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We exploit the concept of competing interactions to design a binary mixture of patchy particles that forms a
reversible gel upon heating. Our molecular dynamics computer simulation of such a system shows that with
increasing temperature the relaxation dynamics slows down by more than four orders of magnitude and
then speeds up again. The system is thus a fluid both at high and at low temperatures and a solid-like
disordered open network structure at intermediate temperature. We further discuss the feasibility of
realizing a real material with this reversible behavior.

S
ome of the most versatile and efficient strategies for designing new materials with unconventional behavior
are based on the idea of competitive interaction. While in biology the term competitive interaction indicates
the result of rivalry between two or more species competing for resources, in physics it stands for the

presence of several interaction mechanisms that can stabilize competing local structures, leading to novel and
highly interesting features of the system. Recent examples for this mechanism in soft matter systems include,
among others, the competition between short-range attraction and long-range repulsion in charged colloids
giving rise to cluster phases1–3, the competition between chaining and branching in patchy colloids4,5 where a
specific design of the inter-patch interactions results in a phase diagram in which the density of the coexisting
liquid approaches the density of the gas5, and the design of DNA-coated colloids with two different DNA
sequences for the purpose of establishing a competition between intra and inter-particle interactions, favoring
crystal formation6. Often the very nature of these competing mechanisms promotes the emergence of a structure
controlled by energy (stable at low temperature, T) which competes with a structure stabilized by entropy at
intermediate T.

Recent progress in the synthesis of colloids has led to a novel type of particles that have highly directional and
selective interactions, thus providing valence to colloids7. In particular the recent developments in large scale
synthesis of patchy colloidal particles8 and in DNA nanotechnology have already allowed for the production of
versatile constructs in which specificity, valence and interaction strength can be tuned at will9,10. This ability to
control the interactions between nano-and meso-sized particles8, and to design the geometric properties of the
patches11,12 and/or their functionalization, offers now the possibility to take advantage of the competitive inter-
actions that are usually present in such systems and hence to modulate material properties with external control
parameters. In this Report we develop one such possibility: The design of a material that continuously (i.e. without
the interference of a first order transition) and reversibly gels upon heating. In contrast to gelation on heating
observed in protein solutions13, where kinetic arrest is driven by the irreversible denaturation of the proteins, here
we require thermo-reversibility of the process and a simple design of the constituent particles. We show how a
binary mixture of limited valence particles can provide a model in which the competition between entropy and
potential energy causes the system to show a re-entrant behavior, passing reversibly from a fluid to a gel and again
to a fluid if T is varied. The proposed model, amenable to theoretical analysis and experimental realization, shows
in simulations a slowing down of the dynamics of several orders of magnitude on heating, providing the first
example of controlled reversible gelation.

Patchy colloidal particles with a limited number f of attractive patches progressively cluster when cooled,
leading such systems to form a percolating network that at sufficiently low T will contain all particles in the
system14–19. Due to this aggregation, the dynamics slows down by several orders of magnitude. In the network state
the lifetime of the bonds (a T-controlled quantity) fixes the timescale over which the system behaves as a solid. It is
known that if f 5 4, the particles (here called A species) form a random tetrahedral network which closely
resembles the structure of network-forming atomic systems like silica or silicon20. To melt the network at low T,
we add a second species (B) with only a single patch which competes for bonding with the patches on the network
forming A-species21. The idea is to design a competitive mechanism such that the bonding between A- and B-
particles becomes dominant, but only at a temperature which is much lower than the one at which the AA-
network is formed. As a result, the stable low-T phase consists of A-particles decorated with f B-particles which are
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free to diffuse in the sample volume, whereas at intermediate T the
system forms a highly viscous AA-network that is progressively frag-
mented and transformed into a fluid upon heating.

Results
Model. We consider a binary mixture of patchy colloids where each
A-particle has f 5 4 patches on its surface that are arranged in a
tetrahedral geometry and the B-particles have only one patch (see
Fig. 1). The patch-patch interaction is modeled via a Kern-Frenkel
potential22, a model that has been extensively used over the last
decade to compare simulations and experiments on the self-
assembly of patchy colloids23–25. Each A-patch can interact either
with a B-patch with unit energy AB and bonding volume VAB or
with another A-patch with energy AA~0:95 AB and VAA ?VABð Þ.
No BB-bonding is allowed. The bonding volumes are each
determined by an interaction range da and an angular patch width
ha (a g {AA,AB}) (see Fig. 1 and Methods). The attractive patch-
patch interaction is complemented by an isotropic hard-core
repulsion, where the spherical cores have diameters sA and sB 5

0.35sA. The size ratio was chosen such that the B-particles can block
the A-patches from bonding to other A-patches without significantly
increasing the packing fraction of the pure A system. Due to
geometric constraints, each patch can be involved in only a single
bond.

Using event-driven molecular dynamics simulations26–28 (see
Methods), we have studied a system of NA 5 600 and NB 5 2400
particles, corresponding to a total number density rs3

A~3:0, with
partial number densities rAs3

A~0:6 and rBs3
A~2:4, for a wide range

of T, whose unit is given by AB=kB, where kB is Boltzmann’s con-
stant. The composition of the system is thus fixed at xA 5 0.2. The
density rAs3

A~0:6 of A-particles corresponds to the optimal density
at which tetrahedral particles form an unstrained fully bonded net-
work29. With this composition, the fully bonded network has an
energy of 2NA AA, whereas a configuration in which all the B-part-
icles are bonded to the A-particles has the significantly lower energy
of 4NA AB. We also simulate for a low T ~0:04 AB=kBð Þ a reference
system composed of 600 flowers (see Fig. 1d), i.e. A-particles bonded

to four B-particles. At this low T no bond breaking events take place
within the simulation time.

Temperature dependence of the bonding probability. Figure 2
demonstrates the effect of the competitive interactions present in
our system. It shows the T–dependence of the probability that a
patch on an A-particle is bonded to another A-patch (pAA) or to a
B-patch (pAB). On cooling, pAA starts to grow, signaling the onset of
the network formation, and reaches a maximum around T~
0:11 AB=kB. We recall that within a mean-field description, perco-
lation of particles with valence f 5 4 takes place at pAA 5 1/330. Since
at the maximum we find pAA < 0.9 we can conclude that at this T the
A-particles have formed a highly bonded percolating network. Upon
further cooling, pAA starts to decrease whereas pAB grows quickly,
showing that the AB-bonds are starting to replace the AA-bonds. The
entropy associated with the larger bonding volume VAA for the AA
interaction is crucial for promoting the formation of a large number
of AA-bonds at intermediate T, before the energetically preferred but
entropically disfavored AB-bonds set in. Figure 2 also shows the
parameter-free theoretical predictions for the bonding probabilities
as obtained from the first-order thermodynamic perturbation theory
developed by Wertheim31–33 (details on the Wertheim calculations
are reported in the Methods section). The Wertheim theory nicely
captures the mechanism of competing interactions, reproducing the
position and height of the maximum of pAA as well as the low T
trends of pAA and pAB.

Structure. Figure 3 shows the unusual T dependence of the structure
of the system, related to the non-monotonic behavior of pAA. At high
T, the partial structure factor SAA(q) shows the conventional q–
dependence found in simple liquids with a main peak around qsA

5 7.2. Upon decreasing T the main peak splits into two, one located
around qsA 5 5.2 and a higher one around 8.4. This double peak
feature is typical of liquids that have a local tetrahedral network
structure, such as silicon or silica20. The peak at qsA < 8.4
corresponds to the nearest neighbor distance between two bonded
A-particles, whereas the one at around 5.2 is associated with the
second-nearest neighbors in the tetrahedral network. Note that this
double peak structure is most pronounced at T<0:11 AB=kB, i.e. at
the T at which pAA has a maximum (see Fig. 2) and hence the gel is
maximally connected. When T is lowered even further the double
peak structure disappears and SAA(q) becomes again similar to the

Figure 1 | The Kern-Frenkel model. (a) Schematic of the interaction

parameters in the Kern-Frenkel model. An A-patch can bond with either

another A-particle (b), or with a B-particle (c). Panel (d) shows a ‘‘flower’’,

i.e. a fully bonded cluster consisting of one A-particle and four B-particles,

representing the lowest-energy state of the system. Here the interaction

ranges and the angular patch widths are cos hAA 5 0.92, dAA 5 0.15sA, and

cos hAB 5 0.99, dAB 5 0.2sA. With these choices the bonding volumes are

given by VAA~3:49:10{3s3
A and VAB~3:79:10{5s3

A(see Methods). Note

that in the binary Kern-Frenkel model, h and d of each bond are defined by

the species of both bonding partners and are not properties of individual

particles.
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Figure 2 | Bonding probabilities. Probability that a patch on an A-particle

is bonded to another patch on an A-particle, pAA (black circles), or to a

patch on a B-particle, pAB (red squares). The dashed lines are the prediction

for these probabilities as calculated from the Wertheim theory.
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structure factor of a fluid composed of flowers (which is also included
in Fig. 3 as a reference). Since the size of a flower is larger than that of
an A-particle, the peak position at low T is to the left of the one
observed at high T.

Temperature dependence of the diffusion coefficient. We now
quantify the effect of the competing interactions on the dynamics
of the system and provide evidence that the change of the structure
rich in AB-bonds at low T to the highly bonded AA-network
generates a slowing down of the dynamics on heating. For this, we
calculate the mean squared displacement (MSD) for the particles of
both species and then their corresponding diffusion coefficients Da

(a g {A,B}) from the long-time behavior of the MSD via the Einstein
relation. We should note that the center of mass (CM) of a single
species has a non-zero velocity (which is compensated by the CM
motion of the other species). To obtain meaningful results for the
MSD of a single species, we subtract the CM drift of the species in
question before evaluating the MSD. In addition, to remove the
trivial trend originated from the T-dependence of the thermal
velocity we divide Da by a reference diffusion coefficient D0:s2

A

�
t0, where t0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAs2

A

�
kBT

q
and mA is the mass of an A-particle.

Figure 4 shows the T-dependence of Da in an Arrhenius plot. At high
T, Da is approximately constant for both type of particles, indicating
that bonds do not play a significant role. On cooling, DA starts to
decrease very rapidly, with a super-Arrhenius T-dependence
reminiscent of that observed in molecular networks20, turning into
an Arrhenius law with an activation energy approximately equal to
2 AA(see dashed line in Fig. 4). Similar values of the activation energy
are typically found in tetrahedral network-forming systems where
most of the particles belong to the percolating cluster, and bond
breaking is the bottleneck for relaxation18,34,35. Before the gel starts
to decompose at a temperature below T<0:11 AB=kB, DA has already
decreased by four orders of magnitude compared to its value at high
T, indicating the formation of a persistent network. For
T *v 0:11 AB=kB, DA starts to increase. This rising persists down to
the lowest T at which we were able to equilibrate the system. We
emphasize that this non-monotonic T-dependence is only observed
for the A-particles, i.e. the particles which are involved in the
formation of the network. In contrast, DB shows only a rather mild
T-dependence. Fig. 4 also shows the diffusion coefficient of the fluid
of flowers at T~0:04 AB=kB for which DA 5 DB, the common value
to which both DA and DB converge.

Relaxation times. A non-monotonic behavior of the characteristic
time is also found in the time evolution of the collective- and self-
intermediate scattering functions. Their study provides insight into
how the relaxation dynamics depends on the considered length scale.
Figure 5a shows an Arrhenius plot of the relaxation time tA(q)
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Figure 3 | Structure factor. Partial structure factor SAA(q) for different
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Figure 5 | Relaxation times. (a) Arrhenius plot of the normalized

relaxation time tA(q)/t0 as obtained from the self (dashed lines) and

collective (solid lines) scattering functions, where t0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAs2

A

�
kBT

q
. The

different curves correspond to the wave-vectors given by the first two peaks

in SAA(q). (b) Arrhenius plot of the normalized bond-persistence time tb/

t0 for the AA (squares) and AB bonds (circles). Also included is an

Arrhenius law with activation energy AB(blue solid line).
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determined from the time integral of the intermediate scattering
function of the A-particles for two different q–vectors: qsA 5 5.2
and qsA 5 7.2, which correspond, respectively, to the location of the
first peak in the network and in the high-T fluid (see Fig. 3). We find
that the self and collective relaxation times tA(q), normalized by t0,
show qualitatively the same T-dependence: a plateau at high T, a fast
increase within the T-range in which the network is formed, a quick
decrease once the network starts to break up again, and a final plateau
at low T. This T-dependence is observed for both values of q,
indicating that the relaxation mechanism does not depend on the
length scale considered.

To provide further evidence that the system is ergodic on long time
scales, i.e. that the structure of the system has completely lost its
memory of the initial state, we have investigated the bond persistence
function pb(t), i.e. the probability that a bond which is present at time
zero is also present at time t (see Supplementary Information).
Hence, the relaxation time of pb(t) provides information on the
restructuring time of the network connectivity. Figure 5b shows an
Arrhenius plot with the T-dependence of the decay time tb, where
pb(tb) 5 e21. At intermediate and low T, tb is larger than the relaxa-
tion times shown in Fig. 5a. We find thus that pb(t) decays to zero
only on a time scale that is significantly longer than the relaxation
times associated with the scattering functions, confirming that some
fraction of spacial decorrelation of the network, as quantified by the
collective scattering function, takes place at partially fixed bonding
pattern. The extreme case occurs at very low T where the system is a
fluid of flowers that relaxes relatively quickly but in which AB-bonds
survive for a very long time. Figure 5b also shows that the T-depend-
ence of the lifetime of the AA-bonds differs strongly from the one of
the AB-bonds. The latter shows in the whole T–range an Arrhenius
dependence with an activation energy very close to AB(see blue solid
line in Fig. 5b). This suggests that the mechanism for the breaking of
an AB-bond is not collective in nature but a simple activated process.
In contrast, the breaking time for an AA-bond follows an Arrhenius
law at high T but becomes super-Arrhenius within the T-region in
which the gel forms, showing that this bond-breaking process is of
collective nature. At very low T the effective activation energy
becomes again an Arrhenius behavior with an activation energy
given by AA.

Discussion
We have demonstrated that a judicious choice of the interaction
parameters of a binary mixture of A and B patchy particles shows
a non-monotonic and reversible T-dependence of its dynamic prop-
erties. We set up a competition between network-forming AA-bonds
and network-breaking AB-bonds, which are favored by entropy and
energy, respectively. Thus, at intermediate T, entropy stabilizes a
viscous network gel, whereas both at low and high T, the network
breaks up, leading to a simple fluid state. Our results are robust with
respect to a change in the model parameters and we have indeed
observed a qualitatively similar phenomenology in our system for a
wide range of the interaction energy and density, 0:85 *v AA= AB

*v1:0 and 2:5 *v rs3
A *v 3:5. Since our system requires no fine-tuning,

we expect that the observed phenomenon can also be realized experi-
mentally. In particular, two experimental systems are very promising
candidates to test the ideas presented in this Report: (i) a solution of
DNA constructs of valence four36,37 in the presence of competing
DNA single strands and (ii) the binary mixture of patchy particles
recently synthesized in Ref. 8. Both of these systems offer single-
patch and four-patch colloidal particles with controllable interaction
strengths that are already amenable for experimentation, and thus
have the potential to provide soft materials that reversibly gel upon
heating.

Methods
Kern-Frenkel model. The particles investigated in the paper are modeled via the well-
known Kern-Frenkel model22. In this model, particles interact by means of a

combination of a hard-sphere potential uHS and an attractive directional interaction
upatch. The hard-core repulsion between two particles i and j is given by:

buHS rij
� �

~
? if rijvsij

0 otherwise

�
, ð1Þ

here, b 5 1/kBT, with kB Boltzmann’s constant and T the temperature, rij is the center-
to-center distance between the particles, and sij 5 (si 1 sj)/2 denotes the contact
distance between the particles, with si(sj) the diameter of particle i(j). The site-
specific attraction between the particles is determined by the circular patches on the
surface of each particle, which interact such that two particles form a bond with
interaction energy ij when i) their centers of mass are within a maximum interaction
range sij 1 dij, and ii) the center-to-center vector between the particles passes through
a patch on the surface of both particles (see Fig. 1 of main text). The size of the patches
is determined by an opening angle hij. The potential energy of two particles i and j is
thus given by

upatchðrij, pif gfpjgÞ~uSWðrijÞWðrij,fpigÞWðrji,fpjgÞ, ð2Þ

where uSW is a square-well attraction, given by:

uSW rij
� �

~
{ ij if rijvsijzdij

0 otherwise

�
ð3Þ

The function W(rij, {pi}) is defined as

W rij, pif g
� �

~
1 if r̂ij

:pwcos hij
� �

for any p in pif g
0 otherwise

(
ð4Þ

where rij 5 rj 2 ri, {pi} is a set of normalized vectors pointing from the center of
particle i towards the center of each of its patches, and r̂ is a unit vector in the direction
of r.

In the model used in the Report, all particles are either species A or species B. The
A-particles (with hard sphere diameter sA) have four patches each, arranged in a
tetrahedral geometry. The B-particles are smaller, with sB 5 0.35sA, and have only a
single patch. The parameters for the interaction between two A-particles are given by
cos hAA 5 0.92, and dAA 5 0.15sA. For the AB-interactions, cos hAB 5 0.99, and dAB 5

0.2sA. There are no attractive interactions between the B-particles. The ratio between
the two interaction strengths is fixed at AA~0:95 AB .

Event-driven molecular dynamics. To study the relaxation dynamics of our model
we use event-driven Molecular Dynamics (EDMD) simulations26,27. The
implementation of the EDMD simulation relies on the numerical prediction of bond
formation and bond breaking events, and follows the same scheme as described in
Ref. 28. In the model under consideration here, the mass m of each particle is taken to
be the same, setting the time unit of the simulation t0~

ffiffiffiffiffiffiffiffiffiffiffiffi
bms2

A

p
. Similarly, the

moments of inertia tensors of all particles were also chosen to be the same:
Ixx~Iyy~Izz~ms2

A .
During the equilibration of the simulations, the temperature is controlled by an

Andersen thermostat: periodically, randomly selected particles are given a new
velocity and angular velocity, drawn from a Maxwell-Boltzmann distribution. While
measuring the diffusion coefficient, no thermostat is used, so that the total energy in
the system is constant. To speed up equilibration of the system at low temperature, the
initial configuration is taken from a standard canonical Monte Carlo simulation
equilibrated at the same temperature T.

Wertheim theory. Wertheim’s thermodynamic perturbation theory allows us to
obtain an analytical expression for the free energy of pure fluids and fluid mixtures (a
detailed description can be found in Refs. 31, 32). In the context of Wertheim’s theory,
and specialized to our system, the probability pa that an a-site (a g {A, B}) is bonded
is obtained through the law of mass action, which in our case takes the form of a set of
two coupled equations33:

pA~1{ 1zrs3
A 4xA 1{pAð ÞDAAz 1{xAð Þ 1{pBð ÞDAB½ �

� �{1 ð5Þ

pB~1{ 1zrs3
A 4xA 1{pAð ÞDAB½ �

� �{1
, ð6Þ

where xA 5 0.2 is the molar fraction of the species A, r is the total number density. All
interaction parameters needed for describing bonding between AA-and AB enter in
DAA and DAB:

DAA~gAA sAð Þ exp AA=kBTð Þ{1½ �VAA
�

s3
A ð7Þ

DAB~gAB sABð Þ exp AB=kBTð Þ{1½ �VAB
�

s3
A, ð8Þ

where AAand AB are the bonding interaction energies of the AA- and AB-bonds. In
the present work we have approximated DAA and DAB by using the contact values of
the partial radial distribution functions33, gAA(sA), gBB(sB), and gAB(sAB) (where sAB

5 (sA 1 sB)/2), for a binary mixture of hard spheres as obtained from the Percus-
Yevick Equation38:
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gaa sað Þ~ 1{jð Þz 3
2

saX

� 	
1{jð Þ{2,a [ A, Bf g ð9Þ

gAB sABð Þ~ sBgAA sAð ÞzsAgBB sBð Þ½ �=2sAB, ð10Þ

where j~
p

6
rAs3

AzrBs3
B

� �
, X~

p

6
rAs2

AzrBs2
B

� �
, being rA and rB the partial

number densities of the different species. The bonding volumes VAAand VAB present
in Equations (7) and (8) are given by:

VAA~
4p
3

1{ cos hAA

2


 �2

sAzdAAð Þ3{s3
A

� �
ð11Þ

VAB~
4p
3

1{ cos hAB

2


 �2

sABzdABð Þ3{s3
AB

� �
, ð12Þ

where dc and hc (c g {AA, AB}) are respectively the interaction ranges and the
angular patch widths defined in the model section. Once Eqs. (5) and (6) are solved
(by using Eqs. (7)–(12)), the probabilities pAA and pAB that an A-site is specifically
bonded to another A- or to a B-site are obtained by the relations: pAA 5 pA 2 pB and
pAB 5 pB.
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