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ABSTRACT: The anisotropy of attractive interactions between
particles can favor, through a self-assembly process, the
formation of linear semi-flexible chains. In the appropriate
temperatures and concentration ranges, the growing aspect ratio
of the aggregates can induce formation of a nematic phase, as
recently experimentally observed in several biologically relevant
systems. We present here a numerical study of the isotropic−
nematic phase boundary for a model of bifunctional polymer-
izing hard cylinders, to provide an accurate benchmark for
recent theoretical approaches and to assess their ability to
capture the coupling between self-assembly and orientational
ordering. The comparison indicates the importance of properly
modeling excluded volume and orientational entropy and
provides a quantitative confirmation of some theoretical
predictions.

■ INTRODUCTION

Self-assembly is the process of reversible aggregation of basic
building blocks. Aggregating monomers can be simple
molecules, macromolecules, or colloidal particles; i.e., their
size can range from a few angstroms to micrometers. Self-
assembly is thus of paramount interest in material science, soft
matter, and biophysics.1−3

The simplest but nonetheless relevant self-assembly process
takes place when attractive interactions between the building
blocks lead to the formation of linear aggregates. Micellar
systems,4−6 fibers and fibrils,7−10 aqueous solutions of short
(nano)11,12 and long B-DNA,13−16 G-quadruplexes,17 chro-
monics,18−22 and colloidal polymers23 are all examples of
systems where anisotropic attractive interactions between the
aggregating units induce the formation of an isotropic phase of
(exponentially polydisperse in length) semi-flexible reversible
chains. Such an aggregation process, at small monomer
concentration, is well-understood.5,24,25 More complex is the
description of the collective behavior of these systems when the
monomer concentration increases. It has been experimentally
observed that, above a critical concentration, the mutual
alignment of the assembled chains gives rise to the formation of
macroscopically orientationally ordered liquid crystal
phases.7,11,26,27 Indeed, even in the case in which the residual
interaction between chains is only excluded volume, the
assembly process results in an increase of the average aggregate
aspect ratio. In agreement with predictions of the venerable
Onsager theory,28 orientational ordering (nematic transition)
becomes inevitable if chains are sufficiently rigid. Despite the
relevance of the phenomenon, accurate modeling of the
isotropic−nematic transition in the presence of equilibrium

polymerization is still an open problem. Several theoretical
approaches5,29−32 in the last few years have attempted to tackle
the problem, modeling in different ways the excluded volume
interactions and the entropic contribution associated with chain
flexibility.
These studies have clarified the importance of the particle

shape and polydispersity induced by the self-assembly process
in controlling the transition and the different orientational
properties of short chains, which might also retain isotropy in
the nematic phase. Unfortunately, no accurate estimates of the
isotropic−nematic boundary for a simple and well-defined
model undergoing equilibrium polymerization that could be
used to assess the theoretical predictions are available in the
literature. It is indeed rather difficult to precisely locate the
isotropic−nematic transition, even in one-component (non-
polymerizing) systems.33−43

To assess the validity of theoretical predictions, it is advisable
to employ a simple model for which the phase diagram (and
other quantities of interest) can be calculated with high
accuracy via computer simulations. In addition, theoretical
approaches require an accurate estimate of some input
parameters for a given model (or real system). These
parameters can be calculated accurately only for simple models.
We thus opted for a system of polymerizing hard cylinders
(HCs) with aspect ratio X0 = L/D = 2.0, where L is its length
and D is its diameter, for which we report in this paper an
exhaustive numerical study. The value X0 = 2.0 ensures that, in
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the absence of polymerization, monomers cannot form a
nematic phase.33 Thus, self-assembly is the only mechanism
that can induce orientational ordering. The two cylinder bases
are decorated with two square-well (SW) sites, responsible for
the reversible polymerization process. We observe a nematic
phase at low temperatures T and accurately evaluate the volume
fraction of the coexisting isotropic and nematic phases for
several T.
We find that, while the average chain length along the

isotropic boundary increases progressively with cooling, the
average chain length along the nematic boundary has a
minimum at intermediate T. This re-entrant behavior is
peculiar of self-assembly-driven nematization. Recent theoreti-
cal parameter-free calculations for the quasi-HC model32 had
indeed suggested such a re-entrance, but numerical or
experimental evidence has not yet been observed. Our results
thus provide not only a benchmark for future theoretical
investigations but also a first quantitative assessment of a recent
theoretical study.32,44

■ MODEL
We investigate a simple model consisting of HCs of length L and
diameter D, which are decorated with two attractive sites on their
bases (Figure 1).

These two attractive sites are located along the symmetry axis (see
Figure 1) at a distance L/2 + 0.15D/2 from the HC center of mass,
and sites belonging to distinct particles interact via the SW potential,
i.e., βuSW = −βu0, if r < δ, and βuSW = 0, if r > δ, where r is the distance
between the interacting sites, δ = 0.25D is the interaction range (i.e.,
the diameter of the attractive sites), and βu0 is the ratio between the
binding energy and the thermal energy kBT, where kB is the Boltzmann
constant. In the following, we will make use of the adimensional
temperature T* = kBT/u0. Here, u0 does not depend upon the
aggregate size; i.e., the self-assembly process is assumed to be
isodesmic.45,46

The patch geometry ensures that no branching can occur in the
system. In addition, the position and diameter of the patches have
been chosen to generate a persistent length and a bonding volume
compatible with values recently used in the analysis of DNA duplexes
self-assembly, which can be found in ref 32.

■ NUMERICAL METHODS
We implement the Kofke thermodynamic integration (KI) over
temperature47−49 to estimate the isotropic−nematic phase boundary.

KI consists of integrating numerically the Clausius−Clapeyron
equation, i.e.

β β
= − Δ
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P h
P v

d ln
d
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where P is the pressure of the system, Δh is the enthalpy per particle
difference between the two phases, and Δv is their volume per particle
difference. At each integration step, h and v are computed by separate
Monte Carlo (MC) isothermal−isobaric (NPT) simulations for the
two coexisting phases. The isobaric MC simulations, which are used in
the KI, employed the cluster NPT algorithm proposed in ref 50. For
these simulations, we used N = 1000 particles and performed two
integrations over temperature starting from T* = 0.149 up to 0.195
and down to 0.12. Further details are provided in the Supporting
Information.

The KI method requires a starting point located on the coexistence
line. We evaluate such a point by successive umbrella sampling (SUS)
MC simulations51,52 carried out at T* = 0.149. In this method, the
probability P(N) of finding N particles at a fixed volume, temperature,
and chemical potential [i.e., in the grand canonical (GC) ensemble] is
computed and analized to evaluate coexistence between different
phases.51,52 SUS is a method to efficiently calculate P(N) (exploiting
the availability of multiple processor clusters) by partitioning the
investigated range of particles in several overlapping regions and
performing (in parallel) independent GC−MC simulations in each of
them. Matching P(N) in the overlapping parts allows one to rebuild
the entire distribution. The coexistence chemical potential is estimated
through a standard histogram reweighting technique (see Supporting
Information for details), enforcing an equal-area condition below the
P(N) peaks associated with the isotropic and nematic coexisting
phases.

The box shape in SUS simulations is not cubic, as suggested by ref
52. Specifically, we use Lx = 13L, Ly = 4L, and Lz = 23.5L, where the x
axis is the nematic director, to have an interface that builds parallel to
the xy plane (see Figure 2b). In the SUS starting configuration, all
particles are aligned along the x axis. With this choice, chains of up to
13 particles in the nematic phase do not span the box, reducing any
possible finite size effect. We have checked that aggregates longer than
13L, when present, do not percolate, because of the chain flexibility.
Three SUS simulations at T* = 0.12, 0.135, and 0.158 were performed
as checkpoints for the KI.

In addition, we performed canonical NVT MC simulations starting
from the volume fractions obtained from KI to provide an accurate
estimate of average energies at coexistence. In NPT and NVT MC
simulations, we used a cubic box for the isotropic phase with Lx = Ly =
Lz ≈ 4L and an elongated box for the nematic phase with Lx = Ly ≈ 5L
and Lz ≈ 20L (z axis is parallel to the nematic director). In all
simulations, we employed periodic boundary conditions in all
directions.

As extensively discussed in ref 30, the structure of the nematic phase
is governed by the deflection length λ/L ≈ (1 − S)lp/3, where S is the
nematic order parameter and lp is the persistence length in units of
monomers. In the present model, lp ≈ 11.6 (see section 3.1 of the
Supporting Information). According to the data reported later, an
overestimate for the nematic order parameter in the nematic phase is S
≥ 0.4. Hence, λ ≤ 2.3L. Because in our simulations Lz ≫ 2.3L, finite
size effects are not expected to be significant. As a further test, we
checked that chains did not percolate in any direction.

■ RESULTS AND DISCUSSION
The probability distribution P(N) of observing at coexistence N
particles in the simulation box at fixed T and chemical potential
is shown in Figure 2b for two different T. The chemical
potential at coexistence is determined via standard histogram
reweighting techniques, imposing equal area below the two

Figure 1. Investigated HC model. The centers of the two small yellow
spheres indicate the sites interacting via the SW potential (shown on
the top). The diameter of yellow spheres indicates the interaction
range, i.e., the width of the well. u0 is the depth of the well, i.e., the
binding energy. The cylinder diameter is D, and its length is L.
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peaks. The average value of N for each of the two peaks
provides the value of the volume fractions at coexistence.
Because of the elongated shape of the box, the isotropic−
nematic interface is stable and forms parallel to the xy plane, as
shown in Figure 2a.
When a clean interface establishes in the simulation box, the

depth ΔF of the well between the two peaks provides
information on the surface tension γIN, via the relation ΔF =
2γINLxLy. Although in our simulations we do not have a clear
flat region between the two peaks, ΔF provides a rough
estimate of the surface tension and it is interesting to note that,
as shown in the inset of Figure 2b, γINkBT appears to decrease
upon decreasing T as e−βu0.
For configurations with nematic order, we checked that no

translational order builds up in the system by calculating the
three-dimensional pair distribution function g(r) defined as

∑ ∑
ρ

δ= ⟨ − − ⟩
= ≠

g
N

r r r r( )
1

( ( ))
i

N

j i
i j

1 (2)

where δ(x) is the Dirac delta function. If the nematic director
defines the z axis, g(x, y, 0) and g(0, y, z) correspond
respectively to the correlations in a plane perpendicular to the

nematic director and in a plane containing it. Figure 3 shows
both g(x, y, 0) and g(0, y, z) for T = 0.2 and ϕ ≈ 0.47, the

highest investigated volume fraction. These plots, representa-
tive of all simulations, show that no columnar, crystal, or
smectic phases are observed.
Figure 4 shows the phase boundaries calculated via KI and

double checked with independent SUS calculations. The
volume fractions of both the isotropic and nematic phases
increases upon increasing T, confirming the expectation that
increasing T disfavors the formation of long aggregates and
reduces the driving force for nematization. Panels a and b of
Figure 5 show the same numerical data of Figure 4 but in the
packing fraction versus average chain aspect ratio, X0M, where
M indicates the average chain length in units of monomers, i.e.

ν
ν

≡
∑
∑

M
l l

l

( )

( )
l

l (3)

where ν(l) is the number of clusters of size l.
As shown in Figure 5a, numerical results for the coexisting

volume fractions, ϕI and ϕN, are in good agreement with the
predictions made by the theory developed in ref 32 for the
present model. Despite the theory slightly underestimating M
in the nematic phase at large ϕ, it captures the re-entrant

Figure 2. (a) Snapshot of a system containing N = 2150 particles at
coexistence (T* = 0.149). Orange particles, which are mostly on the
left side of the box, are isotropic, while cyan particles on the right side
of the box are nematic. (b) Probability distribution P(N) at
coexistence, where N is the number of HCs in the simulation box,
with ∑NP(N) = 1, obtained from SUS simulations at T* = 0.135 and
0.149 (box sizes are Lx = 13L, Ly = 4L, and Lz = 23.5L). The inset
shows the surface tension γIN calculated from the SUS simulations
together with a blue dashed line with a slope of −1.

Figure 3. Plot of (a) g(x, y, 0) and (b) g(0, y, z), where the z axis is
chosen parallel to the nematic director for T* = 0.2 and ϕ = 0.47.
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behavior. Examining in details the theoretical framework, one
notices that such an underestimate in M arises from the

crudeness of the Parsons−Lee decoupling approximation,53

entering in the modeling of the excluded volume interactions. If
the exponential distribution of chain lengths is approximated
with monodisperse cylinders of aspect ratio X0M, this
representation allows for a comparison to the Onsager theory
for HCs, which is shown in Figure 5b. We observe a notable
difference between the Onsager predictions and the numerical
results. As predicted by Onsager, we find that, upon cooling,
the coexistence volume fraction of the isotropic phase ϕI
decreases, while the average aspect ratio increases, resulting
in a monotonic behavior in the ϕ−X0M plane. Instead, upon
cooling, while the coexistence volume fraction of the nematic
phases decreases, the average aspect ratio shows a non-
monotonic behavior: first decreasing, reaching a minimum
value, and then increasing again. Reference 32 allows us to
pinpoint the origin of this non-monotonic behavior. The theory
indeed shows that the dominant difference between the
isotropic and nematic volume fraction dependence of M is
due to an entropic contribution related to the orientational
order in the system. This contribution is strongly dependent
upon packing and provides an additional burst toward
polymerization in the nematic phase at high T, where
nematization takes place at large ϕ.
An argument for grasping the re-entrant behavior can be

provided under some simplifying assumpions. If we assume that
the cluster size distribution is exponential in both the isotropic
and nematic phases and that the chains in the nematic phase are
much longer than the persistence length lp, then the theoretical
framework developed in ref 32 allows us to write in the limiting
cases of very high and very low volume fractions

α≡ ≈
M
M

N

I (4)

where MI and MN are the average chain length in the isotropic
and nematic phases, respectively. The inverse of α controls the
width of the angular distribution of monomer orientations in
the nematic phase. When the volume fractions of the nematic
phase at coexistence are small (i.e., low temperatures), MN ∝

βe u0 goes to infinity (see Figure 5 and the Supporting
Information). When the volume fractions of the isotropic phase
at coexistence are large, MI ≈ 1. Because the volume fraction of
the nematic phase is even larger, we can expect that the angular
distribution of the nematic orientation has to be very narrow
and, hence, according to the previous equation, MN is also very
large. From the last two considerations, it follows that MN can
reasonably exhibit a minimum as a function of ϕ, which is
precisely the observed re-entrant behavior shown in Figure 5.
Next, we compare the numerical results to other available

theoretical approaches,30,31 modeling the system as a collection
of equilibrium polymers. Different models estimate in different
ways the excluded volume interactions between different semi-
flexible chains, the role of the bonding free energy, and the
orientational entropy (see the Supporting Information for
details). Figure 5b shows the results predicted by Lü and
Kindt’s theory,30 where the theoretical parameters have been
selected to comply with the present hard-cylinder model.
Figure 5b shows also the theoretical results from the work of
Kuriabova et al.31 for the HC model studied therein. Similar to
the Onsager theory, both of these two approaches do not
predict the re-entrant behavior of ϕN versus X0M discussed
previously. In addition, Lü and Kindt’s theory largely
overestimates the values of ϕ and M at coexistence.

Figure 4. Isotropic−nematic phase diagram in the packing fraction ϕ
versus temperature T* plane. Circles are SUS simulations at T* = 0.12,
0.135, 0.149, and 0.158. Triangles are results from KI, started from
SUS simulation at T* = 0.149. The other SUS simulations are used as
checkpoints. Lines indicate the theoretical predictions from ref 32.

Figure 5. Isotropic−nematic coexistence lines in the average aspect
ratio X0M and volume fraction ϕ plane. In both panels a and b,
symbols are numerical results from MC simulations. (a) Solid lines
indicate theoretical predictions of ref 32, and full circles along the
isotropic and nematic phase boundaries, which are joined by dotted
lines, indicate ϕ and M for isotropic and nematic phases at coexistence
at the same temperature. (b) Long-dashed lines are theoretical results
from Lü and Kindt’s theory,30 where we set kI = 37.0, BI = 31.8, and kN
= 36.0 according to our HC model; dotted-dashed lines indicate the
Onsager original predictions, as re-evaluated in ref 54 for ϕI and ϕN;
and solid lines are theoretical results from ref 31 for X0 = 2.0.
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Finally, because the theoretical approach developed in ref 32
has been derived under two assumptions, namely, that the
cluster size distribution is exponential and that monomers are
isotropic rather than nematic, we investigate the cluster size
distribution along the isotropic and nematic coexistence lines
from NPT MC simulations. Figure 6 shows that the

distribution is a single exponential in the isotropic phase as
expected, while in the nematic phase, it can be still described by
a single-exponential decay, except for short chains, not to say
only monomers at most.
As shown in the inset of Figure 6, the nematic order

parameter Sl for the individual clusters decreases significantly
for short chains, providing evidence that, at coexistence, short
chains behave differently, retaining an orientational distribution
in the nematic phase that is more isotropic (i.e., broader) than
the one of longer chains. Here, Sl has been estimated by
evaluating the largest eigenvalue of the order tensor calculated
for all monomers belonging to clusters of size l.31,55

We observe that, as discussed in Appendix B of ref 56, finite
size effects in the calculation of Sl are not expected if either (i)
Sl > 0.4−0.5 or (ii) the number of monomers, over which the
order tensor is calculated, is larger than ≈10. In our
simulations, Sl is always greater than 0.4 and the number of
considered monomers is always much greater than 10. Hence,
both conditions (i) and (ii) are matched in our case.

■ CONCLUSION
In conclusion, we determined, through a combined SUS and KI
approach, the phase diagram of self-assembling cylinder in the
ϕ versus T plane, the simplest model for describing self-
assembly-driven nematization. We observe the re-entrant
behavior of the nematic volume fraction along coexistence in
the ϕ−M plane, which has been theoretically predicted in ref
32. Our results provide an accurate benchmark for the recent
theoretical studies, pointing out the importance of properly
modeling excluded volume and orientational entropy. They also
provide a reference system for the interpretation of a large class
of biologically relevant aggregation processes in the dense
limit.7,11,17 The non-monotonic (re-entrant) behavior of M
along the nematic boundary ϕN can be accessed via small-angle
static scattering or via measurements of the elastic constants,
which are strongly coupled to M.16
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