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We numerically investigate cooperative polymerization in an off-lattice model based on a pairwise
additive potential using particles with a single attractive patch that covers 30% of the colloid surface.
Upon cooling, these particles self-assemble into small clusters which, below a density-dependent
temperature, spontaneously reorganize into long straight tubes. We evaluate the partition functions
of clusters of all sizes to provide an accurate description of the chemical reaction constants governing
this process. Our calculations show that, for intermediate sizes, the partition functions retain contribu-
tions from two different structures, differing in both energy and entropy. We illustrate the microscopic
mechanism behind the complex polymerization process in this system and provide a detailed evalu-
ation of its thermodynamics. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869834]

I. INTRODUCTION

The formation of one-dimensional aggregates from a
system composed of identical monomers is a process of
paramount importance in biology, chemistry, material sci-
ence and physics, and continues to receive significant atten-
tion. Such structures arise spontaneously under appropriate
external conditions, and can be found in many systems, e.g.,
synthetic polymer molecules,1–4 carbon nanotubes,5, 6 amy-
loid fibers,7, 8 tubular surfactant micelles,9, 10 DNA wires,11, 12

and colloidal chains.13, 14 A special example is the so-
called “equilibrium polymerization” (sometimes also called
supramolecular polymerization), where the monomers asso-
ciate via reversible interactions, i.e., in the absence of co-
valent bonds.15–20 Equilibrium polymerization processes giv-
ing rise to one-dimensional aggregates are commonly classi-
fied in two broad classes: isodesmic polymerization17, 18 and
cooperative polymerization (CP).21–24 In the first class, the
free-energy change on bonding is essentially independent of
the polymer size. Theoretical modeling of one-dimensional
polymerization predicts that this type of aggregation re-
sults in an exponentially polydisperse distribution of polymer
lengths, with an average length that changes smoothly upon
varying density and temperature.18, 25–33 In dilute conditions,
parameter-free theoretical predictions14, 18, 28–30 properly de-
scribe the assembly process even in the limit of strong associ-
ation, when the average length is much larger than one.

In the case of cooperative polymerization, the growth of
the polymer typically consists of multiple stages in which sev-
eral building blocks combine into a secondary structure that
then grows out.21–24 Such a transition typically occurs much
more sudden than in isodesmic growth and in some cases
strongly resembles a first-order transition.21, 24, 34, 35 In addi-
tion, sometimes a competition between several supramolecu-
lar polymer structures is present.36–39 In the case of sulfur, a
well known example of CP, the polymerization involves ex-
isting S8 ring-structures of sulfur that break open and then
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connect to form polymer chains.40–43 We note in passing that
equilibria involving rings and polymers can be mapped onto
the problem of Bose-Einstein condensation.44

Cooperative polymerization mechanisms have also been
identified for filaments formed by biologically relevant or-
ganic compounds such as actin45 and guanosine,46, 47 and in
the formation of amyloid fibers.8 In CP, the average chain
length almost abruptly varies from small to large values
upon a small change in density and/or temperature. Mod-
eling of CP is often based on the assumption of multiple
equilibrium constants and then requires some degree of fit-
ting when comparing theoretical predictions to experimental
data.17

One class of models—commonly referred to after the au-
thors as Kern-Frenkel (KF) models,48 having its origin in the
work of Bol49—has received notable attention in recent years
as a convenient implementation for so-called “patchy” col-
loidal particles, i.e., colloids of a new generation that inter-
act anisotropically via specific spots on their surface. In these
models, attractive patches are characterized by a directional
square-well potential combined with a spherical hard-core re-
pulsion. This strategy has proven valuable for describing key
phenomena exhibited by these particles, such as the gas-liquid
phase separation50–52 and the formation of crystals53–58 and
other organized structures.59–63 Recently, we have employed
such KF models to study the phase behavior of one-patch par-
ticles with varying surface coverage. For the case of 30% at-
tractive surface, we discovered64, 65 the sudden formation of
extremely long tubular structures self-assembling at specific
temperatures and densities, suggestive of CP. We note here
that also other patch potentials can result in fibers and bun-
dles. One example is given by Huisman et al.,35 who use
an anisotropic Lennard-Jones-based potential to model two-
patch particles. The choice of this specific potential strongly
favors a head-to tail alignment of the particles, leading to the
formation of one-dimensional chains. Because there is also a
weak attraction when the particles are not perfectly aligned,
the formed chains also attract each other sideways and assem-
ble into bundles.

0021-9606/2014/140(14)/144902/10/$30.00 © 2014 AIP Publishing LLC140, 144902-1
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(a) (b) (c)

FIG. 1. Snapshots of constant NV T simulations, for kBT/ε = 0.145 (a), kBT/ε = 0.14 (b), and kBT/ε = 0.13 (c), all at density ρσ 3 = 0.05. The attractive
hemispheres are depicted in orange. Particles in a tube-like environment, according to the order parameter in Eqs. (5) and (6), are labeled black/orange. Other
particles are blue/orange.

An important step in colloidal physics which has rele-
vance to polymerizing systems is the recent development of
accurate numerical methodologies for evaluating the parti-
tion function of clusters of different sizes.66–68 From this in-
formation, the relative free energies of clusters consisting of
different numbers of particles can be calculated, providing a
transparent route for evaluating the equilibrium constant of
all “reactions” between clusters. In this article, we apply this
new methodology, complemented with standard Monte Carlo
simulations, to perform an in-depth investigation of the poly-
merization process in the KF48 one-patch model with 30%
surface coverage. We show that this model indeed constitutes
an example of cooperative polymerization, in which the parti-
cles themselves are the smallest building blocks. In contrast to
some molecular systems, these particles do not change shape
or conformation. In addition, we provide a detailed descrip-
tion of the self-assembly process by numerically evaluating
the cluster partition functions. We observe the onset of poly-
merization as a crossover from monomers into small disorga-
nized oligomers or clusters. At sufficiently low temperature,
we observe a structural transition into rigid tubes for a cluster
size of approximately 30–40 monomers. Above these clus-
ter sizes, we never observe disordered clusters and only the
rigid tubes are present. We also show that the appearance of
the tubes is marked sharply around a critical temperature and
density.

II. MODEL

To model the interactions between patchy particles we
employ the well-known one-patch Kern-Frenkel potential,48

representing a hard-sphere colloid in which one spherical cap
of the particle surface has been functionalized to become at-
tractive when facing the spherical cap of a neighboring parti-
cle. The KF potential can be described as follows:

uKF(rij , n̂i , n̂j ) = uSW(rij )�(rij , n̂i , n̂j ) + uHS(rij ). (1)

The term uSW(rij) describes the square-well interaction
potential

uSW(rij ) =
{−ε if σ < rij ≤ σ + �

0 otherwise,
(2)

where σ is the particle diameter, � = 0.5 σ is the interaction
range, and ε is the well depth. �(rij , n̂i , n̂j ) is a function that
depends on the orientations of the two interacting particles

�(rij , n̂i , n̂j ) =
⎧⎨
⎩

1 if

{
r̂ij · n̂i > cos θ and
r̂ji · n̂j > cos θ

0 otherwise,
(3)

where n̂i and n̂j denote the orientations of the patch centers of
particles i and j, respectively, and rij is the vector joining the
center of mass of the two particles. We also set the patch cov-
erage fraction χ = 0.3 which corresponds to a patch opening
angle cos θ = 0.4. Finally, the hard-sphere potential uHS(rij)
guarantees that particles do not overlap

uHS(rij ) =
{∞ if rij ≤ σ

0 otherwise.
(4)

III. RESULTS

A. The formation of tubular structures

Self-assembly takes place usually at low temperatures (as
compared to the bonding energy) and simulating such systems
intrinsically requires extremely long simulations and careful
analysis of the equilibration process. Standard NV T simu-
lations with a constant number of particles (N = 2000 for
these simulations), volume V and temperature T can provide
insights into the structure of the system. An analysis of the
NV T configurations shows that the present system forms
increasingly larger aggregates, which then transform into
well-defined one-dimensional tube-like structures below a
density-dependent crossover temperature Tx. Figs. 1(a)–1(c)
provide snapshots of the system just above, around, and just
below Tx. While for T > Tx, the system is composed of small
aggregates, for T < Tx a significant share of the particles is
part of a limited number of long tubular structures.

In order to quantify the tube formation process, we have
devised a single-particle order-parameter which is able to dis-
criminate between the local environment of particles in tubes
and in all other geometries. From analyzing the environment
of particles in tubes, we found that (for this specific model) a
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FIG. 2. (a) Temperature dependence of the potential energy for two different densities ρσ 3 = 0.05 and ρσ 3 = 0.1 as obtained by simulations at constant NV T

(b) Close-up depicting the crossover region and comparison between MC NV T results (symbols) and single-cluster simulations (SCS; dashed-dotted lines).

particle i inside a tube has exactly 7 bonds with neighboring
particles (labeled j). Using the orientations n̂i and n̂j of the
particle i and j, respectively (as defined in Eq. (3)), two out of
the seven bonds are characterized by

n̂i · n̂j < −0.85, (5)

while the remaining five satisfy

−0.65 < n̂i · n̂j < 0.65. (6)

The first two represent bonds with nearby particles pointing
almost exactly in the opposite direction, and the other five
bonds are with particles oriented neither parallel nor anti-
parallel. Particles with seven bonded neighbors satisfying the
relations in Eqs. (5) and (6) are defined as tube-like particles
and are marked accordingly in Fig. 1.

The presence of a sharp crossover temperature is revealed
by the T-dependence of the potential energy U. Fig. 2 shows
U as a function of T for several densities. The potential en-
ergy clearly shows a “kink” at a well-defined temperature Tx,
below which its value decreases sharply, approaching the lim-
iting value of seven bonds (U/Nε = −3.5) per particle, which
would be reached for infinitely long tubes.

To provide evidence that the reported energies are equi-
librium values, we show in Fig. 2 the potential energy evalu-
ated from NV T -MC simulations with differing starting con-
ditions: one in which the initial configuration was comprised
of distinct monomers and one from a configuration of pre-
formed tubes. Convergence of the energy of the two simula-
tions (from monomers and from tubes) to the same equilib-
rium value is presented as evidence of thermal equilibration.

B. Cluster partition function: Single-cluster method

The aggregation process under scrutiny can be already
observed at low densities, where the system can be approx-
imated as a collection of non-interacting clusters. This of-
fers the possibility to study the system as a distribution of
clusters of various size, which gives direct information about
the structure of the system. Under dilute conditions, the

Helmholtz free energy F (N,V, T ) can be approximated by
that of an ideal gas of clusters,

βF (N,V, T ) =
∞∑

n=1

Nn[log Nn − 1 − logZn], (7)

where β = 1/kBT with kB Boltzmann’s constant, Nn is the
number of clusters of size n, and Zn is the partition function
of a cluster of size n, given by

Zn = 1

(4π )n�3nn!

∫
V

drn

∫
dn̂ne−βU (rn,n̂n)c(rn, n̂n). (8)

Here, rn and n̂n denote the positions and orientations of the
particles, respectively. The thermal volume �3 does not affect
the thermodynamic behavior of the system, and can therefore
be chosen to be equal to a unit volume �3 = σ 3.

The function c(rn, n̂n) is a constraint function that equals
1 if the n particles form a single continuous cluster, and is
0 otherwise. In the present model, there is no ambiguity in
the definition of a bond, as the potential is stepwise. Any pair
of particles with interaction energy equal to −ε is considered
bonded and part of the same cluster. The integral over the co-
ordinates rn can be transformed into an integral over r1 and
over the relative coordinates rj − r1. The first integration gen-
erates a volume V term that describes the cluster entropy asso-
ciated with the exploration of the available volume. From Zn,
one can define a cluster free energy βfn ≡ − logZn, a cluster
energy Un ≡ −∂(βfn)/∂β, and a cluster entropy Sn/kB = −βfn
+ βUn. For the monomers, Z1 = V/�3, βf1 ≡ − log(V/�3).

The equilibrium cluster size distribution can be calcu-
lated by minimizing the free energy with respect to Nn, while
satisfying the constraint∑

n

nNn = N. (9)

This yields

Nn

Nn
1

= Zn

Zn
1

. (10)

The partition function Zn can be evaluated numerically
for any n.66–68 Here we exploit the methodology outlined in
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FIG. 3. Typical clusters of size n = 8, 16, 24, 32 for three different temper-
atures above, around, and below Tx, kBT/ε = 0.13, 0.14, and 0.145. Orange
hemisphere are attractive. Particles that are tube-like, according to the order
parameter in Eqs. (5) and (6), are depicted in black/orange, other particles are
blue/orange.

Refs. 61 and 68, in which the relations between the various
Zn can be obtained directly from a grand-canonical Monte
Carlo (GCMC) simulation, i.e., a simulation at fixed T, V ,
and chemical potential μ. The simulation starts with a single
cluster and rejects all moves (insertion, deletion, translation,
or rotation) in which the system breaks into more than one
cluster. By imposing the constraint of simulating only a single
cluster, the probability P(n) of observing a cluster of size n
becomes

P(n)

P(1)
= Zn

Z1
eβμ(n−1). (11)

Hence, the ratio Zn/Z1 can be directly obtained for all n from
the GCMC simulation. Note that Zn/Z1 is independent of μ

(and of the volume of the simulation box), and therefore one
can set μ = 0 in the grand-canonical simulation without loss
of generality. With this choice,

Zn

Z1
= P(n)

P(1)
. (12)

Since we know Z1 = V/�3, this allows us to use Eq. (10) to
directly calculate the cluster size distribution for any density
for which the ideal gas of cluster approximation holds.

Note that we have neglected to include cluster-excluded
volume interactions in our derivation here. While an approx-
imate correction for these effects can be included in the
theory,61, 66 we have omitted this here in order to simplify the
derivation, as well as strengthen the ties to molecular poly-
merization, which typically occurs under dilute conditions.
This will lead to a slight discrepancy between single-cluster
and NV T simulations at higher densities, where the single-
cluster results underestimate the formation of large clusters.

Figure 3 shows snapshots of clusters of different sizes,
taken from the single-cluster simulations. Clusters of small
size are formed by almost spherical aggregates, with the at-

FIG. 4. Evolution of a cluster of size n = 31 in a single-cluster simulation, at
kBT/ε = 0.135. The red line (top) shows the (negative of the) energy per parti-
cle (−Un/nε), whereas the blue line (bottom) depicts the fraction of tube-like
particles in the cluster ntube/n. The conformational change between disor-
ganized clusters and straight tube-like aggregates marks the crossover from
clusters to tubes.

tractive patches all located near the center of the cluster.
Around n ≈ 20, a well-defined tubular structure appears
which competes for stability with other cluster shapes. This
low-energy one-dimensional structure becomes dominant for
larger n, driving the polymerization process.

In the crossover regime between small clusters and long
tubes, two distinct cluster structures compete. Fig. 4 shows
the evolution of the energy of a cluster of size n = 31 during a
single-cluster simulation at a temperature close to Tx. The en-
ergy per particle oscillates between two values, correspond-
ing to a tubular state and to other structures, respectively. The
correlation between the energy values and the cluster struc-
ture is confirmed by the time evolution of the order parameter
that tracks the number of particles in a tube-like environment.
Similar results are observed in the whole region 20 < n < 33,
suggesting the existence of two well-defined free-energy min-
ima, corresponding to two distinct cluster structures. These
two structures are in thermodynamic (chemical) equilibrium.
It is the reaction constant of this equilibrium that controls the
tube nucleation process which is then followed by the tube
polymerization process for larger clusters.

Figure 5 shows the average energy per particle Un/nε for
clusters of different size n at different T. The lowest-energy
clusters are indeed the ones consisting of a large number of
particles, i.e. the tubular structures, which appear to be sta-
bilized by energy. Since the interaction potential is modeled
via a square-well interaction there is no vibrational compo-
nent to the energy and the cluster energy is proportional to the
number of contacts only. The temperature dependence of the
cluster energy can thus be ascribed to the different number of
contacts explored at different T.

At low temperatures and for large clusters (n � 30), the
ratio Zn+1/Zn becomes periodic. At this point, clusters are
always tube-like, and the free-energy change associated with
adding an extra “layer” to a tube does not depend on the length
of the tube. In the case of the specific system under considera-
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FIG. 5. The average potential energy per particle Un for a cluster of size n for
different temperatures kBT/ε, as obtained in the single-cluster simulations.

tion here, the layer is composed by two particles and Zn+1/Zn

oscillates with periodicity 2: the cost of adding a particle to a
long tube only depends on whether the current cluster size is
even or odd. Therefore, we can easily extrapolate our results
to obtain the partition functions Zn for much longer tubes than
those we studied. For the results shown here, single-cluster
simulations were performed up to size n = 100. For larger
cluster sizes (up to n = 10 000), we separately averaged the
even and odd values of Zn+1/Zn over the larger cluster sizes
(45 ≤ n ≤ 100), and used these for extrapolation.

C. Modeling of the polymerization process

Next we use information evaluated from the single-
cluster partition functions to highlight the aggregation process
for different temperatures and densities.

Fig. 6 shows the cluster size distribution at ρσ 3 = 0.05
as calculated from the single-cluster simulations method and
from the constant NV T simulations. Indeed, using the val-
ues of the partition functions at fixed T, we can evaluate the

FIG. 6. Cluster size distribution ρn ≡ Nn/V at ρσ 3 = 0.05 from the NV T

simulations and single-cluster simulations. Note that no NV T cluster size
distribution is present for kBT/ε = 0.13 since in this case the number of
clusters inside the simulation box is so small that a proper averaging of the
distribution becomes impossible. The inset shows the exponential decay of
the SCS cluster size distribution for larger cluster sizes (only odd points are
shown).

cluster size distribution via Eq. (10). Here, N1 acts as a free
parameter that determines the overall system density, via the
relation

∑
nnNn = N, where n is the cluster size. At high T,

Nn is monotonically and smoothly decaying, indicating the
absence of strongly favored cluster sizes: the system consists
mainly of clusters of only a few particles. Already above Tx,
the cluster size develops a highly non-monotonic character,
signaling the presence of preferred cluster sizes (n = 8 and
its multiples). Still, the largest cluster ever observed in the
NV T simulations at this temperature does not exceed n = 40.
For T < Tx there is an explosion of very long aggregates (the
tubes), whose size n extends well beyond 100 particles. For
large n, the length distribution from the single-cluster sim-
ulations decays exponentially (Fig. 6, inset). For these low
T, NV T simulations are not able to provide information on
the large n windows due to the finite number of particles
(N = 2000) in the simulation box. At T for which a compari-
son between single-cluster simulations and NV T simulations
is possible, the two methods provide consistent results.

Fig. 7 shows the T dependence of the clustering and
polymerization processes. Upon decreasing the temperature,
Fig. 7(a) first shows a crossover from monomers to small
clusters. Then, the average cluster size suddenly increases be-
low a well-defined temperature. This change is accompanied
by a sudden decrease in the potential energy (Fig. 7(b)), as
particles in tubes are bound in a configuration with the maxi-
mum number of possible bonds.

Fig. 8 shows the corresponding density dependence.
Fig. 8(a) shows the average cluster size and Fig. 8(b) the
potential energy per particle as a function of ρ for a given
T. Upon increasing the density at a given temperature, first
small clusters start to form followed by the sudden formation
of tubes. For lower temperatures, the onset of tube-formation
occurs already at lower ρ. In this representation, it can be seen
again that there is a sudden transition from clusters to tubes at
around density ρx.

In Fig. 9(a), the points where monomers start combin-
ing into small clusters as well as the transition from clusters
into tubes are depicted in the ρ − T plane for both constant
NV T simulations and single-cluster simulations. For the first
crossover, we marked the points where 10% of the particles is
in a dimer. For the transition of clusters into tubes, we marked
the state points for which 10% of the particles are in a tube-
like environment according to Eqs. (5) and (6).

For a polymerization transition, the critical temperature is
expected to be proportional to the logarithm of the monomer
concentration. In Fig. 9(b), these points are represented in the
log (ρ)-1/T plane. Indeed, a linear relation well describes the
transition from clusters to tubular aggregates.

It has been noted by Douglas et al.24 that for coopera-
tive polymerization, the average cluster size shows a linear
increase with the total particle density. In Fig. 10(a), the aver-
age cluster size as a function of the particle density is depicted
for our model. Note that in the region where the tubes start to
grow, the average cluster size indeed increases linearly with
density, indicating cooperative polymerization.

To illustrate the cause of this phenomenon, we calcu-
late the concentration of monomers, octomers, and the total
concentration of clusters in our system. Fig. 10(b) shows the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.108.6.119 On: Thu, 10 Apr 2014 13:38:36



144902-6 Vissers et al. J. Chem. Phys. 140, 144902 (2014)

FIG. 7. (a) The average cluster size versus temperature and (b) the energy per particle versus temperature for different densities from NV T simulations
(symbols) and single-cluster simulations (lines).

FIG. 8. (a) The average cluster size versus density and (b) the average energy per particle versus density from single-cluster simulations.

FIG. 9. (a) The crossover from monomers to clusters and the transition from cluster into tubes depicted in the ρ − T plane from constant NV T -simulations and
single-cluster simulations. The crossover from monomers to clusters is depicted with points for which 10% of the particles is part of a cluster (black diamonds
and blue triangles). The conformational transition from disorganized clusters to straight tubes is marked with black dots, for which 10% of the particles are in a
tube-like environment according to Eqs. (5) and (6) (black dots and red squares). (b) Results from the constant NV T simulations and single-cluster simulations
plotted in the log (ρ) − 1/T plane.
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FIG. 10. (a) Same as Fig. 8(a), but on a log-log scale to show the linear increase of the average cluster size with temperature – the maroon line reflects the slope
for a perfect linear increase. (b)–(d) Cluster density ρcluster as a function of density ρ for clusters of size 1 (ρ1 ≡ N1/V ) and 8 (ρ8 ≡ N8/V ) and for the total
cluster number density

∑
nρn at temperatures kBT/ε = 0.13, kBT/ε = 0.135, and kBT/ε = 0.15.

density of clusters of size 1 and 8, as well as the total clus-
ter density (i.e., the sum of all ρn) for kBT/ε = 0.13. At high
densities where tubes form, the majority of clusters are still of
size 8, as we can also read from the cluster size distribution in
Fig. 6. As a result, the total cluster density is almost constant
for the entire range of densities where the tubes form. Since
the average cluster size is the density divided by the total clus-
ter density, this causes the linear behavior in the average clus-
ter size shown in Fig 10(a). For higher T, this effect becomes
less pronounced (Fig. 10(c)), while at kBT/ε = 0.15 – above
the polymerization transition temperature Tx – the clusters re-
main much smaller and the total cluster density continues to
increase with ρ (Fig. 10(d)).

The results shown so far provide clear evidence of a
polymerization process which develops quite abruptly below
Tx(ρ). In a very short T interval the system structure changes
from a fluid of small clusters, with a preferential size of eight
units to a fluid of long tubes. This fast onset of a polymeriza-
tion process is typical for cooperative polymerization, in con-
trast to the more gradual growth associated with isodesmic
polymerization. The present model thus provides a micro-
scopic model for examining the basic ingredients of CP.

Rod-like aggregates are often associated with nematic
phases.12 From earlier work,65 we know that the tube-phase
is – although kinetically preferred – in fact metastable to a
coexistence of crystals of aligned tubes with a low-density
fluid in a large range of densities. At high densities there is
a pocket where a crystal of tubes is stable. As the tubes are
effectively long rods, we also expect a (metastable) nematic
phase at low temperature and high density. However, due to
the very large average length of the tubes, we cannot perform
simulations for large densities but only limit ourselves to de-
tect the onset of tube growth. This prevents us from observing
the expected transition to a nematic phase on increasing den-
sity and/or lowering temperature. Close to Tx, where simula-
tions are still feasible, the system is isotropic.

D. Signature of cooperative polymerization
in the reaction constant

In a more chemically oriented approach, the clustering
process can be seen as a chemical reaction between clusters
of different size. A cluster of size n is then considered the
result of the aggregation of n monomers. From Eq. (10), the
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relative concentration of monomers ρ1 ≡ N1/V and n −mers
ρn ≡ Nn/V satisfies

ρn

ρn
1

= V n−1 Zn

Zn
1

. (13)

Commonly, one defines an equilibrium constant Kn for this
chemical equilibrium (with dimensions of [V ]n−1),

Kn ≡ ρn

ρn
1

= Zn

Z1
�3(n−1), (14)

where the relation Z1 = V
�3 has been exploited. The quantity

Kn has the advantage of visualizing the change in the free en-
ergy associated with bonding, separate from the contribution
of the free-energy change associated with the loss of transla-
tional entropy. Indeed, the V n−1 factor in Eq. (13) compen-
sates the entropy loss associated with the exploration of the
sample volume by the n monomers (V n) which, once aggre-
gated, is retained only by the center of mass of the cluster (V ).
The V -independence of Kn is also clearly seen when express-
ing it in terms of cluster free energies

Kn = �3(n−1) e
−βfn

e−βf1
= �3(n−1)e−β(fn−f1). (15)

We note here that the inclusion of hard-core repulsions in the
free energy in Eq. (7) will lead to equilibrium constants that
are dependent on the packing fraction. However, under dilute
conditions such corrections will have a negligible effect.

The n-dependence of Kn carries all relevant informa-
tion for an equilibrium aggregation process. For example,
in the case of the isodesmic polymerization all bonds con-
tribute equally to the free-energy of the cluster. As a result,
monomers with functionality two bind into chains always
with the same free-energy change18 and

e−βf isodesmic
n = V

�3

( vb

�3

)n−1
e−β(n−1)�U, (16)

where �U is a measure of the energy associated with forming
a bond, and vb is the bonding volume, measuring the volume
a particle can explore, while bonded to a neighbor. The corre-
sponding equilibrium constant is given by

K isodesmic
n = (vbe

−β�U )n−1 = (K isodesmic
2 )n−1. (17)

From this relation, we can read directly that

log(K isodesmic
n �−3(n−1))

(n − 1)
= −β(f isodesmic

n − f isodesmic
1 )

n − 1

= log(vb�
−3) − β�U (18)

is independent of n for isodesmic polymerization.
Additionally, we see that (fn − f1)/n is a measure for the

(negative of) the free energy per particle in a cluster with fixed
center of mass.

Fig. 11 shows the n-dependence of log (Kn�
−3(n − 1))/

(n−1), calculated according to Eq. (15). For large n
(n � 40), a constant value is reached, confirming that for co-
operative polymerization the free-energy change upon adding
another number of monomers becomes independent of the
cluster size for sufficiently large n, similar to isodesmic mod-
els (Eq. (18)). Note, however, that for this model, there is still

FIG. 11. log (Kn�
−3(n − 1))/(n − 1) for different temperatures. The dashed

lines indicate equilibrium constants calculated from Eq. (18), with
vb = 6.2 × 10−6σ 3, and �U = −3.5ε. The inset shows the small oscilla-
tions associated with the addition of one particle to a tube.

a small difference based on whether n is odd or even (see inset
of Fig. 11) due to the fact that each tube layer is composed by
two particles (see tubes in Fig. 3).

Knowing that the energy of adding a particle to a
tube corresponds to the formation of seven bonds (so that
�U = −3.5ε in Eq. (18)), it is possible to obtain the best fit
value for the entropic term (vb), yielding vb ≈ 6.2 × 10−6σ 3.
The corresponding values for Kn for the three lowest values of
T are reported as lines in Fig. 11 and properly model the nu-
merical data. For smaller n, a significant n-dependence is still
present. In this region, Kn shows oscillations with a periodic-
ity of �n = 8, signaling the cluster sizes which compete with
tube formation. It is also interesting to note that for these clus-
ters, the log (Kn�

−3(n − 1))/(n − 1) values are greater than in
the n → ∞ limit. This indicates that the free energy per par-
ticle is lower in small clusters, despite the fact that the poten-
tial energy per particle is lower for tubes (see Fig. 5). There-
fore, the small clusters are significantly stabilized by their
internal entropy. The crossover from disorganized clusters
into straight tubes below Tx, clearly shown in Fig. 4, can thus
be seen as a competition between two different free-energy
local minima, one stabilized by entropy and one by energy.
The large entropic difference between these two minima en-
sures that tubes only form at low temperatures. At this point,
the large total change in energy associated with transforming
a number of small clusters into a large tube, as compared to
the thermal energy scale kBT causes the free-energy difference
between the two states to be very sensitive to small changes
in temperature. This results in the sharp crossover seen in the
energy and average cluster size as a function of temperature
(Fig. 7), and the sudden appearance of tubular structures at Tx

(Fig. 9).

IV. CONCLUSIONS

In this article, we have performed an in-depth analy-
sis of a self-assembly process that takes place in a simple
model system of one-patch colloids with a single attractive
patch. In the appropriate density and temperature window, the
particles form tubular structures that grow extremely long.
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The specific tube-like cluster topology is imposed by the
geometrical constraints that limit the number of bonds each
patch can form. The tubes grow straight, without branching.
Using direct NV T and single-cluster simulations, we have
revealed that there is a well-defined temperature at which
tubes start to appear, after which the average cluster size
grows linearly with density, a clear fingerprint of cooperative
polymerization.17, 21–24

The possibility of numerically evaluating, with high ac-
curacy, the partition functions of clusters of different size,
made available by the recent development of accurate numer-
ical methodologies,66, 68 allows us to quantify precisely the
polymerization process and investigate the microscopic ori-
gin of the cooperative behavior. As previously assumed in the
analysis of supramolecular ordering, the transition originates
from the competition of two different local structures, differ-
ing in their energy and in their entropy. For a limited range of
sizes, at low T, the partition function probes configurations as-
sociated with both tubes as well as more disordered clusters.
The competition between these two different self-assembly
processes generates a two-step aggregation, characterized by
a sudden increase in the number of tubes around a density-
dependent crossover temperature.

This numerical investigation, the first of its genre, illus-
trates the microscopic mechanism behind cooperative poly-
merization. The ability to directly measure equilibrium re-
action constants for a microscopic pairwise additive model
which generates cooperative polymerization offers a novel
way to extract equilibrium constants also in other interest-
ing numerical self-assembly processes.35, 69 Finally, this work
highlights the strong link between supramolecular assembly70

and colloidal assembly and the possibility of transferring
knowledge between these two, only apparently different,
fields.
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