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We investigate the phase behaviour of charged soft dumbbells, particles composed of two soft but oppositely charged sites, as
a function of the separation between the sites. Through successive umbrella sampling Monte Carlo simulations, we evaluate
the equilibrium particle density of states. For elongated dumbbells, we recover the expected critical behaviour. However,
reducing the elongation we are unable to locate the gas–liquid critical point in the accessible region of temperature and density.
Correspondingly, the self-assembly of the particles in ring structures becomes dominant with respect to the formation of
chain-like structures. Our results enrich the debate on the competition between self-assembly and phase separation and
contribute to the long-standing dilemma about the putative gas–liquid criticality in dipolar fluids.

Keywords: soft matter; charged dumbbells; gas–liquid separation; self-assembly; Monte Carlo simulation

1. Introduction

Dipolar fluids are systems composed of particles carry-
ing an electric or magnetic dipole. Being one of the sim-
plest models featuring anisotropic interactions, they play
a paramount role in liquid-state theories. From an applied
science point of view, the exhibited strong response to ex-
ternal fields makes them suitable for applications in colloid
science [1–4].

The strong anisotropy, associated to the long-range na-
ture of the dipolar interaction, favours the formation of
reversible chain-like structures at low temperatures T. This
self-assembly process challenges the theoretical character-
isation of such systems and raises doubts whether purely
dipolar interactions can sustain a gas–liquid phase separa-
tion or not. In simple atomic and molecular fluids, where
the attraction is due to van der Waals-like interactions, the
condensation process leads to a separation between a low-
density phase (gas) with high energy and high entropy and
a high-density phase (liquid) with low energy and low en-
tropy. A similar condensation mechanism for a dilute dipo-
lar fluid was theorised by de Gennes and Pincus more than
40 years ago [5] for dipolar hard spheres (DHSs), i.e. for
a system composed of point dipoles embedded in the cen-
tres of hard spheres. After observing that the spherically
averaged interaction between two dipoles is attractive and
akin to van der Waals molecular forces, they hinted at the
existence of a gas–liquid critical point. Early simulations
seemed to confirm this claim [6], but more recent and accu-
rate numerical works suggest the absence of a critical phe-
nomenon, at least in the region of the phase diagram where it

∗Corresponding author. Email: s.dussi@uu.nl

was supposed to be located [7–10]. By analysing the struc-
tural properties of dipolar fluids at low temperatures and
densities, these studies showed that the strongly anisotropic
nature of the dipolar interactions plays a fundamental role
in determining the thermodynamic behaviour of these sys-
tems. Indeed, at low temperatures, particles self-assemble
in energetically favourable chain-like structures that were
clearly found in the first computer simulation studies [7]
and more recently in experiments on magnetic dipolar col-
loids [11]. As a result, the local ordering in a dipolar fluid
is different from the isotropic phases of simple fluids and,
depending on its extent, the linear aggregation in chains,
being a unidimensional process, may suppress the phase
separation [12,13]. Later on, the debate regarding the com-
petition between condensation and self-assembly in DHS
was enriched by a theoretical study [14] which predicted
a topological phase transition featuring a re-entrant phase
diagram. According to the theory developed by Tlusty and
Safran (TS), the system phase separates in a low-density
gas phase rich in chain ends, and in a high-density liquid
phase rich in branched structures, i.e. in clusters made up of
chains joined together by Y-shaped junctions. This peculiar
phase separation is sustained rather than suppressed by self-
assembly, and it depends on a delicate balance between the
energetic costs associated to chain ends and three-way junc-
tions. The topological phase transition has been recently ob-
served in model of patchy particles designed to qualitatively
reproduce the phenomenology of dipolar fluids [15–17].

Very recent simulation studies on the DHS model did
not find any phase separation in the region where it was

C© 2013 Taylor & Francis
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thought to be but, somewhat surprisingly, showed an unex-
pected abundance of rings at low densities ρ [10,18]. These
ring structures arise from a subtle balance between the en-
ergy gained by having one additional bond and the entropy
lost by reducing the volume accessible to chain ends. The
main question about the existence of a gas–liquid critical
point in the DHS model has no conclusive answer yet, but
it is clear that any new theoretical modelling of the sys-
tem must also consider rings, beside chains and branching
points.

The DHS model is computationally very expensive be-
cause of the long-range nature of its interactions, of the
very low temperature involved and because of the difficulty
in equilibrating and relaxing the very long chain-like struc-
tures which are formed upon cooling [18]. For this reason,
several models, which have the DHS model as a limit-
ing case, have been introduced and investigated thoroughly
[9,19]. Among them, charged dumbbells represent a key
model to address some fundamental questions and to ob-
tain a complete theoretical picture of dipolar fluids. Charged
dumbbells are characterised by two oppositely charged
spheres separated by a distance d. Charged dumbbells can
be seen as a way of going from ionic-like systems, when
d is very large, to dipolar systems, when d → 0. Interest-
ingly, the d = 1 case well reproduces the critical behaviour
of the restricted primitive model (RPM) [20–22]. The two
spheres can be either hard or soft, giving rise to charged
hard dumbbells (CHD) or charged soft dumbbells (CSD),
respectively. The dependence on d of the critical parameters
in CHD models has been extensively studied by Camp and
co-workers [20,23], who have provided a rough estimate for
the location of the critical temperature of the DHS model by
extrapolating these values at d = 0 [23]. Since a very recent
study showed that no criticality appears in the vicinity of
that temperature, what happens to the CHD model at very
small separation d remains an open problem [10].

The behaviour of CSD models is complicated by the
presence of one additional parameter (c) that controls the
strength of the soft repulsion, usually modelled through a
∝ cr−12 potential. For a fixed T, varying c corresponds to
change the effective size of the charged particles, altering
the strength of the dipolar interaction at the (c-dependent)
close contact value. Recently, the critical parameters of a
CSD model have been computed for values of d spanning
more than two order of magnitudes by Braun and Hentschke
(BH) [21,24]. Small-elongation results are in agreement
with the location of the critical parameters of the limiting
dipolar soft sphere model calculated by the same authors
[25]. To overcome the severe numerical difficulties, BH
performed molecular dynamics simulations employing a
reaction-field method in place of the more accurate Ewald
sums. They rebuilt the equation of state of the model, ex-
tracting from the resulting van der Waals loop the coex-
istence points via the Maxwell equal area construction.
Critical parameters (Tc, ρc) are then evaluated via fitting

the coexistence curve with critical phenomena predictions
based on the Ising universality class.

To quantify the effect of the reaction-field approxima-
tion and of the numerical methodology implemented by BH,
we report here an independent evaluation of the critical pa-
rameters for selected values of the elongation d by means
of successive umbrella sampling (SUS) Monte Carlo (MC)
simulations where the long-range interactions are taken into
account with the Ewald sums method. Our intent is twofold:
first, we want to quantify the effect of long-range inter-
actions by comparing our results with the reaction-field-
computed results by BH. Second, we want to quantify the
self-assembling processes taking place in the system as d
decreases to shed light on the reasons why CSDs with very
small elongation are hard to simulate.

The model and methodology are introduced in
Section 2. Results on gas–liquid criticality and self-
assembly analysis are described in Section 3, followed by
a discussion in Section 4 where also guidelines for future
investigations are suggested.

2. Model and simulation methods

A CSD consists of two oppositely charged soft spheres of
diameter σ (set as the unit length) separated by a fixed
distance d. The charge magnitude is |q−| = |q+ | = q. Two
dumbbells i, j interact through the following pair-potential:

Uij ({riajb
}) =

∑
a,b

(
c

(
σ

riajb

)12

+ qaqb

4πε

σ

riajb

)
, (1)

where a, b = + , − denote the charges of the dumbbells
and riajb

= |ria − rjb
| is the corresponding distance. Each

CSD carries a dipole moment |μ| = qd = 1. This means
that charges are progressively increased on decreasing d to
maintain the particle dipole moment constant. The energy
is expressed in units of u = μ2/4πεσ 3, the temperature T
is given in dipolar units (kB/u) and the density is defined by
ρ = σ 3N/V, where N is the number of dumbbells and
V is the volume of the simulation box. In analogy with
[21,24], we fixed c = 4u and studied several values of d.
Figure 1 shows the pair-interaction energy for the nose-to-
tail and the anti-parallel side-by-side configurations as a
function of d. The two curves cross at d = dc � 0.70145.
Since nose-to-tail configurations are associated to chain-
ing, one can use this crossover value as an estimate for the
elongation at which this self-assembling process starts to
occur.

Simulations were performed in a cubic box of side
L (with L varying between 27 and 32, depending on d).
Coulomb interactions are taken into account by Ewald sums
with conducting boundary conditions [26]. We optimise the
trigonometric calculations to provide an additional speed
up.
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3610 S. Dussi et al.

Figure 1. CSD pair interaction energy for the two lowest energy
configurations (nose-to-tail and anti-parallel side-by-side) as a
function of the dumbbell elongation for the selected model (c =
4u). The crossover between the two geometries takes place at d =
dc � 0.70145.

We investigated the phase behaviour of CSDs by com-
puting in the grand canonical (GC) ensemble the probability
P(ρ, E) at fixed T, V and activity z. To uniformly sample
the density, we implemented the SUS method [27]. In this
method, the density range is split into overlapping windows
which are then explored in parallel by GCMC simulations.
There is an additional constraint on the number of particles,
which has to lie within the range assigned to each window.
We used from 500 to 1000 windows, depending on the box
size and on the density range. Each SUS window i is con-
strained to have a number of particles ranging from Ni to
Ni + 1, and the overlap between two neighbouring windows
is one, i.e. Ni + 1 = Ni + 1. The parallel nature of the SUS
scheme allows to sensibly speed up simulations, since all
the windows can be sampled at the same time.

Through standard histogram reweighting techniques
[28], the simulation output P(ρ, E), computed at fixed z,
V, T, can be used to obtain the free-energy profiles at

different z′ and nearby T ′. We estimate critical points by
fitting P(ρ, E) to the universal Ising distribution P(M) by ap-
plying the Bruce–Wilding method [29], i.e. by considering
M ∝ ρ + sE, where s is a model-dependent constant whose
value is determined by the fitting procedure.

Simulations of dipolar-like systems are intrinsically
very challenging because of the chaining process that takes
place in the low-temperature region. The resulting self-
assembled aggregates are strongly bonded and long lived.
Traditional MC moves are not efficient enough in breaking
such structures and, in particular, the low acceptance rate
of insertion and deletion moves represents the typical bot-
tleneck of GCMC simulations carried out in this regime.
To overcome this problem, we developed a new biased
insertion/deletion move, in analogy with the procedure pro-
posed for DHSs by Ganzenmüller et al. [9] and based on
the idea of Caillol [8].

Due to the strong local electric field present in the prox-
imity of large aggregates, a trial particle inserted with a
random orientation would be very likely rejected. To im-
prove insertion/deletion acceptance ratios, Ganzenmüller
et al. introduced a biasing scheme for dipolar spheres that
tends to orient the newly inserted particle dipole along the
local field. Let E be the electric field at the trial insertion
position r. The angle θ between the trial dipole and E is
then randomly extracted from the biased distribution,

f (cos(θ )) = βμE exp (βμE cos(θ ))

2 sinh(βμE)
. (2)

The previous formula follows from the angular average
of the Boltzmann factor, which is analytically solvable
for point-like dipoles (DHS or DSS models) but not for
finite-sized ones (CHD or CSD models). To circumvent the
problem, we introduce a new move consisting of two steps
(Figure 2(a)): in the first stage we introduce a DSS oriented
according to Equation (2), and then we transform it in a

Figure 2. (a) Cartoon of the insertion–transformation MC move for CSD. (b) Acceptance rate for the insertion move for CSD with d =
0.35 at temperature T = 0.0295 and activity z = 9.93 × 10−5 with and without the new move introduced in the present work. The same
behaviour is observed for the acceptance rate of the deletion move.
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Molecular Physics 3611

CSD with a probability given by

acc (DSS → CSD) = exp[−β(UCSD − UDSS)], (3)

where UDSS(r) = −μ · E(r) + c/r12. Since the intermedi-
ate state of a DSS present in the system is to be avoided,
the probability of accepting or rejecting a CSD insertion is
given by the combination of the two steps and takes the fol-
lowing simple form (a standard GCMC criterion weighted
with the local electric field):

acc(N→N+1) = min

[
1,

1/2

f (cos(θ ))

zV exp(−βUCSD)

N + 1

]
.

(4)

Analogously for the deletion move,

acc(N → N − 1) = min

[
1,

f (cos(θ ))

1/2

N exp(βUCSD)

zV

]
.

(5)

In general, the gain obtained using this move depends on the
model parameters and on the simulated state point. Perfor-
mance improvements are more evident at higher densities
when the fluctuations of the local electric field are larger.
Figure 2(b) shows the acceptance ratios of regular inser-
tions and biased insertions for d = 0.35 and T = 0.0295 as
a function of density.

We fix a ratio of 1:10 in the random choice between GC
and roto-translational moves.

The structure is characterised through radial distribu-
tion functions, computed either on the centre of mass of
the particles, g(r) or on the charges position, g+−(r), and
through the structure factor,

S(q) = 1

N

〈
N∑

i=1

N∑
j=1

exp(iq · (ri − rj ))

〉
. (6)

At small d and low T, the dumbbells self-assemble into
linear clusters. To investigate this process, we perform a
standard cluster analysis by employing a mixed distance-
energy bonding criterion: two dumbbells share a bond if the
distance between their centres of mass is less than a cut-off
distance rbond and if their pair interaction energy is negative
[10]. We fix rbond in correspondence of the first minimum
of g(r). We then partition particles into clusters according
to their topology.

• Chains are clusters of particles containing two ends
(i.e. particles with just one bonded neighbour) con-
nected by particles with only two bonded neighbours.

• Rings are clusters containing only doubly bonded
particles.

• Branched structures contain at least one particle with
more than two bonds.

Figure 3. Best fits to the universal Ising distribution [30] for the
simulated P(ρ, E).

3. Results

3.1. Gas–liquid criticality

We first report on gas–liquid criticality by studying
the density fluctuations distribution P(ρ, E) obtained
through SUS simulations of CSD with c = 4 and d =
1, 0.8, 0.6, and 0.35. We investigate several temperatures
to locate the critical points, starting with the estimates given
by BH [21,24]. For d ≥ 0.6, we find the expected gas–liquid
separation and we are able to accurately locate the pseudo-
critical points by fitting the obtained P(ρ, E) to the universal
Ising distribution. Figure 3 shows the best fits for these three
investigated systems.

The resulting critical parameters Tc and ρc are plotted
in Figure 4 and reported in Table 1 together with zc and the
fitting parameter s. The behaviour of both quantities as d
decreases is qualitatively similar to the results presented by
BH: Tc increases monotonically, while ρc exhibits a peak.
Even though three points do not allow for a precise pinpoint-
ing of the peak position, we note that the position of the
peak is compatible with the value of d � 0.70145 at which
the crossover between the nose-to-tail and the anti-parallel
configuration as the energetically preferred geometry takes
place. If this is the case, the maximum in ρc can act as
an indicator to distinguish between the ionic-like and the
dipolar-like regimes. From a quantitative point of view, Tc is
really close to the values found by BH: for d = 0.60 the two
values differ for less than 5%. A more significant difference
is on ρc, since our results are sensibly larger (up to a factor
of 2) than the ones computed by BH, signalling perhaps a
significant effect of the way the long-range interactions are
handled. We note that the values of the critical parameters
and of s are in line with the corresponding values observed
in the RPM model [31].

For d = 0.35, we are unable to clearly detect a crit-
ical point in the range of temperature studied (also indi-
cated in Figure 4(a)). For this particular choice of d, we
observe no criticality for 0.0295 ≤ T ≤ 0.035. Figure 5
shows the resulting P(ρ) at T = 0.0295, obtained summing
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3612 S. Dussi et al.

Figure 4. Pseudo-critical (a) temperatures and (b) densities for
all the investigated models (circles). In (a) red triangles indicate a
single-phase point and the crosses indicate the other investigated
temperatures (see text). The blue line and symbols are taken from
[21].

P(ρ, E) over all possible E values, at different activities z:
in the whole density range the distribution is always single
peaked. As a reference, the BH pseudo-critical tempera-
ture for the same elongation is T BH

c ≈ 0.035. As observed
in both [23] (CHD) and [21], the critical temperature in
charged dumbbell models is usually a monotonic function
of d. By comparing with results for larger values of d, we ex-
pect Tc(d = 0.35) to lie between T ≈ 0.023 and T = 0.0295.
Bearing this in mind, we carried out additional simulations
at lower temperatures, but P(ρ) never exhibits two clearly
separated peaks. Figure 5(b) shows the low-density part of
P(ρ) for all investigated temperatures. At T = 0.027, a flat
region appears at densities so low (ρ ∼ 0.002) that we tenta-
tively ascribe it to finite size effects. At these temperatures,
the acceptance rate of GCMC moves drops off and the ex-
tensive clustering makes it really hard to properly sample
the P(ρ). Nevertheless we carried out a very long run at

Table 1. Critical parameters for all the investigated models.

d Tc ρc zc s

1.0 0.0172(8) 0.014(4) 3.479 × 10−4 −7.35
0.8 0.0205(4) 0.015(9) 3.387 × 10−4 −23.4
0.6 0.0228(5) 0.015(6) 1.925 × 10−4 −19.8

Figure 5. (a) P(ρ) obtained through SUS simulations for CSD
with d = 0.35 at T = 0.0295 in a box of side L = 31 and using
histogram reweighting to span a large chemical potential interval.
Inset: linear-log plot. (b) P(ρ) for d = 0.35 for all the investigated
temperatures, reweighted as to highlight the flat region present at
low densities.

T = 0.0217, resulting in a still noisy P(ρ), which shows no
clear double-peaked structure and, once more, a flat region
centred around ρ ≈ 0.003.

The exact reason behind the absence of the critical phe-
nomenon is not clear yet, but we can tentatively give two
possible explanations.

(1) Finite size effects mask the phase transition, and
simulations with sufficiently large boxes are ba-
sically infeasible with present-day computational
tools. Hence the possibility to make progresses
heavily depends on the ability to develop fast and
reliable algorithms to speed up calculations.

(2) The critical point is moved to very low tempera-
tures and densities by the self-assembling process,
well below T at which equilibration can be reached.
If this is the case, then the system is approaching a
regime similar to what has been observed in a sys-
tem of DHS plus a short-ranged attraction [9]: the
system begins to self-assemble and to form stable,
almost fully bonded aggregates which greatly re-
duce the driving force behind gas–liquid criticality.
A small variation in the interaction results in a very
large change in the critical temperature.
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Molecular Physics 3613

The next sections support the latter hypothesis, but we
cannot rule out the former.

3.2. Potential energy

In simple fluids, the gas–liquid phase separation is driven
by the liquid having low energy and low entropy and the
gas having high energy and high entropy. Since the large
elongation d = 1 system is similar to the RPM, we expect a
condensation-like transition to occur. Figure 6(a) shows the
density dependence of the potential energy per particle U
for different temperatures for the d = 1 system. As for sim-
ple fluids, the more dense the system, the lower the energy
per particle. As shown in Figure 1, for d > dc it is ener-
getically more convenient to form bonds via anti-parallel
geometries, which lead to compact aggregates. Upon in-
creasing the density, the number of neighbours per particle
also increases. The energy difference between low and high
densities is large enough to sustain a phase transition and
the system can then separate in a low density, high energy
gas and a high density, low energy liquid.

Reducing d below dc drastically changes the potential
energy per particle. Figure 6(b) shows the ρ-dependence
of U/N for the d = 0.35 system for different temperatures.
Strikingly, there is a very wide region in density for which
U/N is a constant. This ρ region grows as the system is
cooled down. A weak or no density dependence of the

Figure 6. Potential energy per particle as a function of density
for (a) d = 1.0 and (b) d = 0.35 for different temperatures.

potential energy is a clear evidence of the onset of a self-
assembly process and it has been also observed in low-T
dipolar fluids [9,18,32]. The origin of this insensitivity on
density can be traced back to the chaining process: since
the nose-to-tail configuration is energetically preferred, the
dumbbells tend to self-assemble into linear clusters, with
each CSD having two neighbours, regardless of density.
The energy per particle saturates in these structures and
then, for a range of density that moves at lower and lower
values as T decreases, the system is energetically less sen-
sitive to a density variation because the only result in in-
creasing the density is a larger number of such aggregates.
The classical picture of a condensation does not fit any
more.

3.3. Structural properties

In this section, we analyse the structure of CSD systems
and we show how it changes when d decreases. As shown
in Figure 1, as d decreases the system goes from being ionic-
like to dipolar-like when d is small. In the ionic regime the
system undergoes a phase separation and the condensa-
tion process involves compact clusters, similar to the RPM
model [22]. A clear example of this mechanism can be
seen in Figure 7(a), which shows a typical simulation snap-
shot for a d = 1 system in the liquid phase. The system
is below the critical point, and we clearly observe dense
aggregates containing side-by-side oriented pairs of dumb-
bells. The gas phase features similar orientations between
neighbouring dumbbells, even though they aggregate into
much smaller clusters.

For d < dc, the head-to-tail configuration becomes more
energetically favourable and the chaining process starts
to take place. Upon cooling, chains become progressively
longer and, if ρ increases, they merge together into branched
structures which eventually form a percolating network. A
further decrease in T can determine a kinetic arrest, giv-
ing rise to a reversible gel [33,34]. Figure 7(b) shows a
typical simulation snapshot for d = 0.35 at ‘high’ density
(higher than the expected critical density) and low tem-
perature, where chain-like aggregates are interlinked in a

Figure 7. Typical simulation snapshots for (a) d = 1 and (b)
d = 0.35 at high (liquid-like) density (ρ = 0.0355 and ρ = 0.0138,
respectively).
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3614 S. Dussi et al.

Figure 8. Charge-to-charge radial distribution function g+−(r)
for (a) d = 1 and (b) d = 0.35 at ρ = 0.0355 and ρ = 0.0138,
respectively. The dotted line in (b) is the g+ −(r) (opportunely
rescaled) for a linear ideal chain (see text for details). Insets:
number of neighbours n(r) for (a) d = 1 at ρ = 0.0355 and (b) d
= 0.35 at ρ = 0.0138 and ρ = 0.0016 for different temperatures.

network structure. The figure strongly resembles snapshots
of purely dipolar (i.e. d → 0) systems [18,25].

To quantify the structural differences between CSDs
of different inter-charges distance d, we study the charge–
charge radial distribution function g+−(r).

Figure 8(a) shows g+−(r) for the d = 1 system in the
liquid phase. The shape of the pair-correlation function
resembles the ones found in simple liquids [35]: there are
no distinct peaks for like-charges and unlike-charges and
the maxima are quite broad and widely spaced.

The scenario for d = 0.35 is, once again, very different.
In Figure 8(b), we plot g+−(r) for d = 0.35 at high density
and for different T. The function is well structured at all T
and, upon cooling the system, the peaks become higher and
sharper and the minima deepen. The positions of the peaks
clearly indicate a preference for the head-to-tail orientation.
We also include the g+−(r) calculated for a perfect linear
chain (dotted line). The good agreement between the peak
positions and their relative heights confirms that chaining is
the most relevant structural process in the system. The shift
of the secondary peaks, which diminishes when T decreases,
is due to the flexibility of the chains, whose decrease also
controls the appearance of further peaks.

Figure 9. Structure factor S(q) for d = 0.35 (T = 0.0217, ρ =
0.00138) and d = 1 (T = 0.0016, ρ = 0.00355). Inset: S(q) T-
dependence for d = 0.35. The orange dotted line is a power law
with exponent −1.

To further investigate the local structure, we calculate
the average number of neighbours within a sphere of radius
r, which is linked to the dumbbells centre of mass g(r) via

n(r) = 4πρ

∫ r

0
r ′2g(r ′)dr ′. (7)

The inset of Figure 8(a) shows n(r) for d = 1. As ex-
pected, the function quickly loses its structure and begins
to grow quadratically as g(r) approaches 1. In the inset of
Figure 8(b), we plot n(r) for d = 0.35 for two densities
and for different temperatures. We see in all cases a flat
region starting from r � 1.75, which becomes even flat-
ter if T decreases. This plateau is another evidence of the
chaining process, since the distance r � 1.75 corresponds
to the distance between two dumbbells in the head-to-tail
configuration. The height of the plateau n(r) ≈ 2 clearly
indicates that the great majority of the dumbbells has only
two neighbouring particles. At low density, this flat region
extends to larger r, while increasing ρ determines a larger
average number of neighbours, as expected.

The structural differences between the two regimes can
also be observed through the structure factor S(q), as shown
in Figure 9. The structure factors of both systems grow at
low q, but d = 1 S(q) exhibits a much stronger increase due
to the phase separation occurring in the system. By contrast,
the growth of the low-q S(q) of the d = 0.35 system, whose
T-dependence is shown in the inset, is compatible with a
power law with exponent 1, similar to what is found in
purely dipolar systems [18,36].

3.4. Self-assembly analysis

In the previous section, we reported clear indications of
the presence of linear aggregates in systems of CSD with
small elongations. Indeed, the self-assembly process be-
comes more relevant upon reducing d. Here we want to
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Figure 10. Self-assembly analysis for d = 1. (a) Fraction of
particles in ‘chains’ (see text for definition), rings and branched
clusters as a function of density at T = 0.016. Inset: corresponding
P(ρ). (b) Temperature dependence of the different structures.

discriminate between different topological structures as an-
ticipated in Section 2.

We used the bond criterion between two dumbbells in-
troduced before and previously adopted for the DHS model
[10]. The value of rbond is based on the first minimum of
the centre–centre g(r), which depends very weakly on ρ.

In Figure 10(a) we report the fraction of particles in
chains fc, rings fr and branched structures fb as a function
of the overall density for the d = 1 system at T = 0.016
< Tc. The SUS method indeed offers the possibility of
sampling all the densities between the two coexisting ones,
for which the system is phase separated and composed
of a coexisting mixture of the two phases. First we note
that, by our definition, monomers and dimers are defined as
chains of one and two particles, respectively. For low den-
sities, chains are the dominant topology of aggregates and
their concentration drops off immediately as ρ increases.
By analysing the cluster size distributions, we see that the
majority of these ‘chains’ are indeed very small clusters
made up of 1–5 dumbbells which, although satisfying our
chain-like criterion, are more similar to ribbons than to
chains [37]. Indeed, by comparing P(ρ) at coexistence (in-
set), we see that these small clusters are what the gas phase

Figure 11. Self-assembly analysis for d = 0.35. (a) Fraction
of particles in chains, rings and branched clusters as a function
of density at T = 0.0217. Inset: corresponding P(ρ) from SUS
simulation. (b) Temperature dependence of rings and chains. Inset:
T-dependence for branched clusters.

is made of. The number of rings in the system is negligible.
Figure 10(b) reports the T-dependence fc, fr and fb for the
same system. Upon cooling the system, fc moves slightly
towards lower densities as a result of the decrease in density
of the gas phase. In addition, fb undergoes a small shift to
lower ρ. The number of rings does not change.

We then apply the same analysis to the d = 0.35 model,
finding a completely different scenario. Figure 11(a) shows
that, at T = 0.0217 (the lowest temperature investigated),
the majority of the particles at low density belongs to ring
structures and there are basically no more chains at any
density. At high density branched structures are still domi-
nant, as expected. The presence of rings has a tremendous
impact on the equilibration time of the simulation: since
every particle has two head-to-tail neighbours, the lifetime
of a ring is incredibly long. The inset of Figure 11(a) shows
P(ρ) computed at different z after more than 2 months of
simulations run on 100 CPU cores. On passing, we note
that the first peak in the green curve (z = exp (−13.08))
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is due to the fact that, for this model, rings of size ≈8 are
favoured. Finally, in Figure 11(b) we report the temperature
dependence of fc, fr and fb. At the highest T, the density
dependence resembles d = 1: chains are dominant at low
density, branched clusters at high density and there are not
many particles in rings in the whole density range. Upon
cooling, fb does not evolve considerably, while fr starts to
rise to the detriment of fc. We see that already at T = 0.027
rings start to compete with chains, until they eventually
suppress them almost completely at T = 0.0217. A simi-
lar abundance of rings was recently observed in the DHS
model [18,38] and may be one of the reasons why no crit-
icality seems to be present in the temperature range where
it was predicted to occur.

The sudden increase in the fraction of particles in rings
may imply that in the system there are not enough chains to
sustain a topological phase transition as the one predicted
by the TS theory. The question becomes how to determine
the effect of the rings on the phase diagram of the system. A
recent numerical study on two-dimensional patchy particles
showed that rings can indeed suppress the liquid–gas phase
separation [39].

4. Discussion and conclusions

In the present article, we consider a system composed of
CSD, i.e. two oppositely charged spheres separated by a
distance d. The same model was recently studied by BH by
means of molecular dynamics simulations, with the long-
range interactions being taken into account via a reaction-
field method. We use the more rigorous, albeit more com-
putationally expensive, Ewald sums method and through
SUS MC simulations we investigate the dependence of the
gas–liquid critical parameters on the dumbbell elongation d.

Our results confirm the criticality picture for elongated
dumbbells (d = 1, 0.8, 0.6), although we find a difference in
the critical values, especially for ρc. Reducing d to 0.35 we
obtain a different scenario from the one presented by BH:
the critical point (if present) shifts towards significantly
lower T and ρ with respect to the critical parameters found
by BH, in a region hardly accessible to simulations due to
the very long lifetime of self-assembled aggregates. This
discrepancy in the values of the critical parameters is as-
cribed to the different way of handling the long range inter-
actions or to the different methodology to detect the phase
separation, an issue that deserves a deeper investigation.

By analysing the average potential energy per particle,
we see a striking difference between dumbbells with dif-
ferent elongations. Dumbbells with d � dc tend to form
compact clusters with a coordination number that grows
upon increasing ρ. Cluster analysis shows that the low-
density phase is composed of mostly monomers and very
small clusters, while the high-density phase is a network
of branched clusters, as expected for a condensation-like
transition.

By contrast, d � dc values lead to the open nose-to-tail
configuration being the most energetically favourable ge-
ometry. For a wide range of densities, each CSD has two
neighbours and the average U/N does not increase upon
increasing ρ. In this regime, as seen for other dipolar mod-
els, ring-shaped clusters start to form and they eventually
become the most abundant aggregates at low densities. We
link the absence of a phase separation to this massive pres-
ence of rings which, under certain conditions, can suppress
phase separation entirely [39]. The possibility of fine tuning
d to quantify the effect of self-assembly on criticality will be
of invaluable importance for the understanding of the phase
behaviour of dipolar fluids. Indeed, changing d changes
both Tc and the temperatures at which ring formation be-
comes dominant. Finding a parameter combination, which
features a reasonably high Tc and an abundance of rings at
lower temperatures, will be key for the investigation of the
interplay between self-assembly and phase separation.

Finally we note that the parameter c, which we have
kept fixed throughout this work, tunes the ratio between
the isotropic short-range soft repulsion and the anisotropic
long-range dipolar interaction. It can then be used to con-
trol the thermodynamics and the dynamics of the system.
BH [24] selected the value c = 4 (the same value studied in
this article) to decrease the bond strength between particles
and therefore allow for a faster equilibration of the system
in molecular dynamics computer simulations. Indeed, the
choice of c changes the curvature of the potential and its
minimum. Smaller c values have been employed to inves-
tigate the dynamic properties of gel-like materials [32,33].
We note that the choice of c, which deeply affects the over-
all interaction potential, can also have strong effects on the
formation of clusters and on the phase behaviour.

In conclusion, this work contributes to the long-standing
question on the role of purely dipolar interactions on the
thermodynamic properties of long-range interacting fluids.
There is no definite answer yet, mainly because of the huge
computational cost of simulating these systems. Overcom-
ing the severe finite size effects, which appear at low temper-
atures, will require new specific algorithms and simulation
techniques. From a theoretical point of view, the subtle bal-
ance between self-assembly and phase separation will have
to be addressed by theories which also take into account
ring structures.
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