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ABSTRACT: We numerically investigate the self-dynamics and collective
dynamics of a simple model for vitrimerspolymeric covalent networks that
have the ability to dynamically rearrange the bond structure via exchange
reactions, preserving the total connectivity. Specifically, we study a binary
mixture of tetrafunctional and bifunctional particles by means of molecular
dynamics simulations that naturally incorporate the bond-swapping mecha-
nism. We specifically focus on the dynamics at small wavevector q by
simulating 800 000 particles. We observe two distinct collective relaxation
processes: (i) a fast vibrational damped mode and (ii) a slow network
restructuring dynamics. Unexpectedly, the slow process is characterized by a
wavevector-independent (q0) mode originating from the swap motion of the
bonds.

Vitrimers1−3 are a new class of polymeric materials in which
the network nodes, despite the covalent bonding, can

change their bonded partners via reversible exchange reactions
with unreacted sites. The ability to dynamically rearrange the
network structure and the external control (for example, via
temperature) of the rate of exchange opens up the possibility to
spontaneously heal internal fractures, recycle the material
shape, and release applied stresses. Vitrimers significantly differ
from thermoplastics and elastomers. Thermoplastics are made
by melt of polymers which can be multiply reshaped but are
formally soluble. Elastomers are polymers cross-linked via
irreversible bonds, and hence the topology of the resulting
network is permanent, preventing the possibility to reshape
them. Vitrimers are instead characterized by a controllable
viscosity and can in principle flow under applied stress if the
exchange reaction is sufficiently active. In vitrimers the viscosity
is controlled by the presence of a catalyst,1,4,5 whose efficiency
follows an Arrhenius temperature dependence, resulting in a
strong-glass-former behavior in Angell’s classification.6

To grasp the basic feature of a vitrimer system, consider a
mixture of two different macromolecules, indicated as A and B
in the following (Figure 1). Particle A has fA bonding sites and
particle B f B. Only sites on unlike particles can bind to each
other, forming a covalent bond, e.g., a bond significantly
stronger than the thermal energy kBT. Under these conditions,
after mixing the A and B particles the bonding reaction quickly
proceeds until all possible bonds are formed. Selecting a
nonstoichiometric mixture, i.e., fANA ≠ f BNB, where NA (NB) is
the number of particles of type A (B), when the reaction is
completed, the system is composed by a network of AB bonds
with a fixed number of unreacted sites of the majority species

(Figure 1a,c). When the thermal vibration of the network
brings one of these unreacted sites close to an existing AB
bond, an exchange reaction1,2,7,8 takes place, locally rearranging
the network topology. The total number of bonds in the system
(and hence the system potential energy) before and after the
swap process remains unchanged. Since the total number of
bonds is conserved, the dynamics in a vitrimer system can be
considered as a stroll on the flat ground state potential energy
surface. In time, the system explores all possible maximally
bonded configurations such that the maximization of entropy
(and only entropy) controls the evolution of the system toward
the lowest free-energy state.
The physics of vitrimers is possibly also shared by physical

gels well beyond the percolation threshold, when the gel
consists of a single almost fully bonded cluster.9−12 Under these
conditions, the thermal energy is sufficiently smaller than the
bond energy, and the dynamic evolution is controlled by the
activated process of bond breaking and re-forming. Only if a
nearby broken bond is present can one of the two newly
formed defects rebind, thus contributing to the reconfiguration
of the network in a different bonding pattern. Differently from
vitrimers, it is the same energy scale of the bond that controls
the swapping rate. Gels of DNA nanostars with controlled
functionality13−16 constitute a very appropriate example of
physical gels with strong binding energies.
In the past years, a small number of theoretical/numerical

investigations of these new materials have appeared. The
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thermodynamics of vitrimers has been investigated at particle
level by modeling the system as a binary mixture of patchy
particles17 for which the thermodynamic perturbation theory
introduced by Wertheim18,19 can be analytically solved. Theory
and associated numerical simulations have provided evidence
that under dilution vitrimers do not dissolve. The system
progressively expels the majority component, evolving toward
the stochiometric relative concentration. The dynamics of the
system has been discussed either via a continuum model
focusing on the macroscopic viscoelastic properties of the
network20,21 as well as via patchy particle models17 in which the
exchange rate (controlled in real materials by the concentration
of catalyst and by the temperature) was treated as an external
parameter.
In this article we exploit the recently proposed swap

algorithm22 to perform molecular dynamics simulations of a
binary mixture of A and B particles for different values of the
relative concentration, close to the stoichiometric value. We
investigate an 800 000-particle system to access the small
wavevector q region and make contact with the typical
wavelength of light scattering experiments. We focus on the
self-dynamics and collective dynamics as a function of q. While
the self-dynamics is properly described by a q−2 law, we
discover a remarkable q-independent (q0) collective slow
relaxation time. This peculiar q dependence, to our knowledge
never previously observed in a numerical study of interacting
particles, is consistent with what has been recently measured in
gels of DNA tetrafunctional nanostars and modeled via a bead−
spring model.23 This behavior has also been observed in
systems of microemulsion droplets in solution with telechelic
polymers, where the polymers ends preferentially explore the
interior of the microemulsion droplets effectively providing a
transient link between them.24 Finally, we offer an explanation
of the q0 collective mode in terms of diffusive motion of the
network defects which provides the mechanism for allowing the
network to explore all possible bonding configurations,
providing a realization of the fluctuating elasticity concept
proposed in ref 23.

■ MODEL AND NUMERICAL METHODS

The model we select is a continuous version of the patchy
particle model proposed in ref 17. The system is composed by
NA tetrafunctional ( fA = 4) particles and NB ( f B = 2)
bifunctional particles, with the fraction of A particles indicated
as x ≡ NA/(NA + NB). The four interacting sites of A particles
are arranged in tetrahedral geometry, while the two sites of B

particles are arranged in polar geometry. When NAfA = NBf B
(i.e., when = ≡ =+x x 1/3fb

f

f f
B

A B
), the system at low

temperature forms a fully bonded network. When x ≤ xfb at
low temperature all A sites are bonded (and hence pA, the
probability of finding an A site bonded, is unity), but there is a
finite fraction of unpaired B sites. As a result, the probability of
finding a bonded B site, pB, is less than unity. More precisely,
when all possible bonds are formed (and x < xfb)

= =
−
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f N

f N
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Hence, there is a finite number of unreacted B sites equal to
NBf B(1 − pB), or equivalently ( fA + f B)(NA + NB) (xfb − x).
Similarly, the number of unreacted B particles (e.g., in
monomeric state) is NB(1 − pB)

2.9 In the simulation we keep
constant N = 800 000 and vary x from 0.3 to xfb = 1/3. Table 1

reports some information on the explored states. We note that
the percolation threshold (e.g., the presence of an infinite
cluster in the system) evaluated according to Flory−Stock-
mayer arguments25 is = −p pA B f

1
1A
corresponding to xperc = 1/

7. All samples studied here are thus well beyond percolation.
The volume is fixed to 128.163 (in unit of the particle

diameter σ), corresponding to a total number density ρσ3 =
0.38. Interactions between the centers of mass of AA, AB, and
BB particles are modeled via a repulsive WCA potential26

Figure 1. Sketch of systems with (a) an excess of (bifunctional) B particles (in green, the case considered in this work), (b) a stoichiometric mixture,
and (c) an excess of (tetrafunctional) A particles (in violet). Interparticle bonds are depicted as orange straight lines. (d) The site−site interaction
potential Vss(rss) (eq 2). The red shaded region pointed out with the arrow gives an idea of the extent of the thermal fluctuations associated with the
value of the temperature used in simulations, kBT = 0.03.

Table 1. List of the Investigated Binary Systemsa

x ≡ NA/N no. of unreacted B sites pB B monomers

0.300 160000 0.857 11450
0.320 64000 0.941 1893
0.325 40000 0.963 739
0.330 16000 0.985 121
0.332 6400 0.994 19
0.3325 4000 0.996 8.5
0.333 1600 0.998 2
1/3 0 1.000 0

aThe table shows the relative composition x ≡ NA/N , the number of
unreacted B sites (all A sites are bonded), acting as swapping sites, the
probability pB that a B site is bonded, and finally the number of
unbonded B monomers. The total number of particles is in all cases N
= 800 000.
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The attractive site−site interaction Vss is active only between
distinct A and B pairs, it is a function of the site−site distance
rss, and it is modeled through the following function, inspired by
the Stillinger−Weber potential27
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which encodes a short-range attraction (see Figure 1d). Here
σss controls the position of the minimum of the attractive well
(of depth ϵ) and rc is such that Vss(rc) = 0. We set σss = 0.4σ and
rc = 1.5σss. To implement the single bond per site condition and
the swapping mechanism, we encode the method proposed in
ref 22. A detailed description of the method can be found in the
Appendix. Here we outline the idea behind the algorithm. It
consists in adding a repulsive three-body potential acting on all
triplets of bonded sites (ABA or BAB). If a free B site moves
close to an existing AB bond, the additional energetic gain
associated with the formation of an extra bond is compensated
by an energetic loss of tunable strength arising from the three-
body potential. As discussed at length in the Appendix, the
activation energy for swapping is (λ − 1)ϵ, being λ ≥ 1 a model
parameter. Hence, it is possible to tune it from a condition of
vanishing activation energy up to any barrier height. Since the
thermal energy of the simulation is significantly smaller than ϵ,
no spontaneous bond-breaking processes are observed. Hence,
the system dynamics can be described as a restructuring of the
bonds made possible by the swap process. In this condition, the
presence of an activation energy only affects the speed of the
network restructuring, effectively rescaling the dynamics by an
Arrhenius factor dependent on the ratio between the barrier
activation energy and ϵ. Since we are interested in under-
standing how the bond swapping affects the dynamics of the
system, we choose to simulate a system where the swap
dynamics is fastest. That is when there is no significant energy
cost in swapping the bond (λ = 1, see Appendix). Under these
conditions, the time scale of the bond process is entirely
controlled by the stoichiometry of the network.
Mass is measured in unit of the particle mass m, energy is

measure in unit of ϵ, and kBT is also measured in unit of ϵ,
where kB is the Boltzmann constant. Distances are measured in

unit of σ, and time is measured in units of σ≡t m k T/0
2

B .
The equations of motion are integrated with the velocity-Verlet
algorithm with a time step δt = 0.003. We initially employ a
modified Andersen thermostat28 to equilibrate all systems at
kBT = 0.03. We then perform production runs in the NVE
ensemble. The specific value of T is irrelevant as far as it is
significantly smaller than ϵ to guarantee that bonds do not
thermally break over the course of the simulation. Since we
select x < xfb, all A sites are always involved in bonds and hence
cannot initiate swapping processes. The only possible network
reconfiguring events are thus bond swaps where a free B site
reacts with a AB bonded pair replacing the B in the bond.

■ STRUCTURE
To appropriately frame the dynamic information in Fourier
space, we show in Figure 2, the partial components of the

structure factor SAA, SAB, and SBB, and the total SNN = xSAA + (1
− x)SBB + 2[x(1 − x)]1/2SAB for two different x values.
Considering that only AB bonds are allowed, the closest
distance between two tetrafunctional particles is about 2σ,
showing up as a well-defined peak around π/σ. The B particles
appear sharply coordinated with the A at distance σ (see the
clear peak around 2π/σ in SAB). Despite the tetrafunctional
nature of the network formed by the A particles via the ABA
bonds, no prepeak is observed in SAA, a clear indication of a
highly flexible and floppy network.29 The network flexibility
shows up also in the large value of the NN structure factor at
the origin, a quantity related to the system compressibility.30

Finally, we note that the large system size allows us to
investigate in details the region qσ < 2, where all structure
factors are close to their q = 0 limit.

■ BOND DYNAMICS

Figure 3 provides evidence of the reconfiguration of the
network caused by the swapping events. The figure shows the
normalized bond autocorrelation function Cb(t) defined as

=
− ∞
− ∞

C t
n t n
n n

( )
( ) ( )
(0) ( )b

b b

b b (3)

where nb(t) is the fraction of bonds between pairs of particles
which were present at time 0 and which are still present after
time t. At infinite time, nb(∞) = fA/NB. Indeed, after an infinite
time, each A particle has the same probability to be bonded to a
B particle (the number of possible bonds between particles
being NANB). The fANA bonds which were present at t = 0 can
thus be still present at infinite time (after several breaking and
forming events) with probability fANA/NANB simply for
statistical reasons. The t dependence of Cb(t) has a complex
shape, which cannot be represented, for long times, with a
single exponential. In particular, upon approaching zero, it
develops an apparent power law with exponent around 1.5−2
whose precise characterization in terms of survival probability
in the presence of multiple random walkers31 would require
much longer simulations. A meaningful typical decay time τb
can be defined as Cb(τb) = 1/e. τb, plotted as a function of xfb −
x in Figure 3b, shows a clear inverse dependence on the total
number of defects, diverging in the defect-free network with
stoichiometric composition.

Figure 2. Total (SNN) and partial (SAA, SBB, SAB) structure factors for
the x = 0.300 (black) and x = 0.332 (red) systems.
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■ TAGGED PARTICLE (SELF-)DYNAMICS
Mean-Square Displacement. The swap process is at the

heart of the network reconfiguration. Both the single-particle
(diffusion) and collective dynamics relaxations are slaved to the
local changes in the network topology. The mean-square
displacement of A particles for different values of the
composition is reported in Figure 4a. The time dependence,
as commonly featured in slow dynamics systems, can be
separated in three parts: the very short time ballistic region, a
subdiffusive regime signaled by a plateau, and the subsequent
diffusive region. The plateau height is approximatively 0.64σ2

for the A particles. This quantity indicates the extent of particle
displacement which can take place in the absence of bond-
breaking processes. Its large value, compared to typical values of
glass-forming liquids, marks one of the differences between
open low-density gels and glasses. Indeed, in glasses the height
of the plateau, controlled by excluded volume interactions, is of
the order of 0.01σ2.32 The diffusion coefficients, calculated from

the long time limit of the mean-square displacement, are shown
in Figure 4b as a function of xfb − x. Both for A and B particles
the diffusion coefficient can be well represented by the
phenomenological expression

= − + −

= + − −

D D x x D x x

D D x x x x

( ) ( )

[ ( )]( )

fb fb

fb fb

1 2
2

1 2 (4)

This expression includes a linear term modeling the diffusion
induced by the swapping of an isolated reactive site and a
quadratic contribution arising from interactions between
different reactive sites, which increases with xfb − x. The
right-hand side of eq 4 shows that the same functional form can
also be interpreted as a diffusion process fully controlled by the
number of reactive sites, diffusing across the network with a
diffusion coefficient weakly dependent on their concentration.

Figure 3. (a) Bond autocorrelation function nb(t) for different values of the concentration of A particles, x. (b) Dependence of the average bond
lifetime on xfb − x in log−log scale. The same graph also shows the slow collective relaxation time τs also as a function of xfb − x.

Figure 4. (a) Mean-square displacement of A particles. (b) Diffusion coefficient of the A and B particles as a function of xfb − x. We recall here that
the number of unreacted sites is 6N(xfb − x).

Figure 5. (a) Decay of Fself(q,t) for the A particles (Fself
A (q,t)) for several q values (0.05 < qσ < 2) at x = 0.325, highlighting the two-step relaxation

process. On decreasing q, the fast relaxation is progressively hidden and the plateau height approaches one. The inset compares for two different q
values (qσ = 0.24 and qσ = 1.92) Fself

A (q,t) (full lines) with the Gaussian approximation exp(−q2⟨r2(t)⟩/6) (symbols), always for the A particles. (b)
Wavevector dependence of the self-slow relaxation time τself

A (q) for the A particles.
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Self-Dynamics. The self- (or tagged particle) dynamics is
properly described in Fourier space by the q-dependent
correlation functions

= ⟨ ⟩· −F tq( , ) ei tq r r
self

[ ( ) (0)]k k (5)

where rk(t) is the position of the generic k particle at time t.
The average is over all particles of the same type and over
distinct starting times. An additional average over different
wavevectors with the same modulus can be performed by
exploiting the isotropicity of the system. Figure 5a shows
Fself(q,t) for the A particles (Fself

A (q,t)) for several q ≡ |q| values
for one x value. Similarly to the mean-square displacement,
Fself
A (q,t) shows a two-step relaxation, associated with the

decorrelation at fixed bonding and to the slow diffusive process.
The time dependence can be accurately modeled by the
functional form

= + −τ τ− − β
F q t A A( , ) e (1 )et t

self
/ ( / )f sself, self, (6)

In the studied q range the stretching exponent β is always larger
than 0.85 and approaches 1.0 on lowering q. The inset in Figure
5a compares Fself

A (q,t) and exp(−q2⟨r2(t)⟩A/6). The similarity
between the two sets of curves for small q is consistent with the
expected validity of the Gaussian approximation26 and with the
identification of the slow relaxation time τself,s

A with the diffusion
time given by (q2DA)

−1. Similar results (not shown) hold also
for the B particles and for all other x values.

■ COLLECTIVE DYNAMICS
The collective dynamics describes the way density fluctuations
of different wavelengths evolve in the system. The normalized
correlation function of the density fluctuations is defined as

∑≡ · −F t
S N

q
q

( , )
1
( )

1
e

kj

i tq r r
coll

[ ( ) (0)]k j

(7)

where S(q) is the structure factor, the average is again taken
over different initial times, and the sum runs over all pairs of
particles in the system, irrespective of their identity (NN).
Analogous expressions can be written for the AA and BB
components. Figure 6a compares for a specific small wavevector
(qσ = 0.15) the self- and the collective correlation functions.
Two observations are relevant: first of all, all partial correlation
functions (AA, BB, and NN) decay on the same time scale, and
hence in the following we will focus only on the NN
correlation. Second, and more importantly, the self-autocorre-
lation function decays on a time scale much slower than the
collective relaxation. This indicates that particle diffusion is not
relevant for the decay of the collective density fluctuations at
small wavevectors.
Figure 6b shows Fcoll(q,t) for a generic x value and several q-

vectors, in the region qσ < 2, where the structure factor is
approximatively flat. For larger q, the local model-dependent
structure becomes relevant, affecting the relaxation time. This
large-q region has been extensively investigated in the case of
glass-forming liquids.33−37 The function shows a clear two-step
relaxation, a fast decay associated with damped oscillations, and
a slow decay that completes the memory loss process.
Remarkably, here the slow-relaxation decay is identical,
irrespective of the value of q. In all cases, Fcoll(q,t) can be
very accurately modeled by a damped harmonic oscillator
correlation function

= Ω + −τ τ− − β
F q t A t A( , ) e cos( ) (1 )et t

coll
/ ( / )f s (8)

where A and (1 − A) are respectively the amplitude of the fast
and slow relaxation processes, with associated time scales τf and
τs. The angular frequency Ω accounts for the propagation
phenomenon described by the fast relaxation. The slow process
is modeled via a stretched exponential function, with a
stretching exponent β to account for the variety of relaxation
times characterizing disordered systems. All fitting parameters
(A, τf, τs, Ω, and β) depend, in principle, on q.
An example of the quality of the fit is shown in Figure 7a.

The fit allows us to extract the sound dispersion relation Ω vs q
(Figure 7b) and the damping of the sound mode 1/τf. The q
dependence of Ω at small q is consistent with a sound speed of
0.53 ± 0.03 [σ/t0]. Interestingly, while the fast decay time
follows a q dependence that approaches at small q the expected
q−2 behavior, the slow decay time is essentially wavevector
independent. This feature, already very evident in the shape of
the correlation function reported in Figure 6b, is highlighted in
Figure 7c, which reports τs and τf vs q for all investigated x.
First of all, the fact that the fast dynamics remains constant

even for x → xfb shows that it can be associated without
ambiguity to the vibrational dynamics of the permanent
network of bonds. Second, the fast relaxation time τf and Ω
do not significantly depend on the fraction of reactive sites for

Figure 6. (a) Comparison between self- and collective decays for x =
0.332 and qσ = 0.15. (b) Decay of Fcoll(q,t) for 0.04 ≤ qσ ≤ 2 at x =
0.332, highlighting the two-step relaxation process. (c) Decay of
Fcoll(q,t) for 0.04 ≤ qσ ≤ 2 at x = 0.300. Note how the q-dependent
damped sound almost takes over the α relaxation mode at the smallest
investigated q.
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the range of x considered here. This can be rationalizing by
considering that according to the Newton−Laplace equation,
the speed of sound (at small q) can be written as Ω = (K/ρ)1/2,
where K is the bulk modulus of the material. Since all
investigated systems have the same density (ρσ3 = 0.38), the
only possible source of x dependence is K, which in amorphous
solids is linked to the total number of bonds.38−40 The fact that
for the systems considered here this number does not change
by more than ≈10% explains the weak dependence of Ω on x.
The first decay of the correlation function, of amplitude A,

results from the decorrelation process induced by the
vibrational dynamics (the normal modes of the network).
This process is significantly faster than the slow process (of
amplitude 1 − A) at large q, but it becomes comparable in time
(due to the different q dependence of τs and τf) at very small q.
Indeed, the fact that τs is q-independent determines the
presence of a crossover wavevector qc at which the network
restructuring takes place on a time scale comparable with the
vibrational process. Figure 6c provides an illustration of such a
case. For much smaller wavevectors, q ≪ qc, the vibrational
dynamics does not take place any longer on a network with
static links but on a “homogeneous” sample for which the
memory of the original network links has been completely
washed out. Only below qc are hydrodynamic predictions
expected to properly model the decay of the density
fluctuations in the system.
To identify the reasons behind the q0 behavior of τs, we

investigate the dependence of τs on x. We report the data in
two different ways. First, we show in Figure 3 τs vs xfb − x at
one small q. The comparison with the bond characteristic
lifetime shows that the latter is always at least a factor of 2
larger than τs. Therefore, the length scale-invariant relaxation of
the density fluctuations we observe does not require the
swapping of all networks bonds. In fact, only a fraction of all
bonds need to swap in order to relax the density. Moreover, the
dependence of τs on the number of reactive sites differs from
the one of τb. Indeed, while the former is well described by a
power-law with exponent ≈ −1.2, the latter behaves as 1/(xfb −

x). Thus, even though the two time scales are clearly connected
(both being linked to the restructuring of the network) their
mutual relation is not straightforward.
Figure 8 shows instead τs normalized by the diffusion

coefficient of the B particles (DB) to account for the efficiency

of the swapping process. As shown in the inset of Figure 8, the
bare number of reactive sites is not a perfect scaling variable,
but it is indeed necessary to incorporate the minor x
dependence of the swapping time (see eq 4). The quality of
the scaling of the data shown in the main figure for different x
confirms indeed that the time scale of the swapping process
fully accounts for the slow relaxation process.
To grasp why the rearrangement of the network topology

through the diffusive motion of the reactive sites gives rise to a
decay of the density fluctuations that takes place on the same
time scale for all lengths, we refer to a recently proposed simple
model.23 In ref 23 each independent region of the system (e.g.,
a region of size larger than any static correlation length) is
considered to be a point particle of fixed mass (the bead)
attached to its neighboring regions via an elastic constant (the
spring) which can fluctuate between different values. The
different elastic constant values mimic the different local

Figure 7. (a) Collective density correlation function for qσ = 0.146 at x = 0.300, x = 0.325, and x = 0.332 and the corresponding fit according to eq
8. (b) Ω vs q as resulting from the fit. (c) Wavevector dependence of the collective fast τf(q) and slow relaxation times τs(q).

Figure 8. Scaling behavior of the slow relaxation time. The main panel
shows the good collapse of the curves obtained by multiplying τs by DB
for all but the lowest values of x. The inset shows that multiplication of
τs by (xfb − x) is not sufficient to obtain a proper scaling.
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elasticity associated with the different local bonding pattern.
The system is thus modeled as a one-dimensional chain
composed of beads and springs in the presence of a thermal
bath which induces a viscous damping and exerts random forces
on each bead. The resulting equation of motion in the
overdamped limit is thus

γ− − − + − − − + =− + +k u u l k u u l
u
t

f( ) ( )
d
d

0n n n n n n
n

n1 0 1 1 0

(9)

where un is the position of bead n, kn is the elastic constant
acting between beads n and n + 1, l0 is the equilibrium distance,
γ is the viscous damping on the beads, and f n is the delta-
correlated random force acting on bead n, whose amplitude is
fixed by the dissipation−fluctuation theorem. Periodic boun-
dary conditions are also assumed. When the elastic constants
are equal (e.g., kn = K for all n), eq 9 shows that the density
fluctuations relax with a time τ = (γ/K)(ql0)

−2 which grows
with q−2, the typical dependence of the dispersion relation in
colloidal crystals. To introduce in the model the possibility that
the local elastic constant changes due to the intervention of
swap processes which alter the network connectivity, one can
assume that each kn can independently fluctuate between two
different equiprobable values K1 and K2. The autocorrelation
time of the spring value can be described assuming a simple
Markov process as

τ⟨ ⟩ =
−

− +
+⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠k t k

K K
t

K K
( ) (0)

2
exp( / )

2n n s
1 2

2
1 2

2

(10)

where τs indicates here the average time between changes in the
kn values.
A change in the elastic constant brings in a change in the

local density which propagates with the fast damped oscillation
motion, providing the channel for density decorrelation. The
numerical solution of this model23 shows in this case the
presence of two relaxation processes: a process with a q−2

dependence (the same observed in the case of identical springs)
and an additional process with a time scale controlled by τs, i.e.,
the time required by a spring to lose memory of its initial value.
Thus, under the assumption that particle diffusion (not
included in the model) is not relevant for relaxing the density
fluctuations and for length scales larger than any spatial
correlation length in the system (such that independent
relaxing units can be defined), this model predicts a
wavevector-independent α-relaxation process. In the system
studied here (and in ref 23), the time scale associated with the
restructuring of the network plays the role of the characteristic
time of the local springs, and it is fully controlled by the rate of
the bond-swapping process, which therefore sets the overall
relaxation time. For large length scales, the system can be thus
imagined as a composition of independently relaxing units, all
of them forgetting their original state with the same time τs. As
a result, the local nature of the relaxation process and the
absence of any correlation between the relaxation of the
independent units are at the heart of the q0 behavior. The q0

process would not be observed if the relaxation of the single
unit would require for example a relaxation of the particle
relative composition, which would then impose, by virtue of
particle conservation, a diffusive contribution to the relaxation
consistent with the mode-coupling predictions for binary
systems.41,42

The simple model introduced above can be easily generalized
by considering a continuous distribution of spring constants of
finite variance. Indeed, these can be considered as proxies for
the varying elasticity, which in turn is connected to the network
topology of the local relaxing units. A sketch of the basic
physical idea behind the model is shown in Figure 9.

Finally, we note that the occurrence of a q-independent
relaxation time results from the solution of mode-coupling
equations for one-component liquids in the small wavevector
region41 when only density and current fluctuations are
included in the theoretical description. This q0 behavior has
been linked to a conservation law.42 Indeed, the occurrence of a
q0 mode in one-component systems has been ascribed to the
existence of a conserved quantity (the number of particles) that
is associated with a flux that is also conserved (the overall
momentum). By contrast, in mixtures momentum is not
conserved at the single-species level,42 since there is
interspecies momentum exchange. The present system sits
somewhat in the middle, since it is a binary mixture (and thus
should not exhibit a q0 behavior according to the above
argument), but concentration fluctuations are greatly sup-
pressed by the nearly stoichiometric conditions and by the fact
that bonding is allowed between unlike species only.
Unfortunately, our results cannot reliably corroborate nor
rule out the possibility that the q0 behavior observed here is

Figure 9. (a) The sketch represents a collection of independently
relaxing units (small squares), whose size is larger than the static
correlation length. The different colors indicate the different values of
the local elastic constant, which fluctuate in time, according to the
microscopic dynamics provided by the bond-swapping process. Only
when the elapsed time is of the order of τs is the local elastic constant
uncorrelated with the value at time zero. The horizontal direction
indicates the time evolution, and the vertical direction indicates the
length scale probed by different wavevectors q (progressively enlarging
the field of view). The relaxation of the elastic constant over any length
scale requires the decorrelation of all its independent subunits, a time
which is always equal to τs. (b) Collective decay of the density
fluctuations for the model (eqs 9 and 10) when τs = 1. Curves for ql0 =
1, 2, 4, 8, 16, 32, and 64 are shown. For ql0 ≳ 10, two relaxation
processes are observed: one q-dependent linked to the vibrational
dynamics and one q-independent associated with the spring relaxation
process. In the inset, a comparison between relaxing and nonrelaxing
springs is reported for ql0 = 4 and ql0 = 40.
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directly connected to momentum conservation on an
intermediate length scale.

■ SUMMARY AND CONCLUSIONS

We have investigated, via molecular dynamics simulations, the
self-dynamics and collective dynamics in a nonstoichiometric
binary network in its fully bonded configuration. Specifically,
we have studied the experimentally relevant case1 in which
tetravalent particles (A) are mixed in excess of bivalent particles
(B) such that in the fully bonded condition an excess of
unbounded B-sites exist. When the thermal vibration of the
network brings one of these unreacted site geometrically close
to an existing AB bond, a swap process takes place which allows
for network restructuring. The implementation of the recently
proposed swap algorithm22 makes it possible to perform
molecular dynamics simulations which mimic exchange
reactions.
By simulating very large systems for very long times,

exploiting the computational power of graphic processing
units with a homemade code, we have been able to access very
small wavevectors, comparable to the one probed in light
scattering experiments (corresponding to wavelengths of up to
100 times the nearest-neighbor distance). We have found that
in this small q region the collective density fluctuations decay
with a two-step process. The fast process is associated with the
damped elastic motion of the system at fixed bonding pattern.
The slow process is associated with the restructuring of the
bond network, mediated by a sequence of elementary bond-
switch processes. Interestingly, a single time scale controls the
decay of the slow density fluctuations at all investigated
wavevectors. A wavevector-independent collective relaxation
has been previously reported in some soft-matter systems,
including rodlike micelles,43 in solutions of telechelic ionomers
in toluene reversibly connected by the association of their ionic
terminal groups,44 in water-soluble polymers with hydrophobic
end blocks acting as bridges between different droplets,24 and
in polymer melts.45,46 Recent simulations of a highly directional
tetrahedral network also reported indications of a q0 mode, but
the limited system size did not allow for a proper determination
of the small wavevector behavior.47

Theoretical models based on memory functions48 in which
the decay of the memory is assumed to be independent of the
wavevector have been in the past used to interpret the
aforementioned experimental results. Mode coupling theory,41

in the limit of very small wavevector, also predicts a wavevector-
independent memory function and a q0 mode. Hence we
speculate that the q0 behavior should be shared by all systems
composed by independently relaxing distinct regions in the
region of wavelengths larger than the characteristic size of the
relaxing units, if particle diffusion is not relevant. Finally, our
results also suggest that vitrimeric systems, in which the bond-
switching mechanism is at the heart of the network
reconfiguration, should have in the q0 mode their characteristic
signature.

■ APPENDIX. THE BOND-SWAPPING ALGORITHM

For the sake of completeness, we review here the method
introduced in ref 22 to implement a bond-swapping mechanism
in molecular dynamics simulations.
We assume that the system is composed by two type of

particles (A and B), with each having a number of interacting
sites providing the particle functionality (or valence). Sites of

unlike species interact through a bonding potential (eq 2 and
Figure 1d). In a swap process, when an unreacted site of a
particle finds itself close to a bonded pair, it gives rise to an
activated complex which then decays again in a bonded pair
and an isolated unreacted site. The swap is successful if the
incoming particle replaces the originally bonded particle of the
same type. This can be schematized with the reactions

+ = + + = +A B B A B B A B A A B Aori k j i j k k i j j i k

(11)

where Aj indicates the j site of a type A particle and analogously
Bk indicates the k site of a type B particle.
An effective computational algorithm must fulfill two

conditions: (i) Each site should not be able to form more
than two bonds. Indeed, each site should be bonded with two
other sites only during the swap process. This is a necessary
condition to model particles with well-defined functionalities.
(ii) It must be possible to control the activation energy of the
swap process. It should be possible to tune the activation
energy from infinity (no swap processes, only bond breaking
and re-forming) to zero (no energetic cost for swapping).
To fulfill the two previous conditions, the method introduced

in ref 22 suggests to complement the two-body interaction with
a three-body potential V3b that acts between all triplets of
bonded sites (either ABA or BAB). Indicating with rss

ij and rss
ik the

distances between sites i and j and i and k, the three-body
contribution reads

λ= ϵV r r V r V r( , ) ( ) ( )b ss
ij

ss
ik

ss
ij

ss
ik

3 3 3 (12)
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where λ is a parameter controlling the activation energy, ϵ is the
depth of the two-body bonding potential, σss is the optimal
bonding distance (the position of the minimum in the bonding
potential in eq 2), and rc is the cutoff distance in the same
bonding potential. Note that since Vss(r) is always negative for r
> σss, V3 is always positive. Thus, the sign of the three-body
contribution is controlled by the sign of λ.
To grasp how the method works, we use the notation of eq

11 (left) and consider how the potential energy changes when
an unreacted site Bj moves to a distance r < rc from Ai, the site
involved in the AiBk bond. Since the bonding interaction
involves only distinct pairs, only the Ai site is involved in two
interactions, and hence only one single triplet needs to be
considered (BjAiBk). The potential energy of these three
particles is thus given by the sum of the pair interaction energy
between Bj and Ai, the pair interaction energy between Bk and
Ai, and the triplet interaction energy between Bj, Ai, and Bk.
Assuming the limiting case in which both BjAi and BkAi are at
the optimal distance σss, then Vss = −ϵ and V3b = λϵ. As a result,
the total potential energy is −2ϵ + λϵ. If λ = 1, then the
additional gain of forming one more bond is exactly
compensated by the three-body contribution: the swap process
does not require any energetic cost. On increasing λ, the
formation of a triplet becomes energetically expensive,
providing the possibility of encoding the presence of an
activation barrier.
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The three-body potential helps also avoiding the formation
of multiply bonded sites. Indeed, if three B interacting sites are
close to one A site, then the bonding potential contributes
about −3ϵ. However, the three-body potential gives +3λϵ
(since there are now three possible triplets), generating a
configuration with a significantly higher potential energy than a
bonded pair.
The swap method thus requires λ ≥ 1. For λ = 1 the swap

dynamics is most effective, and the restructuring of the bond
network is not hindered. By contrast, values of λ > 1 allow to
simulate the effect of an activation energy on the swap process.
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