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ABSTRACT: Network interpenetration has been proposed as a mechanism for
generating liquid−liquid phase transitions in one component systems. We introduce
a model of four coordinated particles, which explicitly treats the system as a mixture
of two interacting interpenetrating networks that can freely exchange particles. This
model can be solved within Wertheim’s theory for associating fluids and shows
liquid−liquid phase separations (in addition to the gas−liquid) for a wide range of
model parameters. We find that originating a liquid−liquid transition requires a
small degree of interpenetrability and a preference for intranetwork bonding.
Physically, these requirements can be seen as controlling the softness of the
particle−particle interaction and the bond flexibility, in full agreement with recent
findings [Smallenburg, F.; Filion, L.; Sciortino, F. Nat. Phys. 2014, 10, 653].

■ INTRODUCTION

One of the more controversial topics in liquid-state theory is
the postulated presence (or conversely, lack) of a metastable
liquid−liquid critical point in tetrahedrally coordinated systems,
such as water, silica, silicon, and carbon.1−9 According to this
hypothesis, two different liquid phases differing in density
appear at low temperature T. The existence of such a liquid−
liquid (LL) transition ending in a critical point has been
hypothesized as the reason for many of the thermodynamic
anomalies observed in the liquid phases of these systems,
including extrema in the density, isothermal compressibility,
and isobaric heat capacity. However, spontaneous crystalliza-
tion and slow dynamics in the region where the LL critical
point is expected makes study of this phenomenon very
difficult, both via experiments7,10−13 as well as computer
simulations.14

Over the past decade, patchy-particle models have been used
extensively to study tetrahedral liquids.15−24 These simplified
models have been shown to exhibit behavior that is similar to
molecular and atomic tetrahedrally coordinated liquids. More-
over, a variation on these models displays a thermodynamically
stable liquid−liquid phase transition.21 One of the more
successful theoretical tools for studying liquid states in patchy
systems is Wertheim theory.25−27 This thermodynamic
perturbation theory provides expressions for the free energy
of associating liquids by treating the bonding as a perturbation
on a nonbonding reference system, such as a hard sphere fluid.
As a result, Wertheim theory does not take into account any
changes in the structure of the liquid that result from forming
bonds. Nonetheless, the gas−liquid phase behavior predicted
by Wertheim theory has been shown to be in good agreement
with simulations28,29 and experiments30 in numerous studies.
Unfortunately, as Wertheim theory does not account for bond

stiffness or network interpenetration, the theory does not
normally predict liquid−liquid phase transitions.
In this article, we design a simple model system for

tetrahedrally coordinated liquids that is amenable for study
using Wertheim theory and that can display liquid−liquid
transitions. Our study is highly motivated by the models
described in refs 21 and 31−33 and by previous investigations
that have focused on the liquid−liquid phase transition between
a low-density liquid (LDL) and a high-density liquid
(HDL).1,34 Several attempts to provide a description of the
transition in terms of two competing local structures, differing
in local volume, local entropy, and local energy35−38 have been
reported. In ref 31, network interpenetration was identified as a
key mechanism driving LL phase separation. In contrast to the
LDL, which consists of a single tetrahedral network, the HDL
consists of two (or more) interpenetrating and intertwining
networks of bonded particles. As a result, in the HDL, each
particle has two types of neighbors in its first coordination
shell: particles that it is bonded to (belonging to the same
network) and particles that it is not bonded to (belonging to
the other network). We attempt to incorporate this distinction
in our model.
This article is organized as follows: First, we discuss the

model and Wertheim theory in detail. Next, we calculate phase
diagrams and show that this model predicts liquid−liquid phase
separation for a wide range of parameters. We then investigate
the thermodynamic anomalies, such as extrema in the density,
that occur in the vicinity of the liquid−liquid critical point.
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Subsequently, we take a look at the behavior of the energy as a
function of density, showing a minimum as is characteristic for
tetrahedrally coordinated fluids. Finally, we end with a brief
summary and discussion of our results.

■ MODEL SYSTEM

The thermodynamic perturbation theory developed by
Wertheim25−27 has proven to be an extremely useful tool for
predicting and understanding the phase behavior of patchy
particles24,39−44 in the single bond per patch limit. More
recently, attempts have been put forward for extending the
theory to include multiple bonds per patch.45 In the framework
of the orginal theory, a fluid of patchy particles is treated as a
perturbation on an unbonded reference fluid. Hence, the
Helmholtz free energy per particle f = F/N of a binary mixture
of N particles, at a composition x, and number density ρ is
given by

ρ ρ ρ= +f x T f x T f x T( , , ) ( , , ) ( , , )ref bond (1)

with f ref the reference free energy of a nonbonding system at
the same density and composition, and f bond the bonding free
energy.
The main goal of this work is to design a model for patchy

particles that can be treated by Wertheim theory in such a way
that a liquid−liquid phase transition appears naturally. Building
on the idea of network interpenetration, we design the model in
such a way that two networks can coexist. We label these two
networks A and B and associate the particles in each of the two
networks with species A and B. To allow for the exchange of
particles between the two networks, we impose that particles
can freely switch between species. The interaction between the
particles consists of a hard-core repulsion combined with
attractive patches. With regards to the hard-core repulsion, we
know from earlier work that liquid−liquid phase separation is
favored by systems where unbonded particles can approach
each other more closely than bonded particles.21 Thus, we
choose as our reference system a mixture of hard spheres with a
tunable nonadditivity, so that particles of different species can
partially interpenetrate. Specifically, we assume a symmetric
binary mixture of nonadditive hard spheres, where the distance
of closest approach σij between particles of species i and j is
given by σAA = σBB = σ and σAB = (1 + Δ)σ, with Δ < 0 the
nonadditivity parameter. In designing the patchy attractions, we
differentiate the three possible bonding types (AA, BB, and
AB). Specifically, we assume the same energy scale ϵ for all
three bonding types. However, we require that bonds
preferentially form between particles in the same network, by
selecting different bonding volumes between similar and
dissimilar interactions. This choice is motivated by the analogy
between the present and the model in ref 21. To model the
entropic cost involved in connecting a particle to a particle
outside its own network, the bonding volume for AB bonds

AB is chosen smaller than that for the AA or BB bonds
=( )AA BB . We define α=AB AA. Thus, α ≈ 0 indicates

that only intranetwork bonds are allowed, while α > 0 allows for
an increasing degree of internetwork bonding. As such, α can
be considered a measure for the bond flexibility. In the
following calculations we pick AA = 0.00424σ3. This bonding
volume corresponds in the Kern−Frenkel46 model to an
angular patch width cos θ = 0.9 and an interaction range δ =
0.12σ. Finally, we allow particles to freely switch between

species A and B. This condition is imposed by requiring that
the chemical potential μA = μB.
For the reference free energy, we use the equation of state

developed by Jung et al.,47 which provides the pressure as a
function of the composition and density for −0.5 ≤ Δ ≤ 1 (see
Appendix). This reference system of nonadditive hard spheres
does not exhibit a demixing phase transition at any state point
for the case of negative nonadditivity (Δ ≤ 0) studied in this
work.
The bonding free energy for a binary mixture of particles that

can form up to four bonds is given by25−27,40

∑β = − +
=

f x X X[4 log 2 2]
i A B

i i ibond
, (2)

where xi = Ni/N is the fraction of particles in the system of
species i, and Xi is the probability that a patch on a particle of
species i is unbonded. Following Wertheim, this probability can
be calculated via the law of mass action:

ρσ
=

+ ∑ Δ=

X
x X

1
1i

j A B j j ij
3

, (3)

with

∫
σ

βΔ = ϵ −g r r
1

( )[exp( ) 1]dij ij3
ref

ij (4)

Here, the integral is taken over the bonding volume ij of a pair
of particles of species i and j, and gij

ref(r) is the radial distribution
function of the reference system, i.e., of a mixture of
nonadditive hard spheres at the same density and composition.
Thus, Δij is function of ρ and x. To simplify our calculations, we
approximate this integral by replacing the functional behavior of
the reference radial distribution function by its contact value:

σ
βΔ = ϵ −g (r )[exp( ) 1]ij

ij
ij ij3
ref contact

(5)

For gij
ref(rij

contact), we use a approximation proposed by Hamad48

(see Appendix).
Since particles can freely switch between the A and B species,

at any density ρ, the most stable homogeneous state is the state
that minimizes f(ρ,x) as a function of x. The resulting free
energy, which is solely a function of ρ, is thus given by

ρ ρ=f f x( ) min[ ( , )]
x (6)

We find this minimum numerically, by evaluating f(ρ,x) for a
range of values x ∈ (0,0.5] (note that f(ρ,x) = f(ρ,1 − x) due to
symmetry), and using a numerical minimization algorithm near
each of the compositions that constitute a local minimum in
this grid. Subsequently, the overall lowest free energy is taken.
We note here that the free energy as a function of the
composition is typically well-behaved and shows at most three
minima (two of which are equivalent due to symmetry). As a
result, finding the global minimum is straightforward.
Values of x ≈ 0 indicate that the system is composed of a

single network, while x ≈ 0.5 indicates either two inter-
penetrating networks (when the energy per particle is low) or a
gas of finite-size clusters (when the energy per particle is high).
From f(ρ), gas−liquid and liquid−liquid phase coexistences can
be determined via a standard common tangent construction.
Phase diagrams are calculated by finding the coexistence
densities for a range of temperatures T, at fixed nonadditivity Δ
and flexibility α.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp508788m | J. Phys. Chem. B XXXX, XXX, XXX−XXXB



■ RESULTS AND DISCUSSION

Figure 1a,b shows phase diagrams for α = 0, i.e., no
internetwork bonding, for different negative values of the
nonadditivity parameters Δ. We find that, while for Δ = 0 the
system displays only the standard gas−liquid coexistence, as
soon as some interpenetration is allowed, a new transition
appears, strongly supporting the hypothesis that softness is
essential for establishing network interpenetration. We find that
the gas−liquid critical point and gas−liquid coexistence curves
are roughly independent of Δ. The only effect of the
nonadditivity parameter on the gas−liquid transition is a slight
broadening of the coexistence region at high temperatures and
a slight decrease in the critical temperature Tc

gl. However, the
novel liquid−liquid phase transition is strongly affected by
changing Δ. On decreasing Δ (e.g., increasing |Δ|), the liquid−
liquid coexistence enters the phase diagram from the right
(high density). Decreasing Δ further decreases both the LDL
and HDL densities. However, the LDL coexistence density
decreases much faster than the HDL one. This results in a
broadening of the liquid−liquid coexistence region. Addition-
ally, the LDL−HDL critical temperature Tc

ll decreases upon
increasing Δ. However, the liquid−liquid critical temperature
never drops below the gas−liquid critical temperature Tc

gl in the
range where our reference free energy is valid (Δ ≥ −0.5). A
similar behavior (Tc

ll > Tc
gl) was also observed in a model of

particles in which the isotropic potential consists of an
attractive part and two characteristic short-range repulsive
distances.49 We also find the liquid−liquid coexistence curve to
be skewed to lower densities at high temperature, resulting in a
re-entrant shape. Upon cooling along a constant density line,
the fluid first separates and then returns to an homogeneous
(LDL) phase. Such a re-entrant low density phase has been
recently observed in a model of Janus colloids.50

Figure 1c shows the behavior of the composition along three
different isotherms. At high T we always observe a fluid with

mixed composition (x ≈ 0.5). At low T the composition jumps
from 0.5 in the gas phase, to zero in the LDL (indicating that
this phase is indeed formed by a single network), and back
again to 0.5 in the HDL, where two networks coexist. Note that
in this model, states with complementary compositions x and 1
− x are equivalent, and therefore, the choice of either state
corresponds to a spontaneous symmetry breaking. As shown by
the curves in Figure 1c, the transition from a fully mixed (x =
0.5) to a demixed (x ≠ 0.5) state occurs via a sharp cusp,
indicating a second-order phase transition. When mapped out
for different temperatures, the second-order phase transition
line connects the liquid−liquid critical point to the gas−liquid
coexistence curve, as shown in Figure 1a for Δ = −0.1. We note
here that similar behavior was observed in a mean-field lattice
model for interpenetrating liquids in ref 32 as well as in other
mean-field lattice models with next-nearest neighbor inter-
actions.51

The second-order phase transition line is a line of critical
points associated with the demixing transition in our binary
model system. As a result, the liquid−liquid critical point is
actually a tricritical point in our model, i.e., a point where the A-
rich LDL, B-rich LDL, and HDL phases become indistinguish-
able. This is clearly different from the normal critical point that
occurs in more typical liquid−liquid transitions (e.g., ref 21),
and is a result of the artificial distinction in our model between
A-type and B-type particles. Thus, both the second-order phase
transition line and the tricritical nature of the liquid−liquid
critical point are (as in the case of ref 32) unphysical artifacts of
the model. Hence, for simplicity, we omit the second-order
phase transition lines from the other (ρ−T) phase diagrams.
The presence of both a gas−liquid coexistence and critical

demixing line, as seen in the phase diagram in Figure 1a, is
reminiscent of the behavior of magnetic fluids52,53 and
symmetric binary mixtures of attractive particles.54−57 In both
of those classes of systems, a gas−liquid coexistence competes
with a demixing transition, where the system changes from a

Figure 1. (a) Typical phase diagram for a model with no AB-bonding (α = 0, Δ = −0.1), including the second-order phase transition (orange line),
as a function of the density (ρσ3) and temperature (kBT/ϵ). Coexistence regions are colored gray, and the labels indicate the stable or coexisting
phases. (b) Phase diagrams α = 0 at different nonadditivity parameters Δ as indicated. (c) Composition as a function of density for Δ = −0.2. The
thinner dashed lines indicate regions where the homogeneous fluid is not the most stable phase. In these regions, the lines show the composition of
the most stable homogeneous state at that density.
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homogeneous fluid into a phase separated system of two phases
characterized by either different particle species or different
spin directions. Interestingly, these systems sometimes exhibit a
liquid−liquid phase transition that ends in a tricritical point.
This transition results from the presence of two energy scales,
causing the demixed state to be energetically favored over the
mixed state. In contrast, the phase diagram of the system
studied here, while similar, has two important differences. First,
the liquid−liquid phase transition in our model is associated
with the transition from a demixed fluid to a mixed (x = 0.5)
fluid. Second, the transition is driven by the presence of two
length scales, which causes the demixed state to be entropically
favored over the mixed state.
We now turn our attention to the effect of internetwork

bonding (α) on the phase behavior. In Figure 2, we show phase
diagrams for a range of different values of α, for Δ = −0.075
and −0.125. In both cases, we see a decrease both in the LDL−
HDL coexistence densities and in Tc

ll upon increasing α. In
contrast to the behavior at α = 0 (Figure 1), Tc

ll drops below Tc
gl

for sufficiently high α. Moreover, upon increasing α even
further, the critical temperature Tc

ll eventually decreases down
to zero, and the liquid−liquid coexistence vanishes. This is
accompanied by a narrowing of the coexistence region. For
small degrees of interpenetration, the LDL−HDL transition
always remains separate from the gas−liquid transition. For
larger degrees of interpenetration (see the case Δ = −0.125),
before the liquid−liquid coexistence vanishes, it becomes
metastable with respect to the gas−liquid coexistence. This
results in a sudden broadening of the gas−liquid coexistence
region, as the liquid coexisting with the gas phase is now the
HDL phase. In this case, the coexisting pressure at low T
becomes negative. Additionally, for sufficiently large degrees of
interpenetration and internetwork bonding, the liquid−liquid
transition hits the gas−liquid spinodal, and the liquid−liquid
critical point becomes fully unstable (see Figure 2d).
We note here that for the case of additive hard cores (i.e., Δ

= 0), the liquid−liquid phase transition is absent for any choice
of α. This can be understood by considering that the
nonadditivity serves to favor a mixed (x = 0.5) state at high
densities, where excluded volume effects become important.
Without this nonadditivity, the system demixes upon increasing
the density and never returns to x = 0.5, eliminating the liquid−
liquid coexistence from the phase diagram. Additionally, in this
case, the line of second-order phase transitions (orange line in
Figure 1a) always has a positive slope.
It is now interesting to compare the behavior in Figures 1

and 2 to previous observations made regarding liquid−liquid
phase transitions in tetrahedral liquids. First of all, the present
results confirm that network interpenetration provides a
mechanism for generating a liquid−liquid transition, as
proposed in the original study of DNA tetramers.31−33 A
deeper comparison can be made to the simple tetramer model
recently introduced in ref 21. This model consisted of a hard
spherical core and four spherical arms with tunable flexibility
and length, each decorated with a single attractive patch.
Although not an exact mapping, the arm flexibility can be
compared to the parameter α in our model, as arm flexibility
facilitates internetwork bonding. Similarly, the arm length in ref
21 controls the closest distance of approach for two particles,
analogous to our parameter Δ. For the tetramer model,21 it was
shown that upon increasing the flexibility of the arms Tc

ll

decreases and eventually reaches 0. This is consistent with
the behavior of our Wertheim theory, as shown in Figure 2. In

the tetramer model, the liquid−liquid critical temperature was
shown to decrease sharply with increasing arm length. This
observation is consistent with the decrease in Tc

ll that occurs
with decreasing Δ. Additionally, in ref 21, it was also found that
the density of the liquid−liquid critical point was essentially
independent of the arm length (when measured in the
appropriate units). This is in contrast to the model presented
here, as we observe a clear decrease in critical density upon
decreasing Δ.
In molecular and atomic tetrahedral liquids, the LL critical

point, if present, is expected to occur at significantly lower
temperature than the gas−liquid critical point. Similarly, in the

Figure 2. Phase diagrams at nonadditivity parameters Δ = −0.075 (a)
and Δ = −0.125 (b,c), with α as indicated. For Δ = −0.125, the range
of α is divided up over panels (b), (c), and (d) for clarity. In panels (c)
and (d), the spinodals are drawn as black dotted lines. All tie-lines are
horizontal. The dashed lines indicate metastable liquid−liquid
coexistences.
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tetramer model, Tc
ll was always lower than Tc

gl.21 In the present
model, this only occurs when α is sufficiently high, i.e., when a
sufficient amount of internetwork bonding is possible (see
Figure 2), supporting the idea that flexibility is indeed playing a
role in molecular and atomic tetrahedral liquids.
Finally, we note that the case of a negative pressure critical

point, as is the case for the liquid−liquid transition in Figure 2c,
has been previously proposed as a scenario for silicon.5

For a variety of systems, it has been shown that the presence
of a liquid−liquid critical point can result in thermodynamic
anomalies, which can be detected at temperatures significantly
higher than Tc

ll. In particular, the quantities that diverge at the
critical point have been shown to exhibit lines of extrema that
emanate from the critical point.58−61 Two examples are the
isothermal compressibility KT and the isobaric heat capacity CP.
Moreover, these systems have been shown to exhibit extrema in
the density as a function of temperature as well. In Figure 3, we

plot the extrema in KT, CP, and the density in the (P−T) plane,
together with the gas−liquid and liquid−liquid coexistence
lines, for Δ = −0.125 and α = 0.2. The lines of extrema show
exactly the same trends as those observed for ST2 water59 and
the tetramer model of ref 21. We note that for some choices of
the parameters α and Δ, the presence of the second-order
phase transition interferes with these anomalies. Interestingly,
the liquid−liquid coexistence line shows a negative slope near
the critical point, analogous to ST2 water. A positive slope, as
the one observed in the tetramer model, is recovered at low T.
The striking agreement we see between the diagrams for our
Wertheim theory and ST2 suggest that this simple theoretical
model is largely thermodynamically consistent with realistic
models for water.
We also study the energy as a function of density for a range

of temperatures, with nonadditivity parameter Δ = −0.3 and
flexibility α = 0.1. Note that in this calculation we find the
composition x that minimizes the free energy and determine
the associated potential energy (neglecting for the time being

the possibility of phase-separation). The results for both the
potential energy and the composition are shown in Figure 4.

Similar to previous studies on liquid−liquid phase transitions in
tetrahedral systems, we see a minimum in the energy as a
function of density.62 Looking at the behavior of the
composition, we observe that this minimum always occurs in
the region where demixing takes place, i.e., where the
composition x ≠ 0.5. As alluded to before, we can distinguish
three regimes as a function of density: (i) the gas regime, where
the system consists of many clusters of both species, resulting
in a composition x = 0.5, (ii) the liquid regime, where we see a
predominance of particles of one species (either A or B), and
thus x ≠ 0.5, and (iii) the high-density liquid regime, where the
composition returns to x = 0.5, representing two inter-
penetrating networks. Note that these regimes occur even
above both critical temperatures. In contrast to typical
observations in tetrahedral liquids, the location of the minimum
in the energy is strongly dependent on T. While usually
increasing density is associated with a lowering of the potential
energy (due to the larger number of neighbors within the
interaction range), in tetrahedral systems the increase in local
density can weaken the interactions, due to distortion of the
network, resulting in an optimal density at which U(ρ) has a
minimum.16 Geometric constraints generated by the high
directionality and fixed length of the bonds typically determine
a T-independent optimal density. In the Wertheim approach,
coupling between structure and bonding geometry is missing
and hence such geometric constraints are not effective, resulting
in shift in the minimum of U(ρ) as a function of T. This is
likely also related to the reentrant nature of the liquid−liquid
coexistence curves, such as those in Figures 1 and 2: the density
at which the LDL coexists with the HDL is typically close to the
density where the potential energy is minimized. Thus, the

Figure 3. Phase diagrams in the (T−P) representation at nonadditivity
parameter Δ = −0.125 and flexibility α = 0.2. We show the coexistence
lines as well as the lines of extrema in the density ρ, isothermal
compressibility KT, and isobaric heat capacity CP. The bottom panel is
a close-up of the region where these anomalies are present.

Figure 4. (top) Potential energy per particle U/N as a function of
density ρ for a model with nonadditivity parameter Δ = −0.3 and
flexibility α = 0.1, as a function of the density ρ. Different colors
indicate different temperatures. (bottom) Composition x as a function
of the density ρ for the same model. The dashed lines indicate regions
where the homogeneous fluid is metastable with respect to phase
separation. For this choice of model parameter the critical temper-
atures are kBTc

ll/ϵ ≈ 0.165 and kBTc
ll/ϵ ≈ 0.155.
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LDL coexistence density increases with decreasing temperature,
leading to a reentrant LDL phase, which is absent in more
realistic models of tetrahedral fluids.21,31

In Figure 5, we compare the behavior of the energy as a
function of density for systems with different degrees of

internetwork bonding (i.e., different α). We note that for higher
α the minimum in the energy becomes progressively less
pronounced. This is consistent with the observations in the
tetramer model (see Supporting Information of ref 21), where
the minimum in energy was seen to become less pronounced
with increasing bond flexibility. However, we note again that in
the predictions in Figure 5 there is a noticeable dependence of
the density at which the energy minimum takes place on α,
whereas this was not observed in ref 21.

■ CONCLUSIONS
In conclusion, we have proposed a simple model for liquid−
liquid transitions in tetrahedral fluids, which can be solved
within Wertheim theory. We find good qualitative agreement
between our predictions and previously studied models for
tetrahedral fluids, with the exception of an additional line of
second-order phase transitions. In particular, we predict liquid−
liquid phase separation for a wide range of values of the
interpenetrability of the particles and the internetwork bonding
parameter. Furthermore, our predictions show thermodynamic
anomalies around the liquid−liquid critical point that are
consistent with those observed in other tetrahedral network-
forming models, such as the ST2 model.59 The minimum in
potential energy as a function of density, characteristic of
tetrahedral fluids, is also displayed by our model. However, the
density at which this minimum occurs is strongly dependent on
both the temperature and internetwork bonding parameter.
When specifically comparing our predictions with the

tetramer model studied in ref 21 we see strong parallels
between our internetwork bonding parameter α and the bond
flexibility in the tetramer model. Upon increasing both α and
the flexibility, the liquid−liquid critical temperature decreases
continuously and eventually vanishes. Additionally, higher bond
flexibility and high α both smoothen out the minimum in the
potential energy as a function of the density.
Finally, we note that in the DNA−tetramer investigation31

multiple liquid−liquid transitions were observed when the
length of the DNA arm was sufficiently long to allow for
interpenetration of more than two networks. These multiple
interpenetrations could be modeled by extending the present

model to ternary (or higher order) mixtures within the
Wertheim framework, simply retaining the constraint of equal
chemical potential for all species.

■ APPENDIX: REFERENCE SYSTEM
In this Appendix, we provide the expressions used for the free
energy and the contact value of the radial distribution function
of our reference system; a nonadditive binary hard-sphere
mixture.
To calculate the Helmholtz free energy per particle f ref of a

nonadditive binary mixture of hard spheres, with nonadditivity
parameter Δ, total number density ρ, and composition x, we
use the empirical equation of state determined by Jung et al. in
ref 47. This equation of state expresses the pressure P of the
system as

β
ρ

η η η
η η

= +
− +

− +
P c c

c c
1

4 (1 )
(1 )

1 2
2

3 4
2 3

(7)

where η is a packing fraction defined as

η ρ= B
1
4 2 (8)

with B2 the (analytically known) second virial coefficient of the
binary mixture

π σ= + Δ + Δ + Δ −B x x
3

[2 4 (3 3 ) (1 )]2
3 2

(9)

and σ = σAA = σBB. The ci are functions of Δ and x and are of
the form

= −c c B B3 4 /1 3 3 2
2

(10)

= + Δ + Δ Δ −c f f f x x( ) (1 )2 21 22 23
2

(11)

= + + Δ + Δ Δ −c f f f x x1 ( ) (1 )3 31 32 33
2

(12)

= + Δ + Δ Δ −c f f f x x( ) (1 )4 41 42 43
2

(13)

with

π σ α= + Δ + Δ + −B x x
18

[5 (60 78 32 ) (1 )]3

2
6 2

(14)

The constants f ij were determined from Monte Carlo
simulation results47 and are given by

= = =

= − = − =

= − = =

f f f

f f f

f f f

16.583 227.504 353.879

10.055 5.794 14.826

1.200 54.302 102.365

21 22 23

31 32 33

41 42 43 (15)

This equation of state is accurate for nonadditivity
parameters −0.5 ≤ Δ ≤ 1, at any composition (0 ≤ x ≤ 1)
and in the range of densities where the homogeneous fluid is
stable. Note that for the range of Δ studied here (i.e., Δ ≤ 0),
no demixing transition occurs in the reference system.
Although crystallization at sufficiently high densities is possible,
we ignore this possibility in this work.
To obtain the free energy f ref(ρ,x), we numerically integrate

the equation of state as a function of density, starting from an
ideal-gas reference state:

∫β ρ β ρ β ρ ρ
ρ

ρ= + ′ − ′
′

′
ρ

f x f x
P x

( , ) ( , )
( , )

did 0 2
(16)

Figure 5. Potential energy per particle U/N as a function of the
density ρ for a model with nonadditivity parameter Δ = −0.3 and a
range of internetwork bonding parameters α. For all lines, the
temperature is fixed at kBT/ϵ = 0.13. The dashed lines again indicate
regions where the homogeneous fluid is metastable with respect to
phase separation.
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with the ideal gas free energy given by

β ρ ρ= Λ − + + − −f x x x x x( , ) log 1 log (1 ) log(1 )id
3

(17)

Here Λ is the thermal de Broglie wavelength, which can be
chosen equal to σ for simplicity. Note that the last two terms in
eq 17 denote the mixing entropy.
To determine the contact value of the pair correlation

function gij(σij) (with i,j ∈ {A,B}), we use an approximation
proposed by Hamad (see refs 48 and 63). Specifically, we use

ρ ρσ=g x g( , ) ( )ij ijpure
3

(18)

with

σ
=

∑b
b

x c
ij

k k k ij
d

2

3

;

(19)

Here, b2 = 4 and b3 = 10 are the reduced virial coefficients for a
monodisperse hard-sphere fluid, and the sum is taken over k ∈
{A,B}. The coefficients ck;ij are given by

σ
σ

σ
σ σ= +c

3
2k ij k ij

k ij

ij
i jk j ik; ;

3 ;
2

; ;
(20)

σ σ σ σ≡ + −k ij ik jk ij; (21)
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