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We evaluate the free energy of the fluid and crystal phases for the ST2 potential with reaction field corrections for the
long-range interactions. We estimate the phase coexistence boundaries in the temperature–pressure plane, as well as the
gas–liquid critical point and gas–liquid coexistence conditions. Our study frames the location of the previously identified
liquid–liquid critical point relative to the crystalline phase boundaries, and opens the way for exploring crystal nucleation in
a model where the metastable liquid–liquid critical point is computationally accessible.

Keywords: water models; phase diagrams; computer simulations; free energies

1. Introduction

The thermodynamic behaviour of water at low tempera-
tures is unconventional. Several quantities, e.g. the iso-
baric density ρ, the isothermal compressibility KT, and
the constant-pressure specific heat CP, are characterised
by non-monotonic temperature or pressure dependence [1].
Over the past decades, the anomalous behaviour of these
quantities has attracted the attention of numerous re-
searchers. In 1992, a numerical investigation of the equation
of state (EOS) suggested the presence of a liquid–liquid
(LL) critical point [2] in the ST2 model [3], an interac-
tion potential that describes water as a classical, rigid, and
non-polarisable molecule. The presence of an LL critical
point (LLCP), located in the supercooled region, provides
an elegant explanation of the thermodynamic anomalies
that characterise liquid water and which become more pro-
nounced close to such a critical point [4].

The conceptual novelty of a one-component system
with more than one liquid phase has stimulated the scientific
community to deeply probe the physical origin of this phe-
nomenon [5–13]. It is now clear that an LLCP, while com-
mon in tetrahedral network-forming liquids [14–19], can
also be observed in complex one-component fluids when
the (spherically symmetric) interaction potential generates
two competing length scales [20–23]. In the last few years,
the interest has shifted towards the interplay between the LL
critical point and the crystal nucleation [18,24–27]. Indeed,
in experiments, crystallisation has so far prevented direct
observation of this phenomenon in a one-component bulk
system. Only recently have computer simulations demon-
strated the possibility of generating a thermodynamically
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stable LL critical point (as opposed to a metastable one) in
models of network-forming liquids [18,19].

Accurate information on the phase coexistence bound-
aries between disordered and ordered phases is relevant not
only to establish the thermodynamic fields of stability of
the different phases, but also as a reference for estimat-
ing when the liquid becomes metastable. In turn, this has
relevance for estimating when the barrier to crystallisation
becomes finite and how rapidly the barrier decreases on
supercooling [28]. Except for one early report focussing on
the liquid–ice Ih boundary [29], none of the coexistence
lines between the gas, liquid, and the many phases of crys-
talline ice have been accurately determined for the ST2
model. In this article, we fill this gap and evaluate these
coexistence boundaries by calculating the fluid chemical
potential (via thermodynamic integration) and the crystal
chemical potential (via the Frenkel–Ladd method [30], ex-
tended to molecules [31]). We test several crystals (ice Ih,
Ic, II, III, VI, VII, and VIII) and find that in the region
of pressure where thermodynamic anomalies appear (e.g.
near the lines of maxima of CP and KT) ice Ih and Ic have
the same free energy within our numerical precision. Un-
expectedly, we discover that for the ST2 model, on increas-
ing pressure, the stable phase is a dense tetragonal crystal
with a partial proton order. This structure has a free energy
about 0.4 kBT lower than ice VII, the structure obtained
by interspersing two Ic lattices (here, T is the temperature
and kB is the Boltzmann constant). We also evaluate the
(metastable) line of coexistence for the recently reported
ice 0 lattice [32,33], a structure which could act (according
to the Ostwald rule) as the intermediate phase in the process

C© 2015 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

7:
37

 2
2 

M
ay

 2
01

5 

http://dx.doi.org/10.1080/00268976.2015.1043966
mailto:f.smallenburg@gmail.com
mailto:Frank.Smallenburg@uni-duesseldorf.de


2 F. Smallenburg et al.

of nucleating the stable ice Ih/c crystal from the fluid. For
completeness, we determine the location of the gas–liquid
critical point, which is found to be at Tc = 558.0 ± 0.3K
and ρc = 0.265 ± 0.005 g/cm3.

2. Model and simulation methods

We study, via Monte Carlo (MC) simulations, the origi-
nal ST2 potential as defined by Rahman and Stillinger [3],
with reaction field corrections to approximate the long-
range contributions to the electrostatic interactions. ST2
models water as a rigid body with an oxygen atom at the
centre and four charges q = ±0.4e (where e is the elec-
tron charge), two positive and two negative, in a tetrahedral
geometry. The distances from the oxygen to the positive
and negative charges are 0.1 and 0.08 nm, respectively.
The oxygen–oxygen interaction is modelled via a standard
Lennard-Jones potential truncated at 2.5σ LJ, with σ LJ =
0.31 nm and εLJ = 0.31694 kJ/mol. The Lennard-Jones
residual interactions are handled through standard long-
range corrections, i.e. by assuming that the radial distribu-
tion function is unity beyond the cutoff. The charge–charge
interactions are smoothly switched off both at small and
large distances via a tapering function, as in the original
model [3]. Complete details of the simulation procedure
are as described in Ref. [2]. In the following, we use σ = 1
nm as the unit of length.

2.1. Thermodynamic integration: fluid free
energy

To evaluate the fluid free energy, we perform a thermody-
namic integration along a path of constant reference density
ρref for a modified pair potential,

V = min(VST2, 200 kJ/mol). (1)

This potential coincides with the ST2 potential for all
intermolecular distances and orientations where VST2 <

200 kJ/mol, and is constant and equal to 200 kJ/mol
otherwise. Note that in the temperature range where we
investigate the phase behaviour, molecules never approach
close enough to reach this limit. In this way, the diver-
gence of the potential energy for configurations in which
some intermolecular separations vanish (which would oth-
erwise be probed at very high temperatures) is eliminated
and the infinite temperature limit is properly approximated
by an ideal gas of molecules at the same density.

The fluid free energy (per particle) is calculated as

βf fluid
ST2 (β, ρref ) = βfig(β, ρref ) +

∫ β

0
〈V (β, ρref )〉 dβ,

(2)

where β = 1/kBT and βfig(β, ρ) = log (ρnσ
3) − 1 is the ideal

gas free energy and ρn is the number density. Figure 1 shows
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Figure 1. Average pair potential energy 〈V〉 vs. (RT)−1 at ρ = 1.0
g/cm3 (with R the ideal gas constant). Symbols are MC data, and
the line is the spline function used in the numerical integration.
The inset shows the same data as a function of T and compares
them to previously published data for the ST2 potential [34].

the average modified pair potential energy 〈V(β, ρ)〉 and the
interpolating (spline) continuous curve used to numerically
evaluate the integral. The free energy at different densities
along a constant-T path is evaluated via thermodynamic
integration of the EOS.

βf fluid
ST2 (T , ρn) = βf fluid

ST2 (T , ρn,ref ) +
∫ ρn

ρn,ref

βP (ρ ′
n)

ρ ′
n

d ln(ρ ′
n),

(3)

where P(ρn) is the EOS for the pressure P at fixed T.

2.2. Crystal free energy

To evaluate the free energy of a selected crystalline struc-
ture, we follow the methodology reviewed in Ref. [31]. We
define an Einstein crystal in which each molecule inter-
acts, in addition to the ST2 potential, with a Hamiltonian,
composed of a translational (Htrans) and a rotational (Hrot)
part, that attaches each molecule to a reference position and
orientation. For each particle, we define two unit vectors:
the (normalised) HH vector and the dipole vector, named
respectively �a and �b. The reference configuration is defined
by the reference position of the oxygen atom r0 and the
reference position of �a and �b [31,35]. In the following, we
indicate with r − r0 the displacement of a particle located
at r from its reference position, and with φa and φb the
angles between �a and �b and their reference values. More
precisely,

HEinstein = Htrans + Hrot, (4)

with

Htrans = λt (r − r0)2/σ 2 (5)
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Molecular Physics 3

Table 1. Free energy βf of the fluid and crystal phases at selected points. The value for the residual entropy in βf6 was taken from
Ref. [38]. The columns marked βfi indicate the various contributions from the crystal free energy calculation. For the fluid, we used
thermodynamic integration from an ideal gas at constant density, as explained in the text. Note that the ice III crystal listed here is
proton-ordered.

T (K) ρ (g/cm3) N λr (kJ/mol) λt (kJ/mol) βf βf1 βf2 βf3 + βf4 βf5 βf6

Ice Ih 270 0.8715 21952 3 · 104 3 · 106 −8.829 19.440 15.064 −19.640 −23.282 −0.410
Ice Ic 270 0.8715 21952 3 · 104 3 · 106 −8.829 19.440 15.064 −19.658 −23.264 −0.410
Ice II 230 1.16291 9216 3 · 104 3 · 106 −11.649 19.678 15.305 −19.821 −26.811 0
Ice III 230 1.16756 6144 3 · 104 3 · 106 −11.699 19.677 15.305 −20.0548 −26.626 0
Ice VI 250 1.27356 8100 3 · 104 3 · 106 −10.772 19.678 15.305 −20.349 −25.996 −0.410
Ice VII 270 1.5804 21296 3 · 104 3 · 106 −8.230 19.440 15.064 −19.318 −23.006 −0.410
Ice VII∗ 270 1.6250 6912 3 · 104 3 · 106 −8.59 19.440 15.064 −19.112 −23.567 −0.410
Ice VIII 270 1.55645 1152 3 · 104 3 · 106 −6.852 19.4185 15.064 −19.061 −22.274 0
Ice 0 250 0.8494 29160 3 · 104 3 · 106 −10.399 19.555 15.180 −19.983 −24.741 −0.410
Fluid 270 1.002 268 — — −8.4411 — — — — —

and

Hrot = λr

[
sin2 φa +

(
φb

π

)2
]

. (6)

Here, λt and λr indicate the strength of the coupling to the
reference configuration. Again following Ref. [31], the free
energy (per particle) of a crystal structure fxt, in the limit of
large λr and λt is calculated as

βf xt = βf1 + βf2 + βf3 + βf4 + βf5 + βf6, (7)

where indicating with N the number of molecules in the
system,

βf1 = − 1

N
ln

[(
π

βλt

) 3(N−1)
2

N
3
2

1

ρnσ 3

]

βf2 = − ln

√
π

4
+ 1.5 ln(βλr )

βf3 =
∫ λt

0
〈βHtrans〉λ d ln λ

βf4 =
∫ λr

0
〈βHrot〉λ d ln λ

βf5 = −
ln

〈
e−βVST2

〉
λr ,λt

N

βf6 =
{

ln[1.5] (full proton-disordered crystal)
0 (proton-ordered crystal).

(8)

The symbols 〈Hrot〉λ and 〈Htrans〉λ indicate the average val-
ues of Hrot and Htrans calculated from an MC simulation of
particles interacting via the ST2 potential complemented
by HEinstein. The symbol

〈
e−βVST2

〉
λr ,λt

indicates the aver-

age value of e−βVST2 (where VST2 is the system ST2 poten-
tial energy) in a simulation in which the particles interact
with each other via the ST2 potential and with the Einstein

Hamiltonian with values λr and λt. In all simulations car-
ried out to perform the integration, the centre of mass of
the system is kept fixed [36].

Finally, βf6 indicates the contribution of proton disor-
der, evaluated according to Pauling’s estimate [37]. More
recent calculations have essentially confirmed Pauling’s
value [38].

Table 1 reports the values of βfj for a few representative
cases.

2.3. Grand canonical simulation: gas–liquid
phase coexistence

To evaluate the gas–liquid coexistence and the location of
the gas–liquid critical point, we perform grand-canonical
MC simulations to evaluate at fixed T, volume v, and chem-
ical potential μ, the probability p of observing N particles
in the simulated volume. To overcome the large free-energy
barriers separating the gas and liquid phases, we implement
the successive umbrella sampling (SUS) technique [39].
Since this method has been applied previously to ST2 [40]
to estimate the LL coexistence conditions, and has been
documented in detail in these works, we refer the interested
reader to the original literature.

2.4. Proton position in the crystal structures

To generate proton-disordered crystals, such as ice Ih/c and
ice VII, one needs to assign protons to the oxygens, located
at the lattice positions, so as to satisfy the ice rules. To this
end, we first calculate a list of all bonded oxygen neighbours
(where four bonds connect to each oxygen atom) and then
decorate the oxygen lattice by assigning the proton for each
bond to one of the two bonded atoms, iterating the following
procedure: (1) Randomly select one oxygen with less than
two hydrogens and one of the remaining undecorated bonds
emanating from the selected oxygen. (2) Randomly follow
the path of undecorated bonds until the path loops back to
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Figure 2. Size effects associated with proton disorder in configu-
rations with zero net dipole moment: relation between the average
pressure and the average energy of different proton-disordered
configurations, for different number N of molecules. For all cases,
the structure is ice Ic at T = 270 K and ρ = 0.8715 g/cm3. The
inset shows the average pressure in different proton-disordered
configurations for different number of molecules.

the original oxygen. (3) Decorate all bonds of the selected
path with one proton each, associating the protons to the
oxygens encountered in the path. The procedure is iterated
until all oxygens have two protons associated with them.
Paths in which the initial and final oxygen atoms coincide
only via periodic images produce a non-zero dipole moment
and should be rejected if the net dipole moment of the cell
is to vanish.

To account for all possible proton realisations, one
needs to investigate large systems or average over several
configurations. Indeed, we find that there is a significant
correlation between the proton realisation and the average
potential energy E and the average pressure P (at constant
volume). Figure 2 correlates P and E for each realisation,
while the inset shows P in different realisations for system
sizes from N = 512 to N = 21, 952 molecules. Only for 8000
or more particles is the variance between different realisa-
tions within a few MPa and a 10th of a kJ/mol, the tolerance
required to allow for a precise determination of the thermo-
dynamic variables entering into the free-energy calcula-
tion. Unless otherwise stated, we have analysed configura-
tions with 8000 or more particles for all proton-disordered
crystals.

3. Results

3.1. Gas–liquid coexistence

Figure 3 shows the results of the SUS calculations. Panel
(a) shows the probability p of finding N particles at fixed T
and v at the coexistence chemical potential μc for different
T. μc is evaluated by reweighting the histogram p(N) with
respect to N, such that the area below the gas and the liquid

peak is identical (0.5). At low T, the probability minimum
separating the two phases is more than 50 orders of magni-
tude lower than the peak heights, highlighting the need for
a numerical technique (like SUS) that allows the observa-
tion of rare states. Close to the critical point [panel (b)], the
probability of exploring intermediate densities between the
gas and the liquid becomes significant and p(N) [or p(ρ)]
assumes the characteristic shape typical of all systems be-
longing to the same universality class. Panel (c) compares
p(N + sE), where E is the potential energy of the config-
uration and s is the so-called mixing field parameter [41],
with the theoretical expression for the magnetisation in the
Ising model. To reinforce the identification of the critical
point with the Ising universality class, the inset shows the
finite size scaling of the critical T (defined as the T, for each
size, at which the fluctuations in N + sE are best fitted with
the Ising form) as a function of L(1 + θ)/ν = L−2.448, with
θ = 0.54 and ν = 0.630 [42,43]. The extrapolation to L →
∞ suggests that the gas–liquid critical point for the reaction
field ST2 model is Tc = 558.0 ± 0.3 K and ρc = 0.265 ±
0.005 g/cm3. Finally, panel (d) shows the gas–liquid coex-
istence in the ρ − T plane. A clear nose appears around
T = 300 K, signalling the onset of the network of hydrogen
bonds (HB). Indeed, strong directional interactions (such
as the HB), impose a strong coupling between density and
energy. The formation of a fully bonded tetrahedral network
(the expected thermodynamically stable state at low T) re-
quires a well-defined minimum local density, which for the
present model is approximately ρ = 0.8 g/cm3. Hence, at
low T, the density of the network coexisting with the gas
must approach this value. For completeness, the inset in
panel (d) reports the value of βμc along the coexistence line.

3.2. Fluid–crystal coexistence

We have investigated the stability of crystal phases that
may coexist with the fluid at low T. In particular, we have
determined the free energies of ices Ic, Ih, II, III, VI, VII,
and VIII, as well as the recently proposed metastable ice 0
structure [32]. Note that with the exception of ice VIII, all
these phases have disordered hydrogen bonding. Examples
of our thermodynamic integration results are reported in
Figure 4, where we plot the reduced chemical potential
βμ ≡ βf + βP/ρn of different phases at two selected T.
For each pressure interval, the lowest chemical potential
phase is the thermodynamically stable one. Intersections of
different curves locate coexistence points, either stable or
metastable. We then interpolate the fluid and crystal free
energies based on the EOS to draw the coexistence lines in
the phase diagram.

The complete phase diagram is reported in Figure 5. At
low T and low P, the most stable crystal structure is the ice
I lattice. From our simulations, the cubic (Ic) and hexag-
onal (Ih) ice structures have the same free energy within
our numerical accuracy. At positive pressures, the liquid
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Figure 3. Gas–liquid coexistence for the ST2 model. (a) Distribution of the density fluctuations in gas–liquid coexisting states for
different T for system size L = 2 nm. (b) Same data as in (a) but for T close to the critical temperature Tc and for L = 6 nm. (c) Comparison
of the fluctuation in the order parameter x (a linear combination of N and E) with the theoretical expression for the three-dimension Ising
model. The inset shows the finite size scaling of the critical temperature. (d) Resulting gas–liquid phase diagram in the T − ρ plane. The
inset shows the values of the chemical potential along the coexistence.

phase coexisting with ice I is always denser than ice, and
as a result, the melting temperature of ice I decreases with
increasing P. At negative P (near P = −80 MPa), the ice
I and liquid phases coexist at the same density, and the
melting temperature reaches a maximum. We note that we

have confirmed the ice Ih/c melting temperature calculated
via thermodynamic integration at two separate pressures
using direct coexistence simulations, and find good agree-
ment. We note that for the ST2–Ewald model, the melting
temperature of Ic at the single pressure of 260 MPa was

-100 0 100 200 300 400 500 600
P [MPa]

-10

-8

-6

-4

-2

βμ

Liquid
Ice 0
Ice Ih/c
Ice II
Ice III
Ice VII
Ice VII*

T = 270K (a)
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βμ

Liquid
Ice Ih/c
Ice VII
Ice VII*

T = 300K
(b)

Figure 4. Reduced chemical potential βμ as a function of pressure P for competing phases at T = 270 K and T= 300 K. At each pressure,
the phase with the lowest chemical potential is the stable one. Crossings indicate (metastable or stable) phase transitions. Note that the ice
III phase in (a) is proton-ordered.
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6 F. Smallenburg et al.

Figure 5. (a) Pressure–temperature phase diagram for the ST2 model with reaction field. In this P–T region, the stable phases are the
ice VII∗, cubic or hexagonal ice (ice Ih/c), gas, and liquid. The thick lines indicate phase boundaries between stable phases, while the
thinner lines denote metastable phase transitions. The full circle indicates the location of the liquid–liquid critical point and its error
bars, as estimated in Ref. [44]. (b) Temperature–density representation of the same phase diagram. White regions indicate two-phase
coexistence. Filled regions indicate areas of one-phase stability for the different phases. Solid lines indicate coexistence densities. Note that
the one-phase stability field of ice Ih/c is centred on the optimal crystal density and is very narrow, comparable in width to the coexistence
lines. Horizontal dotted lines correspond to triple points. We use the same colour-coding as in (a). The blue dots indicate the coexisting
densities of the low- and high-density liquids, from Ref. [40]. The red square is the estimated location of the LL critical point.

estimated to be around 274 K, consistent with the present
estimate [25].

At high pressure, the main candidate structures are the
proton-ordered ice VIII structure, and the proton-disordered
ice VII structure. Both structures consist of two interpene-
trating Ic lattices (somewhat distorted in the case of proton-
ordering), where the oxygen positions form a body-centered
cubic (BCC) lattice. According to our free-energy calcula-
tions, the disordered ice VII is the more stable one in the
region where coexistence with the fluid might occur. How-
ever, when trying to confirm the accuracy of our predicted
liquid–ice VII coexistences using direct coexistence simu-
lations, we observed crystal growth at temperatures signif-
icantly above the melting temperature predicted from free-
energy calculations. The newly grown parts of the crystal
still display the BCC topology of the oxygen atoms, but the
crystal shrinks by a few per cent in the direction perpendic-
ular to the growth direction, leading to a slight distortion of
the lattice, that we refer to in the following as ice VII∗. As
this distortion does not occur in fully disordered ice VII,
we attribute the unexpectedly high stability of the ice VII∗

lattice to the emergence of partial proton ordering, which
decreases the crystal free energy. To confirm this, we cre-
ated a fully regrown ice VII∗ configuration by alternately
melting and regrowing the two halves of an ice VII config-
uration in an elongated simulation box. When measuring
the proton–proton and dipole–dipole correlation functions
for both the original ice VII structure and the regrown ice
VII∗, we see only minor changes in the proton–proton cor-
relation function in the region 3 Å<r < 4 Å (see Fig-

ure 6(a)). In contrast, the dipole–dipole correlation func-
tion (see Figure 6(b)) shows significant additional signal
which although weak, extends up to long spatial scales. Us-
ing the Frenkel–Ladd method, we calculate the free energy
of this configuration (assuming full proton disorder), and
find that it is indeed lower than that of the original crystal
by ≈0.4˜kBT per particle, confirming that the lower melting
temperature observed in our direct coexistence simulations
can be attributed to the (slight) change in crystal structure.
The difference in free energy mainly results from the lower
potential energy of the regrown crystal. We note here that
partial proton ordering would reduce the contribution of the
residual entropy to the free energy of the crystal, causing
us to underestimate the ice VII∗ free energy. On the other
hand, the presence of defects in the system is expected to
cause an overestimate in the crystal free energy. It is thus
not a priori obvious that this free energy can be used to
predict coexistences. Nonetheless, comparing the melting
temperature predicted from the free energy and equations
of state of the regrown crystal with the melting temperature
taken from the direct coexistence simulations, we find good
agreement (T ≈ 320K ± 5K at P = 250 MPa). Calculat-
ing the rest of the coexistence lines for this crystal using
thermodynamic integration, we observe that ice VII∗ has a
significantly larger stability region than the original ice VII
(see Figure 5).

We note that ices II, III, VI, and 0 are never the most ther-
modynamically stable phase in the investigated region. For
ice III, we checked the stability of both the proton-ordered
and fully proton-disordered version, but neither version was
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Figure 6. (a) Radial distribution function and (b) dipole–dipole
correlation function for the fully proton-disordered ice VII struc-
ture and the regrown ice VII∗ crystal, at ρ = 1.673 g/cm3, in the
inherent structure. Note the slight extra correlation in gHH(r) and
gdip-dip(r) in the region 2 Å < r < 4 Å.

found to be stable with respect to ices I and VII∗. In fact,
even shifting the free energy of proton-ordered ice III by
the full residual entropy associated with full proton disor-
der does not stabilise the crystal, indicating that a partially
ordered ice III (as occurs in real water) would not be stable
either. As it may be relevant in future nucleation studies,
we include the metastable coexistence line of the liquid
with ice 0 in the phase diagram (Figure 5). We note that in
the investigated temperature range, ices II and III are more
stable than ice 0 only at pressures above approximately
300 MPa.

4. Conclusions

Recently, the ST2 potential has been at the centre of re-
newed interest in connection to the debate on the origin of
the LL critical point [1,45–49]. This model exhibits known
deficiencies in accurately modelling water properties, e.g.
it overemphasises the tetrahedrality of the liquid structure,
thus shifting all water anomalies to higher temperatures.
Despite these deficiencies, the ST2 model plays a key role

as a prototype system in many studies related to the pres-
ence of an LL critical point. We report here fundamental
properties of the ST2 model, by evaluating the location of
the gas–liquid critical point and the gas–liquid coexistence
curve, as well as the coexistence lines between the liquid
and several crystal structures, allowing us to map out the
phase diagram of the ST2 model in the low-temperature
regime. We find a stable ice I phase at low pressure and
temperature, with both the hexagonal and cubic stackings
approximately equal in free energy. Differently from real
water, the high-pressure phase behaviour of the model is
dominated by a new crystal whose growth is templated
by the ice VII interface. This ice VII∗ tetragonal crystal
is composed of a lattice in which the oxygens have the
same topology as ice VII but in which the protons are not
completely randomly distributed. We have not been able to
identify a small unit cell for this new crystal, but inspec-
tion of the HH radial distribution function indicates minute
but observable differences in the region around 3.3 Å, ac-
companied by weak but long-ranged correlations in the
dipole–dipole correlation function. This structure, despite
the small partial proton order, has a significant lower po-
tential energy than VII (approximately 1.2 kJ/mol). As a
result, ice VII∗ is significantly more stable than the fully
proton-disordered ice VII phase at all pressures and it dom-
inates the high-pressure phase behaviour of the model. The
LL critical point for this model lies, according to the most
recent estimates, inside the region of stability of the ice VII∗

crystal phase and is metastable with respect to ice Ih or Ic

as well as to ice VII. Our results provide a starting point for
the study of nucleation in the ST2 model, as well as for the
exploration of modifications to the model [50] that could
make the LL critical point more accessible [18].
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