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From square-well to Janus: Improved algorithm for integral equation
theory and comparison with thermodynamic perturbation theory
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Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and
G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)], we perform a detailed study of integral equation
theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid
to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for
this problem is implemented that significantly extends the range of applicability of RHNC. Results
for both structure and thermodynamics are presented and compared with numerical simulations.
Unlike previous attempts, this algorithm is shown to be stable down to the Janus limit, thus paving
the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus
system. The results are also compared with Barker-Henderson thermodynamic perturbation theory
on the same model. We then discuss the pros and cons of both approaches within a unified treatment.
On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is
found to be a good compromise between accuracy of the results, computational effort, and uniform
quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement
in RHNC however clearly requires an anisotropic reference bridge function. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4866899]

I. INTRODUCTION

Stimulated by recent advances in chemical syntheses of
colloidal particles with different forms and functionalities,1, 2

theoretical approaches have made significant progress in the
last few years. Patchy colloids3, 4 in particular, having their
surfaces decorated with different functionalities (e.g., solvo-
phobic in opposition to solvophilic moieties), appear to com-
bine the possibility of obtaining a large number of targeted
structures, on the one hand, along with the possibility of local
rearrangements, on the other hand, that represent the optimal
trade-off for engineering self-assembly processes at meso-
scopic scales.5

While direct comparison of theory with experiment still
relies heavily on extensive numerical simulations that consti-
tute today the main theoretical tool, given their virtually ex-
act predictions, the heavy computational effort imposed by
the anisotropic nature of patchy interactions (see, e.g., Refs. 6
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and 7) has stimulated attempts to find approximate, yet reli-
able, alternative methods that can provide semi-quantitative
estimates within a modest amount of computer time.

Two of these methods with established roles in liquid
state studies8, 9 are integral equation theory and thermody-
namic perturbation theory. The main aim of integral equa-
tion theory is the computation of the pair correlation function,
from which one can derive all thermodynamic and structural
quantities. In order to perform practical computations, one is
forced to introduce here an approximation into the exact rela-
tion between pair potential and pair distribution function, i.e.,
selecting a closure equation. In thermodynamic perturbation
theory, on the other hand, the free energy of the system can be
computed as a perturbation series of terms, provided the free
energy and many-particle distribution functions of a reference
systems are known. Usually the expansion is approximated by
the truncation of the infinite series to the few terms that can
be evaluated.

In the present paper, we discuss the performances of
both methods when applied to a particular model, the Kern-
Frenkel potential10, 11 for patchy colloids, that has recently
proven very useful within this anisotropic framework. Build-
ing upon previous work,12–15 we compare the performance of
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a specific integral equation closure, the reference hypernetted-
chain (RHNC),16, 17 and of a specific thermodynamic per-
turbation theory, devised by Barker and Henderson (TPT-
BH),18, 19 on the single-patch Kern-Frenkel potential. In the
case of the RHNC integral equation, generalized for molec-
ular fluids,20, 21 we additionally present an improved algo-
rithm allowing us to reach the limit of equal solvophobic-
solvophilic composition, known as the Janus limit, that
was not reachable with the original algorithm presented
in Ref. 12.

The remainder of the paper is organized as follows. In
Sec. II, we briefly recall the Kern-Frenkel model, while in
Secs. III and V we review the application to this problem
of the RHNC integral equation approach of Ref. 12 and the
TPT-BH of Ref. 15. The improved algorithm for RHNC is
described in Sec. IV and a detailed comparison of the perfor-
mance of the two methods in contrast to numerical simula-
tions is provided in Sec. VI. Section VII completes the paper
with some conclusions and perspectives.

II. THE KERN-FRENKEL MODEL

The model for patchy interactions in colloids that we
study here is due to Kern and Frenkel,10 an elaboration of
the original model by Chapman et al.11 They consider a fluid
of hard spheres (HS) where the surface of each sphere is di-
vided into two parts having square-well (SW) and hard-sphere
character, the first mimicking a solvophobic region, the sec-
ond a solvophilic region, within an implicit solvent descrip-
tion. Because of the azimuthal symmetry, the angular width
of the solvophobic region is described by a single polar angle
θ0 that becomes equal to π /2 in the even-division case (the
Janus limit).

The positions of the N particles in volume V are given
by a set of vectors ri , with i = 1, . . . , N, while the angular
orientation of each square-well patch on a sphere surface is
identified by unit vector n̂i . Finally, the direction connecting
the centers of spheres i and j is characterized by unit vector
r̂ij = (rj − ri)/|rj − ri |. Figure 1 depicts the situation in the
case of the Janus limit.

Thus, two spheres of diameter σ attract each other via a
square-well potential of width (λ − 1)σ and depth ε, if the
directions of the patch on each sphere are within a solid angle
defined by θ0 and their relative distance lies within the range
of the attractive well, and repel each other as hard spheres oth-
erwise. As the system is still translationally invariant, the pair
potential depends upon the difference rij = rj − ri , rather
than ri and rj separately, and has the form10, 22

� (ij ) ≡ �(rij , n̂i , n̂j ) = φHS(rij ) + φSW(rij )	(rij , n̂i , n̂j ),

(1)

where rij = |rij |. The first term in Eq. (1) is the HS
contribution

φHS (r) =
{

∞, 0 < r < σ

0, σ < r
(2)

n

n

r
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j
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FIG. 1. The one-patch Kern-Frenkel model, where r̂ij is the direction join-
ing the two centers and the orientations of the patches are specified by unit
vectors n̂i and n̂j . The present configuration depicts the Janus limit.

while the second term can be factored into an isotropic SW
tail

φSW (r) =
{

−ε, σ < r < λσ

0, λσ < r
(3)

modulated by an angle-dependent factor

	(rij , n̂i , n̂j )

=
{

1, if n̂i · r̂ij ≥ cos θ0 and −n̂j · r̂ij ≥ cos θ0,

0, otherwise.
(4)

The unit vectors n̂i(ωi) are defined by the spherical coordi-
nates ωi = (θ i, ϕi) in an arbitrarily oriented coordinate frame.
Here, we will put β ≡ (kBT)−1, where kB is Boltzmann’s con-
stant and T is the absolute temperature, and introduce the par-
ticle density ρ = N/V . We use reduced units for temperature,
T∗ = kBT/ε, and density, ρ∗ = ρσ 3, in the description of the
thermodynamics. The above potential then ensures a proper
bonding of the two particles depending upon the relative ori-
entation and distance of the attractive caps on each sphere.

The square of the total coverage χ can be computed in
terms of θ0 as

χ2 = 〈	(rij , n̂i , n̂j )〉ωiωj

= 1

(4π )2

∫
dωidωj

× [�(cos θi − cos θ0)�(− cos θj − cos θ0)], (5)

where �(x) is the Heaviside step function, equal to 1 if
x > 0 and 0 if x < 0, and where we have introduced the



094104-3 Giacometti et al. J. Chem. Phys. 140, 094104 (2014)

angular average

〈. . .〉ω ≡ 1

4π

∫
dω . . . . (6)

The integral can be readily evaluated to give10

χ = sin2 θ0

2
. (7)

Knowledge of the exact result (7) of integral (5) is then ex-
ploited to optimize the discretization of the angular integra-
tion appearing in all successive integral equations.12

III. MOLECULAR INTEGRAL EQUATION APPROACH

In the case of spherically symmetric potentials, the way
to extract the thermophysical properties of a fluid has a long
and venerable tradition in integral equation theory. Its central
aim is the calculation of the pair distribution function g(r),
also typically computed in numerical simulations, from the
pair potential φ(r). It is useful as well to introduce the total
correlation function h(r) = g(r) − 1 and the so-called direct
correlation function c(r) defined through the Ornstein-Zernike
(OZ) equation

h(r12) = c(r12) + ρ

∫
dr3 c(r13)h(r32). (8)

An exact, albeit formal, relation holds between such functions
and the pair potential

g(r12) = e−βφ(r12)+h(r12)−c(r12)+B(r12), (9)

where the last term in the argument of the exponential is a
(non-explicit) functional of the correlation function, gener-
ally called a bridge function for historical reasons.23 All the
existing approximations may be recast into the form of an
approximate bridge function in Eq. (9), the so-called closure
equation. Most current algorithms also invoke the use of the
auxiliary function γ (r) = h(r) − c(r), which is a continu-
ous function even for discontinuous potentials such as hard
spheres.

The case of angle-dependent anisotropic potentials, al-
though far more complex from an algorithmic point of view,
follows essentially the same scheme. It was devised in the
frame of molecular fluids8 and more recently adapted to the
specific case of the Kern-Frenkel potential.13, 14 For complete-
ness, the iterative procedure followed in Refs. 13 and 14 is
briefly reviewed below.

A. Iterative procedure

Our notation in this section will closely follow that of
Gray and Gubbins in Ref. 8, with only a 4π prefactor differ-
ence; for instance, g(r; l1l2l) = 4π [g(r; l1l2l)]GG. Starting with
a reasonable guess for the set of coefficients γl1l2m(r) in the ax-
ial r-frame, where ẑ = r̂12, we use an expansion in spherical
harmonics to obtain γ (12) ≡ γ (r, ω1, ω2) that in this frame
depends only upon (r = r12, ω1, ω2),

γ (12) = 4π
∑

l1,l2,m

γl1l2m (r) Yl1m (ω1) Yl2m̄ (ω2) , (10)

where m̄ = −m and the Ylm(ω) are spherical harmonics. Then
we can use the closure relation

c (12) = exp[−β�(12) + γ (12) + B(12)] − 1 − γ (12)

(11)

to obtain c(12) that, in this frame, still depends only upon
(r, ω1, ω2). The bridge function B(12) in this expression
must be approximated, giving rise to such distinct closures
as Percus-Yevick (PY) and HNC; see below for the RHNC
closure used in this work. The inverse of an expansion like
Eq. (10) is then used to compute the coefficients cl1l2m(r)
within the same frame,

cl1l2m(r) = 1

4π

∫
dω1dω2 c(r, ω1, ω2)Y ∗

l1m
(ω1)Y ∗

l2m̄
(ω2)

≡ 4π
〈
c(r, ω1, ω2)Y ∗

l1m
(ω1)Y ∗

l2m̄
(ω2)

〉
ω1,ω2

. (12)

To carry out Fourier transforms and so deconvolute the molec-
ular OZ equation,8 we need to move at this point into an ar-
bitrary space frame (often referred to as laboratory-frame) by
means of a Clebsch-Gordan (CG) transform,

c (r; l1l2l) =
(

4π

2l + 1

)1/2 ∑
m

C (l1l2l; mm̄0) cl1l2m (r) ,

(13)

where the C (l1l2l; mm̄0) are Clebsch-Gordan coefficients.
Fourier transforms then become Hankel transforms of the
form

c̃ (k; l1l2l) = 4π il
∫ ∞

0
drr2c (r; l1l2l) jl (kr) , (14)

where jl(x) is a spherical Bessel function of order l. We can
then return to a specific frame, the axial k-frame, where this
time ẑ = k̂. This can be achieved by means of an inverse
Clebsch-Gordan transform,

c̃l1l2m (k) =
∑

l

C (l1l2l; mm̄0)

(
2l + 1

4π

)1/2

c̃ (k; l1l2l) .

(15)

Now one may use the Ornstein-Zernike equation in k space,
that in the axial k-frame becomes

γ̃l1l2m (k) = (−1)m ρ

∞∑
l3=m

[
γ̃l1l3m (k) + c̃l1l3m (k)

]
c̃l3l2m (k) ,

(16)

to obtain the new transform coefficients γ̃l1l2m (k) by matrix
operations. As before, one needs now to return to a more
general space frame through a Clebsch-Gordan transform in
Fourier space,

γ̃ (k; l1l2l) =
(

4π

2l + 1

)1/2 ∑
m

C (l1l2l; mm̄0) γ̃l1l2m (k) ,

(17)
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TABLE I. Schematic flow-chart for the solution of the OZ equation for the Kern-Frenkel angle-dependent potential. See Sec. III A for a description of the
scheme.

because this allows the return to direct space by means of an
inverse Hankel transform,

γ (r; l1l2l) = 1

2π2il

∫ ∞

0
dkk2 γ̃ (k; l1l2l) jl (kr) . (18)

A final inverse Clebsch-Gordan transform then completes the
return to the axial r-frame we started with,

γl1l2m (r) =
∑

l

C (l1l2l; mm̄0)

(
2l + 1

4π

)1/2

γ (r; l1l2l) ,

(19)

and thus yields a new estimate of the starting coefficients
γl1l2m(r), in general different from the previous one. These
steps are iterated until consistency between input and out-
put coefficients γl1l2m(r) is achieved. Table I summarizes the
procedure.

B. The RHNC closure and free energy

Although the second equation in this scheme, Eq. (11), is
formally exact, it involves the calculation of the bridge func-
tion B(12) that in practice cannot be computed exactly,9 as re-
marked earlier, and so an approximate closure is needed. Our
approach is based on the RHNC approximation introduced in
Ref. 16 for spherical potentials and later extended to molecu-
lar fluids.20, 21 Within this scheme, the closure equation takes
on the assumed-known bridge function B0(12) of a particular
reference system to replace the actual unknown bridge func-
tion B(12) appearing in the exact closure. The goodness of the
approximation clearly depends upon the quality of the chosen
bridge function for the reference system. In the present case,
for want of a better option, this is taken to be the hard-sphere
model so that B0(12) = BHS(r12; σ 0), where σ 0 is the refer-
ence hard-sphere diameter. It has been demonstrated17, 24 that
internal thermodynamic consistency can be improved upon
treating σ 0 as a variational parameter to be optimized. While

the use of the hard-sphere bridge function is a natural assump-
tion leading to a rather accurate approximation for spherically
symmetric potentials, this is not as likely to be the case for
a severely anisotropic potential such as the one-patch Kern-
Frenkel model studied here. As we shall see below, this draw-
back is indeed confirmed by our findings, but better approxi-
mations for anisotropic potentials are not yet available.

Within the RHNC approximation, the excess free energy
Fex can be computed as21

βFex

N
= βF1

N
+ βF2

N
+ βF3

N
, (20)

where

βF1

N
= −1

2
ρ

∫
dr12

〈
1

2
h2 (12) + h (12) − g (12)

× ln
[
g(12)eβ�(12)]〉

ω1ω2

, (21)

βF2

N
= − 1

2ρ

∫
dk

(2π )3

∑
m

{ln Det[I + (−1)m ρh̃m (k)]

− (−1)m ρ Tr[̃hm (k)]}, (22)

βF3

N
= βF ref

3

N
− 1

2
ρ

∫
dr12〈[g(12) − g0(12)]B0(12)〉ω1ω2 .

(23)

In Eq. (22), h̃m(k) is a Hermitian matrix with elements
h̃l1l2m(k), l1, l2 ≥ m, and I is the unit matrix. In Eq. (23),
F3 directly expresses the RHNC approximation. Here, F ref

3 is
the reference system contribution, computed from the known
free energy F ref

ex of the reference system as F ref
3 = F ref

ex − F ref
1

− F ref
2 , with F ref

1 and F ref
2 calculated as above but with refer-

ence system quantities.
For the bridge function B0(12) = BHS(r12; σ 0) ap-

pearing in (23), we use the Verlet-Weis-Henderson-Grundke
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parametrization,25, 26 with the optimum hard sphere diam-
eter σ 0 selected according to a variational free energy
minimization that yields the condition24

ρ

∫
dr[g000 (r) − gHS (r; σ0)]σ0

∂BHS (r; σ0)

∂σ0
= 0. (24)

C. Thermodynamics

The main strength of the RHNC closure hinges on the
fact that, unlike most other closures, no further approxima-
tions are needed to obtain the free energy (as seen above) and
other thermodynamic quantities. The pressure P can be de-
rived from a standard expression8 as

P = ρkBT − 1

3V

〈
N∑

i=1

N∑
j>i

rij

∂� (ij )

∂rij

〉

= ρkBT − 1

6
ρ2

∫
dr12

〈
g (12) r12

∂� (12)

∂r12

〉
ω1ω2

. (25)

Introducing the cavity function y(12) = g(12)eβ�(12) and using
the result

∂

∂r
[e−β�(r,ω1,ω2)] = eβε	(ω1,ω2)δ(r − σ ) − [eβε	(ω1,ω2) − 1]

× δ (r − λσ ) , (26)

Eq. (25) becomes

βP

ρ
= 1 + 2

3
πρσ 3

{〈
y(σ, ω1, ω2)eβε	(ω1,ω2)

〉
ω1ω2

− λ3
〈
y(λσ, ω1, ω2)

[
eβε	(ω1,ω2) − 1

]〉
ω1ω2

}
= 1 + 2

3
πρσ 3{g000(σ+) + λ3[g000(λσ+) − g000(λσ−)]}

(27)

which can be computed using Gaussian quadratures. Note that
the second equality in Eq. (25) implies that the pressure de-
pends upon the quality of g000(r), the other components being
irrelevant.

The chemical potential μ can then be obtained from the
exact thermodynamic relation

βμ = βF

N
+ βP

ρ
, (28)

with the ideal quantities given by βFid/N = ln (ρ�3) − 1,
βPid/ρ = 1, βμid = ln (ρ�3), where � is the de Broglie wave-
length.

IV. IMPROVED NEWTON-RAPHSON ALGORITHM

The iteration cycle described in Sec. III A, wherein the
output coefficients of one iteration directly become the input
coefficients of the next, is known as Picard iteration. While
obviously straightforward, it produces successive outputs that
often converge only slowly or sometimes not at all, even for
thermodynamic states that are known to exist. A standard
remedy is to construct the new input coefficients for the next

iteration as a damping linear combination of the current in-
put and output sets.27 We have implemented it in the effi-
cient form proposed by Ng28 for generating a new input set
of γl1l2m(r) as an optimized linear superposition of the output
sets from up to the previous four iterations.

But a more powerful procedure than such enhanced
Picard cycles is available in the iterative application of New-
ton’s well-known root-finding algorithm. In the present con-
text, however, Newton’s method, also known as the Newton-
Raphson (NR) method, has the serious drawback of becoming
so computationally intensive as to be prohibitive in practice,
even for spherically symmetric models with just one coeffi-
cient. A clever meld of these two iteration techniques, pro-
ducing a Newton-Raphson/Picard hybrid, was first proposed
by Gillan29 for spherically symmetric models, using a small
number of so-called roof functions to represent the “coarse”
features of γ (ri = i�r) for NR processing. (Here, �r is the
grid interval in the discrete r space used in a numerical so-
lution; the total number of grid points is Nr.) Later, Labík,
Malijevský, and Voňka (LMV)30, 31 suggested an elegant al-
ternative based instead on the NR processing of a small num-
ber, up to some cutoff kmax, of γ̃ (ki = i�k) values, where �k
is the grid interval in k space. In this work, we have imple-
mented the LMV hybrid, but for just the γ̃000(k) coefficient,
which makes the biggest contribution to γ̃ (k, ω1, ω2), as ex-
plicitly illustrated by the results presented in Sec. VI D, while
the other coefficients are treated by a standard Picard cycle.
Not only does the algebra become unwieldy if more com-
ponents are included in the NR iterations, but for the Kern-
Frenkel potential there is no obvious basis for choosing which
additional components to include. We wish then to solve the
one-component OZ equation (see Eq. (16))

γ̃000(ki) = ρ[γ̃000(ki) + c̃000(ki)]̃c000(ki), (29)

for γ̃000(ki) on the discrete ki grid, from i = 1 to i = n, where
kmax = n�k. Let �̃(ki) be the desired solution, so that

F [�̃(ki)] ≡ �̃(ki) − ρc̃2
000(ki)

1 − ρc̃000(ki)
= 0 (30)

and c̃000(ki) is a function of all the �̃(kj ). If γ̃000(ki) is our cur-
rent value for the unknown, then we need to find the correc-
tion �γ̃000(ki) such that �̃(ki) = γ̃000(ki) + �γ̃000(ki). This is
accomplished in the NR root-finding method by setting

F [γ̃000(ki) + �γ̃000(ki)] ≈ F [γ̃000(ki)]

+
n∑

j=1

Cij�γ̃000(kj ) = 0, (31)

Cij ≡ ∂F [γ̃000(ki)]

∂γ̃000(kj )

= δij −
[

1

(1 − ρc̃000(ki))2
− 1

]
∂c̃000(ki)

∂γ̃000(kj )
. (32)

Matrix inversion of Eq. (31) for the first n points then pro-
duces the desired corrections �γ̃000(ki).

Tracking the simplified one-component version of the
Picard cycle in Sec. III A, c000(ri) = g000(ri) − 1 − γ000(ri)
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−→ c̃000(kj ) −→ γ̃000(kj ) −→ γ000(ri), leads to30

∂c̃000(ki)

∂γ̃000(kj )
= kj

kiNr

Nr−1∑
l=1

h000(rl)

{
cos

[
l(i − j )

π

Nr

]

− cos

[
l(i + j )

π

Nr

]}
(33)

and completes the NR prescription. The discrete version32 of
the reciprocal Fourier transforms requires that the intervals
�r and �k satisfy �r�k = π /Nr. In the present calculations,
we have used �r/σ = 0.02, Nr = 1024, and n ≈ 100.

V. BARKER-HENDERSON THERMODYNAMIC
PERTURBATION THEORY

Barker-Henderson perturbation theory18, 19, 33 hinges on
the splitting of the Kern-Frenkel potential, Eq. (1), into the
hard-sphere contribution, Eq. (2), and the remaining “pertur-
bation” term,

�I (rij , n̂i , n̂j ) ≡ φSW(rij )	(rij , n̂i , n̂j ). (34)

This allows the high-temperature expansion of the free energy
as

β (F − FHS)

N
= f1 + f2 + · · · , (35)

where FHS is the free energy of the hard-sphere reference sys-
tem, and where the first-order term,

f1 = 12η

σ 3

∫ λσ

σ

dr r2gHS(r)[βφSW(r)]〈	(12)〉ω1ω2 , (36)

can be easily computed in terms of the radial distribution
function gHS(r) of the HS reference system; here, η = πρσ 3/6
is the hard-sphere packing fraction. The second-order term
is, on the contrary, a highly non-trivial calculation involving
higher-order correlation functions. An extension of the orig-
inal Barker-Henderson alternative scheme yields the corre-
sponding compressibility approximation that reads15

f2 = −6η

σ 3

(
∂η

∂P ∗
0

)
T

∫ λσ

σ

dr r2gHS (r) [βφSW (r)]2

×〈	2 (12)〉ω1ω2 , (37)

where P ∗
0 = βP0/ρ is the reduced pressure of the HS refer-

ence system in the Carnahan-Starling approximation.34 From
here, pressure and chemical potential can be computed from
the exact thermodynamic relations

βP

ρ
= η

∂

∂η

(
βF

N

)
, (38)

βμ = ∂

∂η

(
η
βF

N

)
. (39)

VI. RESULTS

A. Pair distribution function

Unless otherwise stated, our results refer to λ = 1.5, as
in Ref. 12. Consider as initial state a reduced temperature T∗

= 1.00 for which the fluid is in a single phase at high den-
sity ρ∗ = 0.8 for all coverages examined here. We seek to
determine the effect on the pair distribution function g(12)
≡ g(r, ω1, ω2) of reducing the coverage χ for the given state
point. This is reported in Fig. 2 for three representative ori-
entations: head-to-tail (HT), perpendicular (⊥), and head-to-
head (HH), corresponding to angles θ12 ≡ θ2 − θ1 = 0, π /2, π
between the corresponding patch orientation vectors, respec-
tively. (Similar plots were also considered in related systems,
such as spherocylinders; see, for instance, Ref. 35.)

Clearly, while for the HT (θ12 = 0) case g(12) is only
mildly affected within the well, σ < r < λσ , both the ⊥ (θ12

= π /2) and the HH (θ12 = π ) pair distribution functions dis-
play a significant increase close to the contact point r = σ+.

On the other hand, the coexistence lines progressively
shift to lower temperatures for decreasing coverages, as we
will see, and hence a fixed state point in the temperature-
density plane is correspondingly moving relatively farther and
farther from them, as coverage decreases.

In order to account for this and make different coverages
comparable, we consider different state points that are com-
parably close to the gas-liquid coexistence lines. These are
shown in Fig. 3 for decreasing coverage from χ = 0.9 to χ

= 0.5 and two specific state points, side by side, that have dif-
ferent temperatures for the different coverages. In each case,
we have first considered the largest computed density (ρ∗

= 0.8 for all coverages) and the corresponding lowest com-
puted temperature (decreasing with decreasing coverage).
The panels on the left side of Fig. 3 correspond to state points
expected to lie in the liquid phase at the respective coverages
and are shown for decreasing coverage from top to bottom.
The other set of chosen state points in the right-hand pan-
els of Fig. 3 are all points lying in the respective gas phases
(low temperatures and low densities) and are depicted again
for decreasing coverage from top to bottom. In all cases, three
different curves are reported corresponding to the HT, ⊥, and
HH orientations of the two patches.

Consider first the high-density state points on the left.
Few general features are readily apparent. In all cases, the HT
curve exhibits a hard-spheres behavior with no discontinuity
at the well edge, r = λσ , as expected from the definition of
the Kern-Frenkel potential.

Note that the value of this g(12) at contact, r = σ+,
decreases as the coverage decreases, since it becomes less
and less likely to find particles with the HT orientation of
the patches as χ decreases (further note the change in scale
among different cases). Conversely, both ⊥ and HH curves
exhibit the usual discontinuity at r = λσ , indicating that they
are involved in bonding, with a progressive increase of the
g(12) at contact, r = σ+, as coverage decreases that is more
marked in the HH than in the ⊥ case.

A rather interesting pattern emerges from the low-density
plots of the right-hand panels. Those are the cases where one
expects an increase in micellization as coverage decreases.
This is indeed confirmed by the results. As coverage de-
creases, the general trend is a significant increase of g(12) at
contact, r = σ+, the largest increase pertaining to the HH ori-
entations, as expected. This clearly indicates the formation of
clusters (micelles or vesicles) with an increasing fraction of
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FIG. 2. The g(12) distribution function as a function of r = |r12| for three orientations of the patches: HT, n̂1 · n̂2 ≡ cos θ12 = 1; ⊥, n̂1 · n̂2 ≡ cos θ12 = 0;
HH, n̂1 · n̂2 ≡ cos θ12 = −1, and different coverages from χ = 1.0 (square-well) to χ = 0.5 (Janus).

saturated bonds. In particular, in the Janus case (χ = 0.5) the
HT orientation gives a flat curve around g(12) = 1, indicat-
ing an almost ideal behavior that reflects the almost complete
absence of such orientations. However, we have observed
no significant discontinuity on passing from χ = 0.6 to χ

= 0.5 coverages that would indicate anomalous behavior of
the Janus case. Therefore, RHNC is clearly not able to capture
this effect with the present spherically symmetric approxima-
tion of B0(12).

B. Angular distributions

Complementary to previous cases, here we focus on the
dependence of g(12) on just the orientations of n̂2 and r̂12

relative to n̂1 within the square-well region. The expansion
in spherical harmonics Ylm(ω) of g(12) in an arbitrary space
frame reads

g (12) =
∞∑

l1,l2=0

l1+l2∑
l=|l1−l2|

gl1l2l (r) ψl1l2l (ω1ω2�) , (40)

where we have introduced the rotational invariants8, 9

ψl1l2l (ω1ω2�) =
l1∑

m1=−l1

l2∑
m2=−l2

C (l1l2l; m1m2m1 + m2)

×Yl1m1 (ω1) Yl2m2 (ω2) Y ∗
l,m1+m2

(�) . (41)

In Ref. 13, it was shown that upon defining

ḡ (l1l2l) = 1

4π (λ − 1)σ

∫ λσ

σ

drgl1l2l (r) , (42)

ḡ (θ, θ2) = 1

(λ − 1)σ

∫ λσ

σ

dr 〈g (12)〉ϕ2ϕ
, (43)

the resulting function of the polar coordinate θ of r̂12 and the
polar coordinate θ2 of the second patch reads

ḡ (θ, θ2) =
∑
l1,l2,l

ḡ (l1l2l)

[
(2l1 + 1) (2l2 + 1) (2l + 1)

4π

]1/2

×C (l1l2l; 000) Pl2 (cos θ2) Pl (cos θ ) , (44)

given that the z axis is aligned with the patch of particle 1.
The behavior of ḡ(θ, θ2) as a function of cos θ is re-

ported in Fig. 4 for three different orientations of the patches:
HT (θ1 = 0, θ2 = 0), ⊥ (θ1 = 0, θ2 = π /2), HH (θ1

= 0, θ2 = π ), and different coverages from χ = 0.9 to
χ = 0.5. The same high and low densities state points
used before have been considered here. This identifies the
preferential angular positions of the various different patch
orientations.

Consider the high density state point first, depicted in the
left-hand panels of Fig. 4 for decreasing coverages from top
to bottom. State points are the same discussed in Fig. 3. For
sufficiently large patches (χ = 0.9, 0.8, not shown here), the
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FIG. 3. The g(12) distribution function as a function of r = |r12| for three orientations of the patches: HT, n̂1 · n̂2 ≡ cos θ12 = 1; ⊥, n̂1 · n̂2 ≡ cos θ12 = 0;
HH, n̂1 · n̂2 ≡ cos θ12 = −1. In all cases, we present results for the highest and lowest densities studied at the lowest temperatures achieved at each coverage.
From top to bottom, this corresponds to: χ = 0.9, T∗ = 0.85, ρ∗ = 0.8 (left), ρ∗ = 0.010 (right); χ = 0.7, T∗ = 0.45, ρ∗ = 0.8 (left), ρ∗ = 0.003 (right);
χ = 0.5, T∗ = 0.35, ρ∗ = 0.8 (left), ρ∗ = 0.002 (right).

only significant peak in the distribution is observed for θ2

≈ π and θ ≈ π . For such high coverages, HH alignments
are uniformly distributed along all solid angles 0 ≤ θ ≤ π

(remember that there is azimuthal symmetry), whereas HT
alignment is preferentially found in the backward direction,
θ ≈ π .

The situation changes as the coverage decreases from χ

= 0.7, with the development of further peaks for perpendicu-
lar orientation of the patches (θ1 = 0, θ2 = π /2) at θ ≈ π /2
and for head-to-head orientation of the patches (θ1 = 0, θ2

= π ) at θ ≈ 0. The physical interpretation of these results is
that, under high density and low temperature conditions, HT
and HH alignments of the patches are preferentially found for

particles in the transversal direction, θ ≈ π /2, for low cover-
ages (χ ≤ 0.7).

Next, we consider the low density points reported in the
right-hand panels of Fig. 4, again for decreasing coverages
from top to bottom. Unlike the previous case, we find a clear
predominance of the HH antiparallel alignment in the forward
direction (θ ≈ 0) and modulated layering for both HT and
⊥ patch orientations that become increasingly structured as
coverage decreases. These results can be contrasted with the
analogous results given in Ref. 13 for the two-patch case and
extend those given there for only high and low coverages. The
layering is a clear reflection of an increasing tendency to mi-
cellization, in agreement with numerical simulation results.
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FIG. 4. The g(θ, θ2) angular distribution as a function of cos θ for three orientations of patch 2 (θ2 = 0, θ2 = π /2, θ2 = π ) given that patch 1 is pointing up
(θ1 = 0): In all cases, we present results for the highest and lowest densities studied at the lowest temperatures achieved at each coverage. From top to bottom,
this corresponds to: χ = 0.9, T∗ = 0.85, ρ∗ = 0.8 (left), ρ∗ = 0.010 (right); χ = 0.7, T∗ = 0.45, ρ∗ = 0.8 (left), ρ∗ = 0.003 (right); χ = 0.5, T∗ = 0.35,
ρ∗ = 0.8 (left), ρ∗ = 0.002 (right). The circular arrowed insets refer to the patch orientation, with θ1 = 0 (always up) and θ2 rotating.

C. Coefficients of rotational invariants

In this section, we follow the notations already intro-
duced in our previous work.13 The coefficients of rotational
invariants are

gl1l2l (r) = 1

4πρr2N

〈∑
i �=j

δ(r − rij )�l1l2l(12)

〉
, (45)

where the �l1l2l(12) are rotational invariants. Here, we have
explicitly considered the first 10 coefficients occurring in
the multipole expansion8 that account up to quadrupole-
quadrupole interactions.36

Explicit expressions for the first few are36

�000 (12) = 1,

�110 (12) = 3� (12) = 3 n̂1 · n̂2,

�112 (12) = 3

2
D (12)

= 3

2
[3 (n̂1 · r̂12) (n̂2 · r̂12) − n̂1 · n̂2] ,

�220 (12) = 5

2
E (12) = 5

2
[3(n̂1 · n̂2)2 − 1].

(46)
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FIG. 5. The hl1l2l(r) rotational invariants as a function of r for several triplets. In all cases, we present results for the highest and lowest densities studied at
the lowest temperatures achieved at each coverage. From top to bottom, this corresponds to: χ = 0.9, T∗ = 0.85, ρ∗ = 0.8 (left), ρ∗ = 0.010 (right); χ = 0.7,
T∗ = 0.45, ρ∗ = 0.8 (left), ρ∗ = 0.003 (right); χ = 0.5, T∗ = 0.35, ρ∗ = 0.8 (left), ρ∗ = 0.002 (right), as in Fig. 3.

Other expressions can be found in Ref. 36. We note that
gl1l2l(r) = 4πg (r; l1l2l) used in past work13 and further that
gl1l2l(r) = hl1l2l(r) + δl10δl20δl0.

In Appendix A, we explicitly derive Eq. (45) for two
specific and representative cases. Some of the coefficients
have particularly interesting physical interpretations: the term
h110(r) is the coefficient of ferroelectric correlation, the term
h112(r) the coefficient of dipolar correlation, the term h220(r)
the coefficient of nematic correlation, and so on.

The results for these coefficients are reported in Fig. 5,
with the same ordering as before. Hence, the left-hand pan-

els show plots of the high-density points and decreasing cov-
erage, while the right-hand panels depict plots of the low-
density points and again decreasing coverages. Plots on the
same side have been drawn to the same scale so that differ-
ences may be readily appreciated.

The high-density plots (left-hand panels) have hardly
any dependence on the particular projection, as could have
been guessed from the outset. With h000(r) = g000(r) − 1,
we clearly find correlations (that is, non-vanishing coeffi-
cients) only within the well, σ < r < λσ , along with h110(r)
and h121(r) negatively correlated, h220(r) positively correlated,
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FIG. 6. The hl1l2l(r) rotational invariants as a function of r for several triplets. In all cases, we present results for the highest and lowest densities studied at
the lowest temperatures achieved at each coverage. From top to bottom, this corresponds to: χ = 0.9, T∗ = 0.85, ρ∗ = 0.8 (left), ρ∗ = 0.010 (right); χ = 0.7,
T∗ = 0.45, ρ∗ = 0.8 (left), ρ∗ = 0.003 (right); χ = 0.5, T∗ = 0.35, ρ∗ = 0.8 (left), ρ∗ = 0.002 (right).

and h011(r) almost uncorrelated. Similar behavior occurs for
the low-density state points where, however, the correlation
within the well is approximately constant, with h011(r)
< h110(r) < h121(r) < 0, and h220(r) > 0. Note that in the
last, Janus case (χ = 0.5), the h220(r) and h121(r) ordering
appear to be inverted, signaling an incomplete agreement
with the other cases, likely due to an insufficient lowering
of the temperature, in agreement with previous findings of
Sec. VI A.

Next, we consider a second set of coefficients given
by h112(r), h022(r), h222(r), h123(r), h224(r). These are re-

ported in Fig. 6 with the same distribution as before.
Even in this case, all coefficients have non-vanishing val-
ues within the well and have thus been plotted to the
same scale. Again, the trend appears to be rather clear,
with the coefficient h112(r) negative with decreasing con-
tact values for decreasing patch size, indicating an increasing
anticorrelation in the respective orientations as coverage de-
creases; h123(r) also has negative value, whereas all oth-
ers coefficients present positive values indicating positive
correlations. This is true for both high- and low-density
states.
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FIG. 7. The gl1l2m(r) rotational molecular-frame components of the pair distribution function for several triplets. The system is the Janus case (coverage
χ = 0.5, λ = 1.5, and T∗ = 1). Notice the change of scale in each panel.

D. RHNC molecular reference angular components
of radial distribution functions and MC results

In order to assess the structural results previously dis-
cussed, in this section we compare directly the RHNC
molecular-frame spherical harmonic coefficients gl1l2m(r) and
MC results.

Data in Fig. 7 are for λ = 1.5, χ = 0.5, ρ = 0.8, and
T∗ = 1. Simulation results have been calculated according
to the procedure described in Appendix B. The first obser-
vation is that the spherically symmetric HS bridge function
and the thermodynamically consistent determination of its op-

timal diameter are able to bring the RHNC g000(r) into ex-
cellent agreement with computer simulation results. As ex-
pected, however, residual discrepancies, in some cases even
qualitative, are observed in the non-spherical components, al-
though the worst cases are also quantitatively less serious.
The results of Fig. 7 are representative of the situation for
all the cases we have investigated at the same temperature
and coverage (λ = 1.5, ρ = 0.65 and ρ = 0.5; λ = 1.2, ρ

= 0.8). The natural conclusion of such comparisons is that
if one wants to improve the description of the overall struc-
ture it is important to go beyond spherical bridge function
approximations.
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FIG. 8. The gas and liquid branches at fixed temperature, chemical potential, and pressure. The case χ = 0.7, T∗ = 0.45 is an example of real crossing; in the
case χ = 0.6, T∗ = 0.42 the consistence condition can be obtained as safe smooth extrapolation of the two branches.

E. Chemical potential vs pressure plane

Having computed pressure and chemical potential as de-
scribed in Sec. III C, we can now move to the calculation of
the coexistence curves by fixing a temperature and finding the
two densities, ρ∗

g of the gas and ρ∗
l of the liquid, that coexist

at that temperature so as to yield equal pressures and chem-
ical potentials. These are then the resolving densities of the
system of equations

Pg(T ∗, ρ∗
g ) = Pl(T

∗, ρ∗
l ), (47)

μg(T ∗, ρ∗
g ) = μl(T

∗, ρ∗
l ) . (48)

The resulting intersections are depicted in Fig. 8 for a
couple of typical situations (χ = 0.7 and χ = 0.6). Note that
at the lowest coverages considered (χ = 0.6 and χ = 0.5), the
crossing has to be obtained by extrapolating the two curves.
Given the improved algorithm we are using, we are inclined
to attribute the crossing failure to the closure, more than to
difficulties of convergence. This might also be taken as an
indication of a decrease in the accuracy for the computed co-
existence curves. As we will see, this turns out to be the case.

F. Phase diagram

As discussed above, the system of Eqs. (47) and (48) pro-
vides the coexisting densities ρ∗

g of the gas phase and ρ∗
l of the

liquid phase at a fixed temperature T∗. This allows the calcula-
tion of the full phase diagram in the temperature-density plane
as a function of the coverage χ . The results are displayed in
Fig. 9, where those from RHNC integral equation theory are
contrasted with results from Gibbs Ensemble Monte Carlo
(GEMC) simulations and TPT-BH.

At first sight, the performances of both approximate ap-
proaches appear able to capture the main qualitative trends
of the numerical simulations, given the well-known short-
comings of each. Both approaches give fairly consistent gas
curves that are relatively close to those from numerical simu-
lations, although this works better for larger than smaller cov-
erages. For the liquid branch, however, the accuracy appears
to be much less satisfactory, although TPT-BH appears to be
able to follow the coverage dependence more closely than

RHNC. Both approaches, however, fall short in the Janus limit
(χ = 0.5), where the re-entrant phase diagram is found.

A closer look at each phase diagram, however, reveals the
specific deficiencies of both RHNC and TPT-BH approaches.
This is shown in Fig. 10, where a single phase diagram in
the temperature-density plane is displayed at each coverage,
from a full square-well (χ = 1.0) potential to the Janus fluid
(χ = 0.5) in the left-right/top-down order of decreasing cov-
erage. Consider the square-well χ = 1.0 case first. In this
case, the results of numerical simulations were obtained from
Vega et al.37 and del Río et al.,38 while the the RHNC results
are based on a Newton-Raphson scheme that was pushed a
little farther than a previous calculation,14 with slightly im-
proved performance. For all other cases, the hybrid Newton-
Raphson/Picard scheme previously described was followed,
allowing lower temperatures and hence lower coverages to
be reached compared to the pure Picard calculation used in
Ref. 12. The TPT-BH calculations are also a refine-
ment of those reported in Ref. 15, with little or no
variation.

Within this more detailed view, the weaknesses of each
approach are clearly visible. The accuracy of the RHNC
approach clearly degrades as the coverage decreases, not
so much by virtue of the lower temperatures involved but

FIG. 9. The phase diagram in the temperature-density plane as a function of
the coverage. Results reported are from GEMC simulation, RHNC integral
equation theory, and TPT-BH perturbation theory.
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FIG. 10. The phase diagram in the temperature-density plane for various coverages: χ = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5. Results reported are from GEMC simulation,
RHNC integral equation theory, and TPT-BH perturbation theory.

rather due to the intrinsic shortcoming of the spherically
symmetric reference system used here for the RHNC bridge
function, which becomes more and more problematic as the
coverage decreases. A comparison with similar results ob-
tained in the more isotropic two-patch case,13 where the ac-
curacy was much greater even with the original algorithm,
strongly supports this inference.

The performance of the TPT-BH perturbation theory is
based on an almost opposite scenario. As apparent from
Fig. 10, TPT-BH appears to be able to follow, albeit with
some inaccuracy, the decreasing trend in terms of the cov-
erage. On the other hand, it should be clearly emphasized that

the approximation involved (see Eq. (35)) is independent of
the way the attractive part is distributed on the surface. No-
tably, the prediction of TPT-BH would be identical in the
two-patches case, whereas numerical simulations indicate a
significant quantitative difference in the binodal of the one-
patch and the two-patch cases. A final word of caution is in
order. The very good quality of perturbation theory for the
one-patch case, reported in Fig. 10, is not uniform at differ-
ent values of the model parameters. For example, in the ex-
perimentally more interesting case of λ = 1.2, we find signifi-
cantly poorer performances of TPT-BH with respect to RHNC
in reproducing coexistence curves. At the present level of
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investigations, a combined use of both techniques could be
used to extract some first approximate information about the
location of liquid-vapor coexistence.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the Kern-Frenkel poten-
tial with a single patch, extending to lower coverages pre-
vious work12 on RHNC integral equation theory. For this
purpose, we implemented an improved Newton-Raphson
algorithm that provides a much more stable convergence
scheme at low temperatures and allowed us to decrease cover-
age from square-well (χ = 1.0) to the Janus limit (χ = 0.5).

We found that, as the coverage decreases, the accuracy
of RHNC integral equation theory gradually deteriorates and
we argued that this is to be attributed to the choice of the
HS reference bridge function as an approximation to the real
anisotropic bridge function. The contrast with the much better
accuracy previously found in the two-patch calculations13 us-
ing the same approximation indeed strongly suggests that the
origin of this shortcoming in the one-patch case stems from
the highly anisotropic form of the one-patch Kern-Frenkel po-
tential that is hardly approximated by any spherically sym-
metric reference model. A second aim of our study has been
a direct assessment of the pros and cons of RHNC integral
equation theory compared with TPT-BH thermodynamic per-
turbation theory. We found TPT-BH to be superior, for the
case of λ = 1.5, in terms of its ability to predict the ap-
proximate location of the coexistence lines, its accuracy not
degrading with decreasing coverage and temperature and al-
ways at a very small computational cost. However, prelimi-
nary calculations for the case λ = 1.2 seem to indicate that,
with decreasing range of the attractive well, TPT-BH results
deteriorate faster than RHNC. Future investigations in this di-
rection, now made possible by the improved integral equation

algorithm presented in this paper, will be necessary to assess
this point.
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APPENDIX A: EXPLICIT CALCULATIONS OF SOME
ROTATIONAL INVARIANT COEFFICIENTS

Here, we provide examples of the direct calculations for
rotational invariant coefficients as described in Sec. VI C. The
general expansion of g(12) for a linear molecule in an arbi-
trary frame was given in Eqs. (40) and (41), where ψl1l2l are
the rotational invariants. In particular, we here consider ex-
plicitly the following two representative cases:

ψ110 (ω1, ω2,�) = � (ω1, ω2,�) , (A1)

ψ112 (ω1, ω2,�) = D (ω1, ω2,�) , (A2)

where �(ω1, ω2, �) and D(ω1, ω2, �) are defined in Eq. (46).
The aim of this appendix is to compute the corresponding co-
efficients, as given in Eq. (45).

1. Calculation of hl1l2l (r)

The configurational partition function for this problem is

ZN =
∫ [

N∏
l=1

drldωl

]
e−β

∑
l<m �(rlm,n̂l ,n̂m). (A3)

Using Eqs. (40) and (A1), we have

〈∑
i<j

δ(r − rij )� (ω1, ω2,�)

〉
=

〈∑
i<j

δ(r − rij )ψ110 (ω1, ω2,�)

〉

= 1

ZN

∫ [
N∏

l=1

drldωl

] 〈∑
i<j

δ(r − rij )ψ110 (ω1, ω2, ω)

〉
e−β

∑
l<m �(rlm,n̂l ,n̂m)

=
∫

dr1dr2

∫
dω1dω2δ (r − r12) ψ110 (ω1, ω2,�) ρ(r12, ω1, ω2, ), (A4)

where

ρ (r12, ω1, ω2) = N (N − 1)

2

1

ZN

∫
[dr3dω3 . . . drNdωN ] e−β

∑
l<m �(rlm,n̂l ,n̂m) = g (r12, ω1, ω2)

ρ2

(4π )2 . (A5)

Using then Eq. (40), along with the results〈
ψl1l2l (ω1, ω2,�) ψl′1l

′
2l

′
(ω1, ω2,�)

〉
ω1,ω2,�

= δl1l
′
1
δl2l

′
2
δl3l

′
3

〈[
ψl1l2l (ω1, ω2,�)

]2
〉
ω1,ω2,�

(A6)

and

〈[ψ110(ω1, ω2,�)]2〉ω1,ω2,� = 1

3
, (A7)
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we find, from Eq. (A5),〈∑
i<j

δ(r − rij )� (ω1, ω2,�)

〉
= 4πρNr2

∑
l1,l2,l

gl1l2l (r) δl11δl21δl30〈[ψ110(ω1, ω2,�)]2〉ω1,ω2,�

= 4π

3
ρNr2g110 (r) , (A8)

so that

g110 (r) = h110 (r) = 3

4πρNr2

〈∑
i<j

δ(r − rij )� (ω1, ω2,�)

〉
, (A9)

in agreement with Eq. (41) and Ref. 39.

2. Calculation of h112(r)

A similar calculation leads to the expression for h112(r)〈∑
i<j

δ(r − rij )D (ω1, ω2,�)

〉

=
〈∑

i<j

δ(r − rij )ψ112 (ω1, ω2,�)

〉

=
∫

dr1dr2

∫
dω1dω2δ (r − r12) ψ112 (ω1, ω2,�)

× ρ (r12, ω1, ω2) . (A10)

Using Eqs. (A5) and (A6), along with the result

〈[ψ112(ω1, ω2,�)]2〉ω1,ω2,� = 2

3
, (A11)

one finds

g112 (r) = h112 (r)

= 3

8πρNr2

〈∑
i<j

δ(r − rij )D (ω1, ω2,�)

〉
,

(A12)

again in agreement with Eq. (41) and Ref. 39.

APPENDIX B: MC CALCULATION OF THE
MOLECULAR REFERENCE COEFFICIENTS gl1l2m(r)

The molecular reference coefficients gl1l2m(r) are related
to the angular dependent pair distribution function g(r, ω1,
ω2) by

gl1l2m (r) = 1

4π

∫
dω1dω2 g (r, ω1, ω2) Y ∗

l1m
(ω1) Y ∗

l2m̄
(ω2)

= 4π
〈
g (r, ω1, ω2) Y ∗

l1m
(ω1) Y ∗

l2m̄
(ω2)

〉
ω1,ω2

. (B1)

By multiplying and dividing Eq. (B1) by g000(r)
= 〈g(r, ω1, ω2)〉ω1,ω2 , it can be cast in the following

form:

gl1l2m(r) = 4πg000(r)

〈
g(r, ω1, ω2)Y ∗

l1m
(ω1)Y ∗

l2m̄
(ω2)

〉
ω1,ω2

〈g(r, ω1, ω2)〉ω1,ω2

.

(B2)

Upon introducing the new average

〈. . .〉r ≡ 〈g(r, ω1, ω2) . . .〉ω1,ω2

〈g(r, ω1, ω2)〉ω1,ω2

, (B3)

where the subscript r of the average means that it is restricted
to particle centers at separation r, we find

gl1l2m(r) = 4πg000(r)
〈
Y ∗

l1m
(ω1)Y ∗

l2m̄
(ω2)

〉
r
. (B4)
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