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Equilibrium phases of one-patch colloids with
short-range attractions

Zdeněk Preisler,†*ab Teun Vissers,†b Gianmarco Munaò,c Frank Smallenburgb

and Francesco Sciortinob

Inspired by experimental studies of short-ranged attractive patchy particles, we study with computer

simulations the phase behavior and the crystalline structures of one-patch colloids with an interaction

range equal to 5% of the particle diameter. In particular, we study the effects of the patch surface

coverage fraction, defined as the ratio between the attractive and the total surface of a particle. Using

free-energy calculations and thermodynamic integration schemes, we evaluate the equilibrium phase

diagrams for particles with patch coverage fractions of 30%, 50% and 60%. For a 60% surface coverage

fraction, we observe stable lamellar crystals consisting of stacked bilayers that directly coexist with a low

density fluid. Inside the coexistence region, we observe the formation of lamellar structures also in direct

NVT simulations, indicating that the barrier of formation is low and experimental realization is feasible.

For sufficiently strong interactions, these structures spontaneously assemble from the fluid in

simulations, suggesting that they might also easily form in experimental systems. In the Janus case, i.e. at

50% surface coverage fraction, no lamellar structures are formed, and the stable crystals are similar to

those that have been found previously for a longer interaction range (i.e. 20% of the particle diameter).

At 30% coverage fraction, we identify novel ‘open’ crystal structures with large unit cells of up to 14

particles that are stable in the strong interaction limit.
I. Introduction

Colloidal particles with strongly directional interactions play an
important role in so matter physics. One way to achieve these
interactions is by creating attractive patches on the colloids'
surface1–3 Current experimental techniques allow for the
production of patchy colloids with different sizes, shapes and
chemical compositions.4–12 Because such particles exhibit
strongly directional interactions, they constitute a useful tool to
investigate the effects of the anisotropy on the self-assembly
processes. In parallel with these experimental developments,
signicant theoretical and numerical efforts have been made to
predict the physical properties of these systems13,14 for example
guiding the identication of empty liquids15 in clay suspen-
sions.16 Patchy particles can be used to study uid–uid and
uid–solid phase transitions,15,17 and even to create uids that
remain stable down to zero temperature.18 Additionally, the
inuence of patch number and size, as well patchy properties in
a binary mixture,19–21 have been studied extensively. Of special
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interest is the diamond colloidal crystal found in particles with
four patches in a tetrahedral geometry, because of its inter-
esting photonic properties.22–26

One of the simplest examples of patchy colloids is provided
by particles with a single patch, such as Janus particles with one
attractive hemisphere.10,27–34 The phase behavior of one-patch
particles, as well as their self-assembly properties in external
elds35,36 and on interfaces37,38 have been previously studied,
demonstrating a rich phase behavior and the spontaneous self-
assembly of micelles, vesicles, lamellae and tubes, analogous to
aggregates found in molecular systems.39–42

In this work we address the issue of the sensitivity of the
phase behavior of one-patch particles to the patch coverage
fraction by numerical evaluation of equilibrium phase diagrams
for the one-patch Kern–Frenkel (KF) model.43 This model is
frequently adopted in the context of colloidal systems with
strongly directional attractions to investigate the structure,
thermodynamics and self-assembly properties.26,39,44–46 In the KF
model, two particles bind if their mutual distance is within the
range of the attraction, modeled by a square-well interaction,
and their patches are properly aligned with each other. To be
close to the experimental conditions,32,47,48 we focus on a short
(5% of the particle diameter) square-well range. In order to
document the effect of the patch size on the relative thermo-
dynamic stability of each phase we perform a thorough study for
three different values of the patch coverage fraction c, see Fig. 1.
Soft Matter, 2014, 10, 5121–5128 | 5121
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Fig. 1 One-patch particles interacting via a Kern–Frenkel potential for
three different patch coverage fractions c¼ 0.3, c¼ 0.5 and c¼ 0.6. In
the pictures the hard sphere particles are colored in red and the Kern–
Frenkel potential bonding volume is depicted as transparent blue.

Fig. 2 Schematic representation of two patchy spheres interacting via
a Kern–Frenkel potential (eqn (1)). The attractive bonding volumes are
shown in blue. The vector rij points from particle i to particle j. The
vectors n̂i and n̂j show the orientations of the particles i and j.
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Following the strategy laid out in ref. 49, we employ a wide
range of simulation techniques, including the oppy box
method,50 to nd and characterize various crystalline struc-
tures. Subsequently, we employ free-energy calculations and
thermodynamic integration methods to draw the phase
diagrams and to calculate the thermodynamic stability of the
crystal candidates and the uid. In addition, we perform stan-
dard Monte Carlo calculations in the canonical ensemble (NVT)
to characterize the spontaneous formation of the ordered pha-
ses. Finally, for c ¼ 0.5, we evaluate the location of the gas–
liquid critical point by performing successive umbrella
sampling (SUS) simulations,51 to assess the relative stability of
the liquid phase with respect to crystallization.
Fig. 3 Typical snapshots from constant NVT simulations of particle
configurations at c ¼ 0.6, kBT/3 ¼ 0.25 and kBT/3 ¼ 0.20 for four
number densities rs3 ¼ 0.01, 0.05, 0.1 and 0.4. The particles are
depicted in red. The Kern–Frenkel interaction bonding volumes are
shown as transparent blue regions.
II. The model

The advantage of using the Kern–Frenkel model is the possi-
bility of a continuous interpolation from a pure square-well
isotropic potential to the hard-sphere limit by tuning a simple
parameter, the coverage fraction c. This parameter is properly
dened as the ratio between the attractive and the total surface.
As a consequence, it assumes the values one and zero for the
square-well and the hard-sphere potential, respectively. A
schematic picture of the Kern–Frenkel is shown in Fig. 2.

Following Kern and Frenkel, the pair potential is written as a
product of a square-well potential uSW(rij) and an angular
dependence U(rij, n̂i, n̂j), plus a hard sphere contribution
uHS(rij). The potential uKF is dened as

uKF
�
rij; n̂i; n̂j

� ¼ uSW rijð ÞU
�
rij ; n̂i; n̂j

�þ uHS rijð Þ; (1)

The square-well potential uSW(rij) is

uSW
�
rij
� ¼ ��3 if s\rij # sþ D

0 otherwise;
(2)

with s the particle diameter, D the interaction range (D ¼ 0.05s
in the present case) and 3 the depth of the square well. The
function U(rij, n̂i, n̂j) depends on the orientations of two parti-
cles i and j

U
�
rij; n̂i; n̂j

� ¼
8><
>: 1 if

(
r̂ij$n̂i . cos q and

r̂ji$n̂j . cos q

0 otherwise;

(3)

where n̂i and n̂j denote the orientations of the patches of
particles i and j respectively, and rij is the vector that joins the
5122 | Soft Matter, 2014, 10, 5121–5128
center of mass of the two particles. To ensure that the particles
do not overlap, the KF potential includes a hard-sphere
component uHS(rij) given by

uHS
�
rij
� ¼ �

N if rij # s

0 otherwise:
(4)
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Stable crystal structures and their ground-state energies for
patch coverage fraction c¼ 0.6. The particles themselves are depicted
in red. The bonding volumes of the particles are shown as transparent
blue regions.
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The particle coverage fraction c is related to the angular semi-
amplitude q by

c ¼ sin2ðq=2Þ ¼ 1� cosðqÞ
2

(5)

The structural and thermodynamic properties and the
crystal structures of the aggregates observed in this work are
strictly dependent on c. In the following we specically analyze
three different c values, one in each section.

III. Patch coverage fraction c ¼ 0.6

We start our investigation of the phase behavior at c ¼ 0.6, by
performing constant NVT simulations initialized with randomly
positioned particles. To visualize the aggregation effects for c ¼
0.6, we show in Fig. 3 snapshots of typical congurations for two
different temperatures kBT/3 (with kB Boltzmann's constant) at
increasing number density rs3. At kBT/3 ¼ 0.25, the system
consists of small oligomers at both low and high densities. At
lower kBT/3, the snapshots suggest a different scenario. Fig. 3
shows that the little oligomers transform into large lamellar
clusters. The top-right snapshot in Fig. 3 demonstrates the
presence of lamellae even at densities as low as rs3 ¼ 0.01. No
evidence of gas–liquid phase separation is observed for this
coverage fraction c: likely, gas–liquid phase separation is pre-
empted by the sudden development of the lamellar phase. We
can infer that the relatively high value of the coverage fraction
promotes the formation of extended planar structures,
lamellae, when the attraction energy becomes sufficiently
strong.

To further characterize our system for c ¼ 0.6, we search for
crystal unit cells by using the oppy box method.50 Within this
method, one simulates a small number of particles inside a box
that can evolve both in volume and shape. The resulting skewed
Fig. 4 Equilibrium phase diagrams for c ¼ 0.6 in T–p and r–T represent
and the crosses indicate the region where lamellar clusters start forming
the highest temperature where, starting from a fluid at a given r, we obse
where we did not observe lamellae is indicated by green crosses. The das
the crystal breaks up, introducing a finite-size effect, which makes the
discussion see ref. 49.

This journal is © The Royal Society of Chemistry 2014
unit cells form complete crystals upon multiplication in three
dimensions but are not necessarily the smallest possible unit
cells for the found crystals. To identify the stable structures, we
calculate the free energy of the structures that are generated
most frequently using the Frenkel–Ladd method,52 and use
thermodynamic integration to explore their stability regions.
Additionally, we calculate the uid free energy using thermo-
dynamic integration. Once a uid–crystal or crystal–crystal
coexistence point is identied, we use Koe integration to
ations. In the r–T diagram, the gray areas indicate coexistence regions,
spontaneously. In particular, for each density the blue crosses denote
rved lamellar clusters in our NVT simulations. The lowest temperature
hed line is an estimate of where the bilayer sheets start to separate and
bilayer sheet coexistence densities difficult to calculate, for further

Soft Matter, 2014, 10, 5121–5128 | 5123
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follow the coexistence line.53 A detailed explanation is also given
in ref. 49.

The complete equilibrium phase diagrams in the tempera-
ture–pressure (T–p) and in the density–temperature (r–T) plane
are shown in Fig. 4. We identify a stable bilayer crystal structure,
which we name B, with energy U/N3 ¼ �4.5, corresponding to
nine bonded neighbours per particle. The structure is shown in
Fig. 5 and it closely resembles the lamellar structures that were
found in the constant NVT simulations. The spheres are on a
face centered cubic (fcc) lattice and form bilayer sheets that are
stacked on top of each other. At high density, yet low temper-
ature, another crystal, labeled as crystal I is stable. This struc-
ture had already been identied in ref. 49 and it is composed of
particles residing on an fcc lattice, with a tetrahedral arrange-
ment of the orientations. At high temperatures we nd that the
most stable phase is an fcc-crystal with random orientations
that we name r-fcc, consistent with the hard-sphere behavior
expected as T / N.
Fig. 7 Typical snapshots of parts of crystals II and W inside a rectan-
gular box for c ¼ 0.5. The bonding volume is depicted as transparent
blue. At the very bottom we show only the bonding volumes of crystal
W to indicate its bonding patterns.
IV. Patch coverage fraction c ¼ 0.5

We now turn our attention to colloids with a patch coverage
fraction of 50%, also known as Janus particles. The phase
diagram is shown in Fig. 6 in both the T–p and r–T planes.

We observe the same crystal structures as for Janus particles
with an interaction range of D ¼ 0.2s,49 although the stability
regions are shied toward higher densities because bonded
particles are closer together. Note also that one of the struc-
tures coincides with the fcc crystal structure I discussed
previously for c ¼ 0.6. The other two structures, (II and W),
consist of different orientational orderings of particles on a
hexagonal close-packed (hcp) lattice and are shown in Fig. 7.
We do not nd evidence of lamellar structures of the type
observed for c ¼ 0.6. Stable lamellae do not form as particles
cannot align side-by-side with all patches interacting sideways.
The same holds for slightly smaller coverages, for which we
expect a phase behavior close to the Janus case. We also do not
observe the wrinkled bilayer sheet phase reported for D ¼
Fig. 6 Equilibrium phase diagram for the Kern–Frenkel model with cove
marked with a red dot. Note that the critical point is metastable with res

5124 | Soft Matter, 2014, 10, 5121–5128
0.2s.49 Indeed the reduction of the range causes the breaking of
the outer bonds which are required to stabilize the wrinkled
bilayer sheet phase.

Using SUS simulations, we nd a gas–liquid critical point at
kBT

c/3 x 0.155 and rcs3 x 0.15. However, the critical point is
rage fraction c ¼ 0.5 in the T–p and the r–T plane. The critical point is
pect to the fluid–crystal coexistence.

This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4sm00505h


Fig. 8 Phase diagram in the T–p plane and the r–T plane for c¼ 0.3. The dashed line indicates estimated fluid–crystal coexistence in the region
where the fluid could not be equilibrated. The symbols of crystals V and VII are indicated on the left from their stability regions for clarity. The gray
areas indicate the coexistence regions.
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metastable as it is embedded inside the coexistence region
between the low-density uid and the crystals. We know from
previous studies that for D ¼ 0.5s and D ¼ 0.2s,39,49 a critical
Fig. 9 Stable crystals for coverage fraction c ¼ 0.3 and their energy per p
(red); (b) the hard cores of the particles as well as their bonding volum
orientations depicted on the surface of a unit sphere.

This journal is © The Royal Society of Chemistry 2014
point has been observed, although in the latter case it was also
found to be metastable with respect to the formation of wrin-
kled bilayer sheets49.
article in the low-temperature limit. (a) The hard cores of the particles
es (transparent blue); (c) only the bonding volumes; (d) the particle

Soft Matter, 2014, 10, 5121–5128 | 5125
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V. Patch coverage fraction c ¼ 0.3

For a patch coverage fraction of c ¼ 0.3, we observed a phase
behavior, see Fig. 8, that is completely different from that for
the higher c values. We found two ‘open’ low-energy crystals,
and an fcc-based structure, which are all stable in the phase
diagram. Of these, we named the open crystal with the lowest
energy V, since it is composed of a repeating pattern of particles
forming a network of connected pentagon-shaped arrange-
ments, each consisting of 7 particles. As shown in Fig. 9a, this
structure incorporates large voids. In order to illustrate the
pentagonal bonding patterns of the crystal, Fig. 9c shows only
the bonding volume of each particle. Interestingly, the network
of pentagonal clusters only percolates in two dimensions. The
packing in the third dimension is maintained by the pressure.
Crystal V exists in several polymorphs that all have the same
bonding energy, but differ in the way these pentagonal clusters
are packed. The second low-energy crystal VII is also composed
of pentagonal clusters, but the network structure connecting
the clusters percolates in three dimensions. The interaction
energy of this structure is slightly higher than the one of crystal
V, making crystal V stable in the low temperature limit. As
shown in Fig. 9d, both crystals V and VII have well dened,
point-like bond orientations.

The last stable phase identied is an orientationally ordered
fcc crystal and we refer to it as fcc. This crystal is stable in a large
region of the phase diagram, but transforms into a plastic fcc
structure at high T.

Of the three stable crystal phases, crystal V has the lowest
energy (U/N z �2.713), but the bonds can be satised only at
relatively low densities. As a result, this structure is stable at low
T, but only for low pressure p. Upon increasing p, it is replaced
by crystal VII, which is stable at slightly higher densities, but has
a less number of bonds per particle (U/N z �2.643). Finally,
sufficiently high pressures stabilize fcc, which has a relatively
high energy (U/N¼�2.53), but can reach amuch higher density.
The calculated equilibrium phase diagram in the T–p and r–T
planes is shown in Fig. 8. We note here that it is difficult to
calculate the low T uid–crystal coexistence by means of free
energy calculations and thermodynamic integration methods,
due to the slow equilibration of the uid phase. We therefore
only approximately estimate the uid–crystal coexistence locus
and indicate it by dashed lines in our phase diagrams. Our
approximation is based on the melting temperature of the
crystals in NpT simulation and thus provides an upper bound to
the thermodynamic line.

In contrast to the case D ¼ 0.5s and a coverage fraction of
30%,42,54,55 we did not observe tube structures, again pointing to
the sensitivity of the phase behavior to the interaction range.

VI. Conclusions

We have presented a simulation study for a one-patch colloidal
model with an interaction range of 5% of the particle diameter,
focusing on three different values of the patch coverage. In
particular, we have identied possible crystal structures and
have drawn the resulting equilibrium phase diagrams for patch
5126 | Soft Matter, 2014, 10, 5121–5128
coverage fractions of 30%, 50% and 60%. This work, together
with our previous investigations of the same one-patch model
but for larger interaction ranges D ¼ 0.2s (ref. 49) and D ¼ 0.5s
(ref. 39 and 42) allows us to gauge how the range and the
angular width of the patch affect the phase behavior.

For a coverage fraction c ¼ 0.6, free-energy calculations of
the crystal structures generated by the oppy box method have
identied three different stable crystal phases: a bilayer sheet
structure and two fcc structures, one orientationally ordered
and one orientationally disordered. The bilayer structure is
stable at intermediate densities and low temperatures and
coexists with the uid phase in a wide range of densities. Inside
the coexistence region, the stable situation would be a phase
separation between a bilayer crystal and a low density uid.
However, in experiments, one might expect oating bilayer
sheets to form spontaneously in the uid. In fact, within this
range of densities the coexistence region between the bilayers
and the uid is rather large and extends down to very low
densities. Within this range of densities, constant NVT simu-
lations have shown the formation of small oligomers that
suddenly rearrange themselves in bilayer clusters upon cooling,
showing that the nucleation of bilayer structures from the uid
does not require large activation energy.

The Janus case, corresponding to c ¼ 0.5, shows a rather
different phase behavior: the lamellar phases are not formed
because patches are not wide enough for particles to attract
each other in a side-by-side conguration. Of the crystals, only
the ordered fcc phase, stable at low T, is identical to the one
observed for c ¼ 0.6. The range does not seem to strongly affect
the observed crystal structures. Indeed we observe the same
stable crystals as for Janus particles with a longer interaction
range D ¼ 0.2s.49 However, we do not recover the wrinkled
bilayer phase reported in ref. 49 since the interaction range is
now too short to stabilize the structure. With successive
umbrella sampling, we have located a gas–liquid critical point
which is found to be metastable with respect to the uid–crystal
coexistence, as for the D ¼ 0.2s case.

Finally, we have investigated particles with a signicantly
smaller patch coverage fraction, namely c ¼ 0.3. For this case,
we found that the two most stable crystal structures at low
temperature are actually ‘open’ crystals made up out of con-
nected pentagon-shaped clusters. Upon increasing temperature
or pressure, these crystals cease to exist, in favor of the fcc
structure. We note that for c ¼ 0.3 but with a longer interaction
range D ¼ 0.5s, particles self-assemble into rigid tubular
structures42 which are not seen here. Evidently, our interaction
range is too short to stabilize these structures.

The comparison between the results reported in this article
and the one previously published49 offers an exhaustive
description of the role played by the bond geometry in one-
patch particles. The width and the range of the patch determine
the maximum number of bonds each particle can form, and
particularly the low temperature bonding patterns. This results
in an extremely strong sensitivity of the phase diagram of this
class of particles to relatively small changes in the patch size.
As shown here, small changes in c drastically change the
self-assembly at low-densities as well as the stability of the
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4sm00505h


Paper Soft Matter

Pu
bl

is
he

d 
on

 0
9 

Ju
ne

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
' d

i R
om

a 
L

a 
Sa

pi
en

za
 o

n 
17

/0
7/

20
14

 0
9:

09
:3

9.
 

View Article Online
high-density crystal structures. We also note that some of the
thermodynamically stable structures require a large number of
particles in the unit cell, making it impossible to use assump-
tions to predict the relevant crystal phases. As shown in the
present work, numerical simulations can aid in the discovery of
such structures. The sensitivity of the bond geometry is not
limited to the patch coverage but is equally relevant to the
selection of the patch range. A clear example is provided by the
disappearance of the wrinkled sheet phase from the phase
diagram on going from D ¼ 0.2s to D ¼ 0.05s. Given the fact
that ne-tuning these parameters experimentally is still a
challenge, the knowledge of the effects of the patch range and
coverage on the phase behavior will be crucial in interpreting
future experimental observations of these particles. Finally, we
note that the effects on the phase behaviour of polydispersity in
patch-size, hard-core size and interaction length could be an
interesting subject of further investigations.
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