
The disconnected glass-glass topology seems to be confirmed
by simulations, which have shown the presence of a regime
of logarithmic decay of the correlators and of subdiffusive in-
crease of the MSD, in agreement with the predictions close to
a higher order singularity. Also the presence of the glass-glass
line and its special endpoints, called AL

3 and AH
3 , is compati-

ble with the presented results. However, to really confirm the
predictions, it will be desirable in the future to approach these
points in equilibrium, as previously done for the SW model,
by a fine tuning of �. Again, we plan to undertake these in-
vestigations in the near future.

Despite the absence of clear results about the glass-glass
transition, we have found evidence that the non-ergodicity pa-
rameters along the liquid-glass line vary in a non-monotonic
fashion, in very good agreement with the theory. We have
shown that the glass found at low/intermediate φ (e.g.,
φ = 0.40) and low T is identical to that found at high φ (and
almost T-independent) when a scaling of the effective diame-
ter is performed to take into account the effect of the shoulder
width. Thus the system clearly displays two identical glasses,
both of HS type, driven solely by excluded volume, and dif-
fering between themselves only by a change of length scale.
However, the interplay between these two glasses is highly
non-trivial, giving rise to anomalous behaviour in the dynam-
ics, although not in the form of a local maximum in the diffu-
sion coefficient, but in the form of clear subdiffusive regime in
the MSD and logarithmic dynamics of the density correlators.
This is enhanced at a length scale that is compatible with that
always associated as the main responsible for the hard-sphere
transition, i.e., the nearest-neighbour length. It is a remark-
able finding that this simple physics is capable of producing
such non-trivial and unexpected dynamical behaviour. These
results clearly show that, in order to find higher order MCT
singularities, it is not needed to rely on two different physical
ingredients, such as attraction and repulsion, but competing
isotropic repulsions are sufficient.

Finally, another aspect that is very peculiar to the present
study is the fact that at low φ we can approach the glass transi-
tion down to very low temperatures, without intervening crys-
tallisation or phase separation. This was previously achieved
in other systems with directional attraction, where however
the dynamics at low T was found to be dominated by bond-
ing processes, showing an Arrhenius dependence. Here on the
contrary, bonding is not present and the dynamics seems to al-
ways retain the fragile character of HS systems. The absence
of phase separation at low T and φ for the present system thus
offers the unexplored possibility to investigate the glass tran-

sition at T → 0 for φ → φg[σ /(σ + �)]3 for which current
work is underway.
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