
Summary. — In this brief contribution we review the basic elements of self-
assembly, calling attention on the competition between the energetic gain of forming
a bond and the loss of translational entropy. We show how to calculate theoretically
the distribution of cluster sizes, in the hypothesis of an ideal gas of cluster, and dis-
cuss how the cluster partition functions can be calculated numerically. Building on
the thermodynamic formalism, we discuss some analytically soluble simple models
of self-assembly: equilibrium and cooperative polymerization and micelle formation.
Finally, we discuss the importance of directional interactions for self-assembly, its
role in the bonding entropy reduction, in the suppression of the driving force for
phase-separation and in the possibility of forming aggregates that do not expose
attractive surfaces, thus minimizing inter-cluster attractive interactions.
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The tendency of a system to spontaneously reach a well-defined structure is often

named ”self-assembly” [1]. Originally used in biology to describe the process that leads

to the self organization of proteins into complex aggregates (like virus capsides), the word

self-assembly has progressively permeated physics, chemistry and material science, be-

coming almost a substitute (despite its equivalence) for the more precise thermodynamic

term, the minimization of the system free energy on going from a collection of disordered

particles to the final (possibly ordered) structure. Crystallization of a metastable fluid

can be properly considered as a well-known example of self-assembly.

While the search for a minimum free energy state is ubiquitous, the word self-assembly,

especially in the context used in this school, is commonly limited to the case in which

the final structure is composed by (often ordered) aggregates of finite size [2]: Micelles,

vesicles, filaments, ribbons, self-assembling spontaneously under the appropriate external

conditions (density, temperature, salt concentration, pH and so on).

Given the generality of the concept, a lecture on self-assembly can take an enormous

number of directions (some of which are presented in details by the school lecturers). Here

we will limit myself to some general consideration on self-assembly of one-component

systems into finite size aggregates, and more specifically on its thermodynamic basis.

Specifically, we will focus on particles whose interaction energy scale is indicated by ε

and whose interaction range is indicated by ∆. We will use the generic word ”particle”,

which according to the context can refer to an atom, a molecule, a macromolecule, a

colloidal particle.

To exploit self-assembly into finite size structures it is fundamental to develop a ther-

modynamic description of the clustering process, highlighting the role of the bonding

volume compared to the volume per particle and the bonding energy. The competition

between the entropic driving force disfavouring self-assembly and the energetic (or en-
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thalpic) driving force favouring the formation of low energy aggregates is at the heart of

self-assembly. In the following, beside reviewing the thermodynamic approach, we will

discuss some general aspects: (i) the need of operating at low kBT (compared to ε ); (ii)

the need of directional attractive interactions (or alternatively of highly non-monotonic

interaction potentials); (iii) the need to suppress collective phenomena (competition with

crystallization and phase separation). Other important aspects of self assembly, such as

how to predict the structure of the aggregate from the knowledge of the interaction

potential (direct), how to design the interaction potential to spontaneously assemble a

desired structure (inverse) and how external fields can be exploited to modify the routes

toward the assembly of ordered structured are discussed in more detail in other chapters.

1. – Thermodynamic description of the clustering process

The first step in the description of an aggregation process is the definition of the

aggregate (or cluster). A cluster is commonly defined as the set of all particles mutually

connected (e.g. via a continuous path of bonds). Hence, the definition of a cluster

as an entity requires preliminarly the definition of ”bond” between particles. In most

of the cases, bonding can be defined geometrically or energetically. For example, two

particles can be considered bonded if they are closer than a bonding distance and with a

proper relative orientation or if their pair interaction energy is smaller than a threshold.

In the case of square-well like interactions, a clear-cut definition of bond is provided

by the relative energy of the two particles: If such energy is the square-well depth −ε
a bond exists. Thus, differently from extended infinite size aggregates — which can

be stabilized also by repulsive interactions (as in the paradigmatic case of hard-sphere

crystallization) — the formation of a stable aggregate of finite size requires attraction

between the participating particles. For simplicity, we will assume generic interaction

potentials to highlight the relative role of the interaction range (bonding volume) and

of the interaction strength. The simplest case is the square-well potential. In this case

a ”bond” of strength ε > 0 sets in when the distance between two particles is within

σ and σ + ∆ (being σ the characteristic particle size). The values of ∆ and ε enter in

the evaluation of the partition function of the system (and hence in the free energy)

determining the temperature T and density ρ conditions under which bonding becomes

statistically relevant. Typically, ∆ is a fraction of σ (as it is discuss later on, larger ∆

values do not allow for self-assembly of finite size clusters).

The thermodynamic description of an aggregating system significantly simplifies if

the hypothesis that clusters do not significantly interact among themselves is satisfied

(e.g. in the case in which the dominant contribution is excluded volume and the system

packing fraction is small, so that clusters can be considered isolated). In this ”ideal gas of

cluster” approximation, the canonical partition function a system composed by clusters

differing in the number n of bonded monomers, in the NV T ensemble (where N is the

total number of monomers) can be written as [3]
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Q =

∞∏
n=1

QNn
n

Nn!
(1)

where Qn is the partition function of the n-cluster and Nn is the number of clusters of

size n in the system. For spherical particles interacting with isotropic potentials

Qn =
1

n!λ3n

∫ ′

dr1....drN exp [−βV (r1, r2, ..., rN)](2)

where the ′ sign in the integration limits indicates that only points in phase space

dr1....drN for which the cluster does not break into disconnected smaller clusters should

be considered.

For the monomer (assumed as a spherical rigid body, e.g. no internal fluctuations)

Q1 =
V

λ3
.(3)

For directional interactions, one needs to integrate over all Euler angles of the particles

Ωj and the partition function becomes

Qn =
1

n!λ3n

∫ ′

dr1....drNdΩ1...dΩn exp [−βV (r1, r2, ..., rN,Ω1, ....Ωn)](4)

where now λ includes the rotational component of the integral over the kinetic energy. In

these cases it is convenient to redefine Λ3 = λ3/
∫
dΩ1 and define a spherically averaged

partition function

Qn =
1

n!Λ3n

∫ ′

dr1....drNdΩ1...dΩn exp−βV (r1, r2, ..., rN,Ω1, ....Ωn)∫
dΩ1...dΩn

(5)

The Helmholtz free energy F , the logarithm of the partition function, is then given

by

βF = − lnQ = −
∞∑
n=1

(Nn lnQn −Nn lnNn +Nn) =

∞∑
n=1

Nn (lnQn − lnNn + 1)(6)

The cluster size distribution Nn is still undefined. To evaluate it, we require the free

energy to be a minimum respect to all possible variation of Nn. Still, we must satisfy the

constraint
∑
n nNn = N . Introducing a Lagrange multiplier α to include the constraint

we write
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∂(βF + α
∑
k kNk)

∂Nn
= 0(7)

which gives

ln
Nn
Qn
− nα = 0(8)

or

Nn = Qn(expα)n.(9)

Since N1 = Q1 expα, eq. (9) can be written as

Nn = Qn
Nn

1

Qn1
= Qn(ρ1Λ3)n(10)

where ρ1 is the monomer number density. This expression is particularly informative,

since it shows that the probability of observing an aggregate of size n is proportional to

the strength of the partition function Qn, often defined as

Qn = e−βfn(11)

so that

Nn
N

= Qn
Nn

1 N
n−1

NnQn1
=

(
N1

N

)n
exp [−(βfn + lnN) + n(βf1 + lnN)](12)

Knowing the cluster size distribution is now possible to write a close expression for

the system free energy in the ideal gas of cluster approximation as

βF = −
∞∑
n=1

(
Nn lnQn −Nn lnQn

Nn
1

Qn1
+Nn

)
= −

∞∑
n=1

(
nNn ln

N1

Q1
+Nn

)
= N lnN1/Q1−Nc

(13)

where Nc is the total number of clusters in the system. Considering that lnN1/Q1 is

the chemical potential of the monomer in the ideal gas approximation, βF can be written

as

βF = Nβµ−Nc(14)

It is interesting to note that, being an ideal gas, the pressure is proportional to the

number of clusters (Nc = βPV ) and that the monomer concentration (which fixes the

value of µ) and the total number of clusters are the only pieces of information needed to

write down the free energy.
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2. – The need of low temperatures (compared to the bonding energy)

Before applying the previously derived formalism, it is useful to comment on the

conditions which allow clusters to form for a very simple case in which we limit ourselves

for simplicity to monomers and dimers. The formation of a dimer (e.g. the formation

of a bond between two monomers) is proportional to Q2. For a square-well interaction

potential

Q2 =
1

2!Λ6

∫ ′

dr1dr2 exp [−βV (r1, r2)] =
V

2!Λ6
exp (βε)

4π

3
[(σ + ∆)3 − σ3](15)

Defining Vb as the volume that allow for a bond (e.g. Vb = 4π
3 [(σ + ∆)3 − σ3])

N2 = Qn(ρ1Λ3)2 =
V Vb

2

N2
1

V 2
exp (βε) = N2

1

Vb
2V

exp (βε)(16)

The condition that half of the particles are dimers (N2 = N/4 and N1 = N/2) is

reached when ρVb exp(ε/kBT ) ≈ 1. This expression clearly show how the probability

of forming bonds results from the competition of an entropic term (bonding volume

compared to total volume per particle ρ−1) and an energetic term (the Boltzmann factor).

Assuming typical values for ∆ ≈ 0.1σ and for the packing fraction φ ≡ π
6σ

3ρ ≈ 0.1 this

condition already teaches us that the probability that the bond is formed is not negligible

only if kBT is smaller than ε ( kBT/ε ≈ 0.2). It is also important to consider the lifetime

of the bonds, i.e. their persistence. As a first approximation, the lifetime of a bond

is proportional to exp(ε/kBT ). Thus at the typical temperature when fifty per cent

of the particles are clustered [i.e. exp(ε/kBT ) ≈ 100] the bonds are generally still very

intermittent and the aggregates are to be considered as transient clusters with significant

exchange of particles between aggregates. This immediately clarifies that to form a stable

aggregate, i.e. an aggregate in which the relative position of the constituent particles is

persistent in time, one need to go to kBT � ε. Requiring that 108 − 109 attempts are

needed before breaking a bond (this estimate of course depends on the attempt rate and

the experimental observation time) implies kBT/ε ≈ 0.045− 0.05.

3. – The need of directional attractive interactions

The requirement of persistent bonds thus requires kBT to be significantly smaller

than ε. At these low T , if the interaction potential is isotropic, the particles will have a

tendency to phase separate, forming coarsening liquid droplets in the interior of which

each particle is surrounded by approximately twelve neighbours. Self-assembly into finite

size structure is thus pre-empted by phase separation.

Indeed, particles interacting via isotropic potentials (and with short-ranged interac-

tions) are known to phase separate when the normalised second virial coefficient B∗2
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(normalized to the hard-sphere value BHS2 ) reaches the value (B∗2)Tc
≈ −1.2 [4]. For the

isotropic square-well potentials (our paradigmatic potential)

B∗2 ≡
B2

BHS2

= 1− (σ + ∆)3 − σ3

σ3
(exp (ε/kBT )− 1)(17)

which means that

kBTc
ε

=

{
ln

[
1 +

(1−B∗2)
|Tc
σ3

[(σ + ∆)3 − σ3]

]}−1

(18)

For a typical range of ∆ ≈ 0.1, kBTc/ε ≈ 0.5 and hence it is impossible to bring the

system to temperatures at which the bond lifetime would be sufficiently long to observe

the presence of long-living well-defined aggregates without phase separation.

In principle one could attempt to decrease ∆ to lower Tc. Still, eq. 18, in the limit of

∆/σ → 0, tends to

kBTc
ε
≈

{
ln

[
(1−B∗2 |Tc

)σ

3∆

]}−1

≈ (ln ∆/σ)−1(19)

which means that in the case of spherically interacting potentials only in the limit of very

sticky (almost unphysical) interactions (∆/σ ≈ 10−9 or smaller) Tc is so small that the

bond lifetime becomes longer than the experimental observation lifetime before phase

separation is encountered, at least for interactions potentials which can be modelled as

short-range attraction (1).

Isotropic attractive interactions are thus not suited for self-assembly. Can the pic-

ture change with directional interactions? The answer is certainly positive. Directional

attractive interactions offer many advantages. To retain simplicity, let us consider that

the surface of the particle is decorated with patches and that a bond is present between

the two particles when the relative distance between the particles is within σ + ∆ (like

in a square well interaction) but also when the orientation of the two patches involved

in the bond is constrained within a specific value. In the commonly used Kern-Frenkel

model [5], the center of each patch is described by a vector starting from the particle

center. When the angle between the two vectors involved in the bonds is within a cone of

semi-amplitude θ a bond is present. Compared to the square-well model, now the bond-

ing volume is decreased by a factor χ2 where χ = (1− cos θ)/2, commonly indicates the

(1) As a word of caution, we note that in soft matter it may happen than bonding arises as a
result of an effective interaction which may involve a large entropic component. One typical case
is offered by electrostatic interactions when counterions redistribute in space as a consequence
of bonding or when significant conformational changes are associated to the bond-formation
process (as in DNA self-assembly). Under these conditions, it is possible to modulate the bond
lifetime and generate persistent bonds even for T > Tc.
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fraction of solid angle accessible for bonding. For a conical bonding surface of semi-angle

θ = 30◦ the bonding volume reduction is of the order of 103 compared to the isotropic

case. This reduction in the entropy helps making the temperature at which bonds form

and the temperature at which bonds are stable for sufficiently long times closer to each

other.

There is another very important consequence of directional interactions: The possible

suppression of the gas-liquid phase separation [6, 7]. Indeed, already the reduction in

the number of bonded neighbours has a dramatic effect on the gas-liquid phase diagram,

progressively decreasing both the critical temperature and the density of the liquid coex-

isting with the gas. This opens a region of packing fractions (above the coexisting liquid

density but still smaller than the density at which packing becomes relevant) where it is

possible to cool the system down to very low T without encountering phase separation.

The suppression of the gas-liquid phase separation is even more striking if the di-

rectional interactions favor the formation of aggregates that do not significantly attract

each other. If bonding sites are completely saturated in each aggregate than these super-

particles will feel each other essentially as hard-spheres, suppressing any driving force

toward phase separation. This important consideration clarifies why long range attrac-

tive interactions and isotropic potentials are not suited for self-assembly. Fig. 1 shows

schematic examples of one component system (Janus particles), interacting via hard-

core (red) and square-well (green) potentials, which form aggregates similar to micelles

and vesicles at low T for which the intra-aggregate attraction can be considered negligi-

ble [8, 9].

Fig. 1. – Schematic representation of a one patch Kern-Frenkel model with θ = π/2, a simple
model for a Janus particle. The two differently coloured areas indicate the attractive and
repulsive parts of the particle surface. Particles self-assemble into clusters, with a preferential
micelle (left) or vesicle (right) structure. In both geometries, the aggregate exposes to other
clusters only a repulsive surface, preventing further aggregation and phase separation.
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4. – Analogies with chemical reactions

Another way of describing clustering, equivalent to the previously derived thermody-

namic formalism, can be developed in term of chemical reactions. Each cluster can be

considered a different chemical species and the equilibration process that starts from a

collection of monomers and ends into an equilibrium distribution of different clusters can

be considered as the progression of the reactions toward equilibrium.

In this terminology, we could write

N1 +N1 ⇐⇒ N2(20)

N1 +N2 ⇐⇒ N3(21)

and so on and associate to each of these reactions a reaction constant Kn (with the

dimension of inverse concentration). We would thus write

[N2]

[N1]2
= K2(22)

[N3]

[N1][N2]
= K3(23)

or substituting the precedent expression

[N3]

[N1]3
= K2K3(24)

and so on. To grasp a feeling of the meaning of the value of K, we note that in the

case of an isolated chemical reaction [e.g. eq. (22)] the equilibrium constant indicates

the volume per particle at which half of the particles are in monomeric state and half in

dimeric. Indeed, due to particle conservation, when N1 = N/2, N2 = N1/2 and

K2 =
N/4V

(N/2)2
=
V

N
|N1= N

2
(25)

Hence, K [which has the dimension of a volume, for reactions as the one reported in

eq. (22] indicates the volume per particle at which the reaction has progressed fifty per

cent.

With the expression previously derived for the cluster size distribution in the ideal

gas of cluster approximation [eq. (10)]

[N2]

[N1]2
= K2 =

Q2

Q2
1V

(26)
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[N3]

[N1]3
= K2K3 =

Q3

Q3
1V

2
(27)

or K3 = Q3/(Q1Q2V )

Chemical constants provide information on the change in free energy associated to the

clustering process at fixed center of mass, e.g. independently from the system volume.

For example, for the reaction

N1 +N1 ⇐⇒ N2(28)

K2 is given by

K2 =
N2/V

(N1/V )2
= V

N2

N2
1

= V
Q2N

2
1 Λ6

N2
1

= V
V Kbond

Λ6
Λ6 = Kbond(29)

where

Kbond =

∫ ′

dr12 exp [−βV (r12)] ≈ Vbond exp (βε).(30)

5. – The simplest self-assembly process. Equilibrium polymerization

The simplest case of self-assembly refers to particles that can form two bonds each

(e.g. particles with functionality f = 2) [10, 11, 12, 13]. To evaluate the partition

function we assume that particles interact with the Kern-Frenkel [5] model. We consider

that the surface of the particle is decorated with two patches on the poles and that a

bond is present between the two patches when the relative distance between the particles

is within σ+ ∆ and when the orientation of both patches involved in the bonds is within

a cone of half-angle θ. For example, for a dimer we have

Q2 =
1

2!Λ6

∫ ′

dr1dr2dΩ1dΩ2e
−βV (r1,r2,Ω1,Ω2)/

∫
dΩ1dΩ2(31)

With the simple model selected, the Boltzmann factor exp (βε) is constant in all

points in space where a bond is present. Changing variable to r1 and r2 − r1, the

integration over r1 is immediate and results in a V term. The integration over r2 − r1
is limited for relative distances between σ and σ + ∆ and so it gives 4

3π[(σ + ∆)3 − σ3)]

times the integration over the bonding angles. Normalized by the factor of (4π)2, the

angular part results in a contribution (1 − cos θ)2/4. This last term correspond to the

so-called coverage χ (the fraction of the sphere surface associated to bonding) squared.

The resulting partition function is thus

Q2 =
V

2Λ6
f2 4

3
π[(σ + ∆)3 − σ3)]χ2 exp (βε)(32)
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Fig. 2. – Pictorial representation of a Kern-Frenkel particle with four patches (left), in a non-
bonded dimer configuration (center) and in a bonded one (right)

where the term f2 counts the four ways a bond can be formed between two particles

with two patches each. Using the previously introduced bonding volume definition,

Q2 = 2
V Vb
Λ6

exp (βε) =
V

Λ3
Qbond Qbond = 2

Vb
Λ3

exp (βε)(33)

where the term V/λ3 indicates the contribution to the partition function associated to

the exploration of the system volume of the cluster center of mass, while the remaining

part is the bond partition function in which the term 2Vb/λ
3 counts the number of

microstates associated to the existence of the bond and exp (βε) is the Boltzmann term,

which depends on the ratio between the bond energy and the thermal energy.

Generalization to the case of a cluster of size n (neglecting self-avoiding contributions

and under the assumption that there is no change in the bonding energy on clustering,

the so-called isodesmic hypothesis, implicit in the simple classical potential that we are

using) the partition function can be written as

Qf=2
n =

ωn
n!λ3n

V [V 11
b exp (βε)]Nb(34)

with the number of bonds Nb = n− 1 and

ωn
n!

= 2n−1(35)

where ωn counts the number of distinct bonded chains that can be formed by n distin-

guishable particles. To calculate ωn one considers that the first particle can be selected

in n ways and that it has two possible bonding configurations. The second one among

the n− 1 remaining particles, always with two bonding possibilities. Hence

ωn = 2n× 2(n− 1)× 2(n− 2)× .....× 2 = n! 2n−1(36)

and
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Qf=2
n = 2n−1 V

λ3

[
Vb
λ3

exp (βε)

]n−1

=
V

λ3

[
2
Vb
λ3

exp (βε)

]n−1

=
V

Λ3
Qn−1
bond(37)

which can be interpreted as the center of mass partition function (V/Λ3) and the bonds

(n− 1) partition function Qn−1
bond.

The cluster size distribution is then given by

Nn =
Nn

1

Qn1
Qn =

(
N1λ

3

V

)n
V

λ3
Qn−1
bond = ρ1V

(
ρ1λ

3Qbond
)n−1

=(38)

= N1

(
ρ1λ

3Qbond
)n−1

= N1e
(n−1) ln(ρ1λ

3Qbond)

e.g. an exponential distribution of polymer lengths, with characteristic decay n̄ =

−[ln(ρ1λ
3Qbond)]

−1.

6. – Equilibrium polimerization in chemical language

In chemical language, the case of equilibrium polymerization correspond to assuming

that the equilibrium constant Kn are all identical and equal to K2. Under this hypothesis,

[Nn]

[N1]n
= K2K3....Kn =

n∏
2

Kn = Kn−1
2(39)

and

Nn = Nn
1 (K2/V )n−1 = N1(K2ρ1)n−1(40)

and remembering that K2 = Q2/(Q
2
1V ) we recover the same expression we derived

thermodynamically in the previous section

Nn = N1

(
Qbρ1λ

3
)n−1

.(41)

7. – Cooperative polymerization: Slaved equilibrium polymerization

A relevant case of self-assembly is provided by the ”explosive” formation of very long

one dimensional aggregates (fibers, fibrils and so on) [14, 15]. In this cases, a very small

change in the external control parameters determines the formation of extremely long

chains. This fast growth of fibers originates from the presence of two distinct aggregation

mechanisms. A very slow preliminary aggregation process, with a very small reaction

constant and a subsequent fast aggregation process with a large reaction constant. A

typical example is provided by the coil to helix transition, where first four monomers need

to arrange in a proto-helix configuration and then the helix polymerization is rather fast.
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In chemical language cooperative polymerization is described (in its simplest form)

by the expressions

[N2]

[N1]2
= K2(42)

[N3]

[N1][N2]
= K3(43)

while all successive Kn terms are equal to K3. In other words, we assume that first one

need to nucleate a dimer and then the dimer can grow with an isodesmic process. In this

case

[Nn]

[Nn−1][N1]
= K3, n ≥ 3(44)

In terms of concentrations

[N2]

[N1]2
= K2(45)

and

[Nn]

[N1]n
= K2K

n−2
3 , n ≥ 3(46)

The total monomer concentration can thus be written as

ρ =

∞∑
1

nNn = N1 +K2N
2
1 +

∞∑
3

K2K
n−2
3 [N1]n =(47)

= [N1] + 2K2[N1]2 +

∞∑
3

nK2K
n−2
3 [N1]n = [N1] +

∞∑
2

nK2K
n−2
3 [N1]n

and using

∞∑
2

nxn =
(2− x)x2

1− x)2
(48)

we find that

ρ = [N1] +
K2

K3

(2−K3[N1])K3[N1]2

(1−K3[N1])2
(49)

By multiplying by K3 one obtains a dimensionless expression

K3ρ = K3[N1] +
K2

K3

(2−K3[N1])K2
3 [N1]2

(1−K3[N1])2
(50)
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Figure 3 shows that for small K2/K3 the total density coincides with the monomer

density till ρ = K−1
3 and then it abruptly decay to zero.

10-6 10-4 10-2 100

ρσ3

0

0.2

0.4

0.6

0.8

1

[N
1]/ρ

σ3

K2=K3

K2=10-1K3

K2=10-3K3

K2=10-5K3

K3=100

Fig. 3. – Plot of the fraction of particles in monomeric state [N1]/ρ as a function of the total
density ρ for different values of the ratio K2/K3. Note the abrupt onset of polymerisation when
K2/K3 is small. Here K3 = 100σ3

Recently, a simple model for patchy particles interacting with pair-wise additive inter-

actions has been shown to undergoes cooperative polymerisation [16], forming abruptly

extremely long tubes, as shown in fig. 4

8. – Micelles

In this section we present a minimal model for micelle aggregation [2, 17]. For the

sake of simplicity we assume that particles can only exist in monomeric state or in a

cluster of M � 1 particles (the micelle).

As we have demonstrated previously, in the case of an ideal gas of non-interacting

clusters

NM = QM
NM

1

QM1
(51)

Then, denoting by N the original number of particles in the system

N = N1 +MNM = N1 +MQM
NM

1

QM1
(52)
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Fig. 4. – Images from a simulation of Kern-Frenkel particles with one attractive patch at three
different (but very close) temperatures. Before the transition (left) the system is composed by
finite size clusters, while after the transition most of the particles are part of very long and
persistent polymers. Redrawn from Ref. [16].

or

N1

N
= 1−MQM

NM
1

NQM1
(53)

Now we can write, assuming that a micelle has a well defined energy EM in all of its

configurations, the partition function of the micelle as

QM =
V

λ3

(
Vb
λ3

)M−1

exp(−βEM )(54)

to emphasize the entropic and energetic (or enthalpic) contributions and the partition

function of the monomer Q1 = V/λ3. Then

N1

N
= 1−M V

λ3

(
Vb
λ3

)M−1

exp(−βEM )
NM

1

N( Vλ3 )M
(55)

and after some algebra

N1

N
= 1−M

(
N1

N

)M (
NVb
V

)M−1

exp(−βEM )(56)

which can be written symbolically as x = 1−xMA, with A = M
(
NVb

V

)M−1
exp(−βEM ).

Fixing the properties of the micelle (M and the model parameters Vb and EM ) it is

possible to solve eq. (56) for all densities and temperatures. The solution for N1/N

depends on the value of A. For values of A smaller than one, N1/N ≈ 1 and the system
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is a monomeric state. For A greater than N , ρ1 ≡ N1/V reaches a constant value, as

shown in Fig. 8. Note also that both the entropic and the energetic contributions scale

with M . Hence, the cross-over from values smaller than one to values larger than one is

extremely fast. The concentration for which A = 1 is commonly referred to as critical

micelle concentration (cmc). Figure 5 in ref. [9] shows the analog of Fig. 8 for the case

of Janus colloidal particles aggregating in micelles and vesicles.

0 0.2 0.4 0.6 0.8 1
ρσ3

0

0.05

0.1

0.15

0.2

ρ 1σ3

M=50
M=100

βEM=M     Vb=2

cmc

Fig. 5. – Monomer density ρ1 as a function of the total density ρ for a system forming micelles
composed each of M = 100 particles. The critical micelle concentration (cmc) marks the cross-
over from the monomeric state to the aggregated micellar state. Beyond the cmc, increasing the
density results in an increase of the number of micelles. No significant changes of the monomer
density takes place.

9. – How do we ”exactly” calculate Qn

Up to now we have made use of simple models, like the square-well or the Kern-Frenkel

potentials, for which analytic evaluation of the partition functions can be provided under

reasonable assumptions (see for example Wertheim theory of associations [18, 19]). Here

we discuss how the cluster partition functions can be evaluated numerically[20, 21, 22].

An efficient numerical method is outlined in refs. [22, 23]. With this method, the relations
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between the variousQn is obtained directly from a grand-canonical Monte Carlo (GCMC)

simulation, i.e. a simulation at fixed T , V and chemical potential µ. The simulation starts

with a single cluster and rejects all moves (insertion, deletion, translation or rotation)

as a result of which the system would contain more than one cluster. By imposing

the constraint of simulating only a single cluster, in the grand-canonical ensemble, the

probability P(n) of observing a cluster of size n is

P(n) =
exp (nβµ)Qn∑
n exp (nβµ)Qn

(57)

so that

P(n)

P(1)
=
Qn
Q1

exp [βµ(n− 1)].(58)

Hence, the ratio Qn/Q1 can be directly obtained for all n from a GCMC simulation. Note

that Qn/Q1 is independent of µ, and therefore one can set µ = 0 in the grand-canonical

simulation without loss of generality. With this choice,

Qn =
P(n)

P(1)
Q1 =

V

Λ3

P(n)

P(1)
.(59)

The procedure can be numerically optimised in several ways, as described in refs. [22,

23]. It can also be generalized to evaluate partition functions of clusters with the same

number of particles but with different topological properties (e.g. chains, rings, branched

clusters). As a test of the method, fig. (6) shows a comparison between the cluster size

distribution calculated with the described methodology and the cluster size observed in

standard Monte Carlo simulations for a Kern-Frenkel Janus colloid model.

10. – Conclusions

In this short lecture, we have presented some basic self-assembly introductory con-

cepts. Building on these concepts, We hope it will be possible to better grasp the contents

of the following lectures, and the sophisticated level of understanding and exploitation

of self-assembly which is today possible in colloidal science. Specifically, we like to recall

two important aspects which we have not discussed but which are addressed in other

Chapters of this book: (i) how to predict the structure of the aggregate from the knowl-

edge of the interaction potential (direct) or how to design the interaction potential to

spontaneously assemble a desired structure (inverse); (ii) how to exploit external fields

to modify the pathways leading to self-assembly.
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