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We propose a simple extension of the well known ST2 model for water [F. H. Stillinger and A. Rahman,
J. Chem. Phys. 60, 1545 (1974)] that allows for a continuous modification of the hydrogen-bond angular
flexibility. We show that the bond flexibility affects the relative thermodynamic stability of the liquid and of
the hexagonal (or cubic) ice. On increasing the flexibility, the liquid-liquid critical point, which in the
original ST2 model is located in the no-man’s land (i.e., the region where ice is the thermodynamically
stable phase) progressively moves to a temperature where the liquid is more stable than ice. Our study
definitively proves that the liquid-liquid transition in the ST2 model is a genuine phenomenon, of high
relevance in all tetrahedral network-forming liquids, including water.
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The possibility that a one-component system assumes
(beside the gas phase) more than one disordered condensed
phase is currently highly debated in liquid state physics.
Since the original proposition [1] of a liquid-liquid (LL)
transition in supercooled water (based on a molecular
dynamics study of the ST2 [2] potential), a large literature
body has investigated this topic, suggesting that the micro-
scopic origin of a LL transition must be attributed to the
competition between two local structures, differing in
energy, entropy, and density [3–14]. Still, when and how
the interaction potential between molecules will favor a LL
transition that can be accessed in the absence of crystal-
lization is rather unclear. Only recently an effort has been
made to provide a picture that simultaneously accounts
for the free energy of both the liquid and ordered phases
[15–17], as well as of the kinetic barrier separating them.
The driving force behind this renewed interest in the
physics of LL transitions has been provided by two very
controversial studies from the same group [15,18]. These
studies state that in previous numerical investigations—
including the ST2-based results that originated the LL
transition concept—the low-density liquid phase appearing
below the LL critical point was in reality an ice phase, i.e.,
crystallization was mistaken for a LL transition. Several
following investigations by different groups have disagreed
with this interpretation, providing further support in favor
of the presence of two well-defined distinct liquid phases in
the ST2 model [16,19–22].
The most recent contribution [16] has confirmed that the

free energy basins of the two liquids are well separated
from the crystal one and hence, in principle, both liquid
phases can be explored in metastable equilibrium

conditions. Of course, this requires that the metastable
liquid phases survive without crystallizing for a time longer
than the equilibration time. Although this condition was
verified in Ref. [16], such times can not be calculated by
thermodynamic information only. It is thus worth exploring
the possibility of a definitive proof of the existence of a LL
critical point in the ST2 model that does not require kinetic
information. We present such a proof here by continuously
tuning one of the ST2 model parameters. We show that it is
possible to modulate the relative stability of the liquid and
of the hexagonal (cubic) ice Ih (Ic) such that the melting
temperature of Ih and Ic drops below the LL critical
temperature. Under these conditions, the low-density liquid
is thermodynamically more stable than Ih and Ic, demon-
strating that these two phases are distinct. The results
reported in this Letter not only conclude once and for all
the debate on the existence of a genuine LL transition in
the ST2 model but also provide important clues on the
mechanisms controlling crystal stability in tetrahedral
lattices.
Our study builds on recent investigations of patchy

colloidal particles, interacting via four attractive patches
tetrahedrally located on the particle surface [17,23,24].
Searching for the particle properties favoring the self-
assembly of the technologically relevant diamond lattice
[25], it has been discovered that very flexible bonds
destabilize open crystal phases so much that the liquid
retains its thermodynamic stability even at very low
temperatures [24]. Crystallization is instead favored by
highly directional bonds. In addition, at low-temperature T
these systems can exhibit a LL transition between two
interpenetrating tetrahedrally coordinated networks [17].
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On increasing the bond flexibility the LL transition
becomes thermodynamically stable. These results have
been confirmed in another colloidal model mimicking
DNA constructs with valence 4 [26]. Both colloidal models
are characterized by a very large interparticle softness,
allowing for full network interpenetration [27]. As a result,
the density of the coexisting high-density liquid approx-
imately doubles the density of the low-density liquid phase,
a factor significantly larger than what is expected for water.
This extreme softness casts some doubt on the applicability
of these results to molecular systems and water in particu-
lar. We alleviate these doubts here, supporting once more
the hypothesis that the liquid-liquid transition is a genuine
feature of tetrahedral network forming liquids.
The original ST2 potential envisions a water molecule as

a rigid body: the oxygen atom (O) is located at the center,
while the two protons (H) are located at a distance of 1 Å
from O, forming a fixed ∠ðH;O;HÞ tetrahedral angle. Two
sites [mimicking the lone-pairs (LPs)] are located at
distance 0.8 Å from O, such that the two O-H and the
two O-LP unit vectors form the vertices of a perfect
tetrahedron. The H and LP sites carry an electric charge.
Long-range electrostatic interactions are included via the
reaction field. Complete details of the simulation procedure
are as described in Ref. [1]. For this model, the phase
diagram has recently been evaluated, demonstrating the
stability of Ih and Ic at low temperature and pressure [28],
consistent with the recent observation of Ih and Ic in the
simulation of the ST2 model [29]. We modulate the
flexibility of the hydrogen bonds by allowing the unit
vectors pointing toward the H and LP sites to fluctuate
(with no additional energy cost) with respect to the original
direction, with a maximum angle θmax (see Fig. 1). By
changing θmax it is possible to continuously tune the bond
flexibility. When θmax ¼ 0° the modified model coincides
with the original ST2 model. Apart from θmax ¼ 0°

(cos θmax ¼ 1.0), we explore in detail the cases θmax ¼
8.11° (cosθmax ¼ 0.99) and θmax ¼ 11.5° (cos θmax ¼ 0.98),
and the case θmax ¼ 14° (cos θmax ¼ 0.97). We note that, in
principle, an energy cost to bending could be included in
the model. However, the main effect of this would be to
make the effective bond flexibility temperature dependent,
and we have thus omitted this here.
To provide evidence that on increasing θmax, the

tetrahedral network becomes more and more flexible we
evaluate the ∠ðO;O;OÞ angle distribution P½∠ðO;O;OÞ�
between bonded triplets and the structure factor SðqÞ, at the
lowest T we have been able to equilibrate and at the optimal
network density. Previous studies have shown that the
width of P½∠ðO;O;OÞ� as well as the amplitude of the
prepeak in SðqÞ correlate with bond flexibility [30].
Figure 2 shows that the angular distribution is centered
around the tetrahedral angle but widens on increasing θmax,
indicating the larger number of geometrical arrangements
available for the formation of the network. Simultaneously,
the larger disorder in the network structure decreases the
intensity of the SðqÞ prepeak, in full agreement with results
based on tetrahedral patchy colloids [30].

FIG. 1 (color online). Schematic plot of the ST2 water model
and of the proposed extension to modulate hydrogen-bond
flexibility. Solid lines indicate the position of the H and LP sites
in the rigid original ST2 model. The cones have an angular
amplitude equal to θmax and define the volume limiting the
position of the same sites in the flexible model (dashed lines).
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FIG. 2 (color online). (a) Probability distribution of the
∠ðO;O;OÞ angle for bonded triplets at ρ ¼ 0.90 g=cm3 for
three different values of the flexibility. Note the increase of
the variance of the distribution on increasing flexibility. Two
adjacent water molecules are considered bonded if the O-O
distance is less than 3.2 Å. (b) Oxygen-oxygen structure factors
SðqÞ for the same state points, displaying the effect of the
flexibility on the prepeak.
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To estimate the location of the LL critical point we
perform grand-canonical Monte Carlo simulations for
different T to estimate the probability PðNÞ of finding N
particles in the simulated volume V (8 nm3). By imple-
menting the successive umbrella sampling technique [31],
we have distributed the evaluation of PðNÞ over multiple
processors, each of them evaluating the ratio PðN þ 1Þ=
PðNÞ, for 220 < N < 350. More than 1000 processors
running full time have been dedicated for six months to
these calculations. Close to a second-order critical point,
PðNÞ develops a double peak structure that becomes more
and more pronounced on cooling, signalling the coexist-
ence of phases with different density. During all runs, we
have constantly checked that the number of crystalline

particles (evaluated with the standard algorithms for
detecting ice local structures [23,32]) never exceeded 10
or showed any trend toward growing. The results of these
calculations for different θmax and T are reported in Fig. 3,
spanning the T interval over which PðNÞ crosses from a
single- to a double-peaked function with a peak-to-valley
ratio of around 0.5 [the characteristic value assumed
by PðNÞ at the critical temperature [33] ] down to T where
the two peaks are well resolved, signalling the onset of
a clear free energy barrier between the low-density and
high-density liquids. The estimated location of the critical
temperature TLL

c for the investigated box side (L ¼ 2 nm)
as a function of θmax is shown in Fig. 4. Consistent with
what was previously found for the patchy and DNA
colloidal models, increasing bond flexibility (i.e., increas-
ing θmax) results in lowering TLL

c . Additionally, upon
increasing the flexibility, the critical pressure decreases
and the critical density increases, consistent with the
coupling between bond flexibility and local density.
Indeed, for tetrahedral patchy particles it has been shown
that the density at zero pressure of the fully bonded network
decreases with increasing bond directionality. Similarly,
increasing flexibility results in a network that is much more
easily compressible [30]. Our results suggest that the
coupling between local density, compressibility, and flex-
ibility also affects the critical parameters.
To properly frame the LL transition in terms of the

thermodynamic stability compared to Ih and Ic we evaluate
the free energy of the liquid and of the two ices. To evaluate
the liquid free energy, we perform a thermodynamic
integration from the ideal gas [28]. To evaluate the crystal
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FIG. 3 (color online). Distribution PðNÞ in the number N of
particles populating a volume of 8 nm3 at fixed temperature and
chemical potential μ, for three different bond flexibilities θmax ¼
0∘ (a), θmax ¼ 11:5∘ (b) and θmax ¼ 14∘ (c). This last quantity
controls the average density and it is selected to provide equal
area below the low-density and high-density liquid phases. PðNÞ
evolves from a single-peak to a double peak shape on crossing
TLL
c . The data for (a) are redrawn from Ref. [19].
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FIG. 4 (color online). Dependence of the liquid-liquid critical
point temperature TLL

c on bond flexibility calculated from the free
energy estimate based on successive umbrella sampling simu-
lations. These grand-canonical simulations are performed for a
volume of 8 nm3. The dashed red line indicates Tm, the melting T
for the liquid to Ih and Ic transformation at the critical pressure.
The two insets show, respectively, the critical pressure Pc and the
critical density ρc as a function of θmax.
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free energy we integrate from an Einstein crystal in the
molecular framework [34], extending the method to
account for the flexible arms. For this, we use as a reference
system a thermalized Ih or Ic configuration with at least
20 000 particles to average over proton disorder. For each
molecule in the reference system we define the reference
oxygen position r0, the reference orientation of the dipole
and H-H unit vectors, and the reference orientation of the
O-H and O-LP unit vectors, all in the ideal tetrahedral
geometry. For each particle, the reference Hamiltonian
consists of three parts:

Htrans ¼ λtðjr − r0jÞ2=σ2; ð1Þ

Hrot ¼ λr

�
sin2ϕa þ

�
ϕb

π

�
2
�
; ð2Þ

Harms ¼ λa
X4
i¼1

½1 − cos θi�; ð3Þ

where jr − r0j is the distance between the position of the
oxygen atom in the reference and in the instantaneous
configuration, σ ¼ 1 nm is a convenient length scale, ϕa
and ϕb are, respectively, the angle between the reference
and the instantaneous position of the ideal dipole and H-H
unit vectors, and θi is the angle between the instantaneous
position of the i patch unit vector and the ideal position of
that unit vector. In other words, this is the angle we limit in
our model when specifying θmax.
Monte Carlo moves, preserving the center of mass

position [35], are performed by randomly translating a
molecule, rotating a single patch (which changes only
Harms), or rigidly rotating the water molecule (which
changes only Hrot).
The reference free energy (per particle) of the fully

constrained system (limit of high λ) is (with β ¼ 1=kBT and
kB the Boltzmann constant)

βfref ¼ βftrans þ βfrot þ 4βfarm ð4Þ

with

βftrans ¼ −
1

N
log

��
π

βλt

�
3ðN−1Þ=2

N3=2 V
σ3N

�
; ð5Þ

βfrot ¼ − log ½ ffiffiffi
π

p
=4� þ 3

2
logðβλrÞ; ð6Þ

βfarm ¼ − log
�ð1 − exp½−βλað1 − cos θmaxÞ�Þ

ð1 − cos θmaxÞβλa

�
ð7Þ

≃ logðð1 − cos θmaxÞβλaÞ: ð8Þ

The model free energy f is then calculated following the
methodology described in Ref. [34]. As for the original ST2

model, at all temperatures and for all values of θmax, we find
that Ih and Ic have the same free energies, within our
numerical precision (with an uncertainty in βf of �0.01).
From the free energy and the equation of state we evaluate
the chemical potential βμ ¼ βf þ βP=ρ, where P is the
pressure and ρ is the number density. The main results of
the Letter are reported in Fig. 5, showing the P dependence
of the liquid and Ih and Ic chemical potential at the LL
critical temperature TLL

c . In the case of the original ST2
model (θmax ¼ 0°), βμ of Ih and Ic is always lower than the
liquid one, consistent with the location of TLL

c in the
no-man’s land. On increasing θmax, the relative stability of
Ih and Ic compared to the liquid changes. At θmax ≃ 8°, the
liquid chemical potential is slightly lower than Ih and Ic,
while for θmax ¼ 11.5° at TLL

c the liquid phase has gained a
significant stability compared to the open crystal lattice.
Since the crystal free energy is higher than the liquid one
(already for θmax ≃ 8°) there is no possibility that the low-
density liquid phase in the flexible ST2 model will ever
convert into the Ih and Ic structure. The low-density liquid
phase is, without any ambiguity, a phase by itself,
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FIG. 5 (color online). Pressure P dependence of the reduced
chemical potential βμ for Ih and Ic and for the low- and
high-density liquid phases at TLL

c for (a) θmax ¼ 0° and
(b) θmax ¼ 11.5°. Note that while for θmax ¼ 0° (e.g., for the
original ST2 model) βμ of the liquid phases is higher than the one
of Ih and Ic; the opposite is found already for θmax ¼ 11.5°.
Under these conditions, the liquid is thermodynamically more
stable than Ih and Ic.
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definitively disproving the arguments in Refs. [15,18]. In
an expanded representation of the phase diagram, in which
we include T, P, and θmax, the lines of LL critical points
move with continuity from a condition of metastability with
respect to Ih and Ic to a condition of stability, around
θmax ¼ 8°. This continuity allows us to conclude that the
LL critical point observed in the original ST2 model must
also be genuine. We stress that our study does not aim at
providing a (better or worse) model for water but to
show—with an extremely simple modification to the
ST2 model—that the liquid-liquid transition can be made
thermodynamically stable. For the case of water, the
estimated LL critical point is definitively located in the
region in which ice nucleation in the bulk is dominant.
There, only ingenious experiments in the negative pressure
region of the phase diagram [36,37] or in the low-T glass
phases [6] can provide important clues. Still, our proof
reinforces the idea that the LL transition is a genuine
phenomenon in all tetravalent systems for which a suitable
softness allows for network interpenetration and a suitable
bond flexibility allows for enhanced stability of the liquid
phase(s) compared to open crystal structures.

We thank P. Debenedetti and L. Filion for discussion and
comments.
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