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Summary. — Colloidal systems show beautiful examples of how entropy can lead
to self-assembly of ordered structures, challenging our perception of disorder. In
fact, dispersion of hard colloidal particles, systems in which by default entropy is
the only thermodynamic driving force, displays both translational and orientational
order on increasing density. Entropy is also a fundamental concept for describing
effective interactions between colloidal particles. In several cases, entropy maxi-
mization generates strong attractive forces, capable of inducing condensation and
sometimes crystallization. These entropic forces can even be exploited to drive
colloids in specific locations or to orient them in the build-up of supracolloidal ag-
gregates. Depletion interactions and combinatorial contributions are two important
manifestations of these forces. Entropy also plays a leading role in systems ex-
ploring the bottom of their potential energy surface. In patchy colloids, particles
interacting with highly anisotropic and localized potentials, ground-state structures
are often degenerate in energy, leaving entropy to decide the thermodynamically
stable polymorph. A striking result is the possibility of generating colloidal “liq-
uids” thermodynamically more stable than colloidal “crystals” even at vanishing
temperature.
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c© Società Italiana di Fisica 511



512 FRANCESCO SCIORTINO

532 4
.
3. Combinatorial entropy: microemulsion droplets linked by telechelic poly-

mers

534 4
.
4. Combinatorial entropy: DNA grafted particles

536 4
.
5. Combinatorial entropy: superselectivity

537 5. Equilibrium clustering

539 6. When entropy competes with energy

539 6
.
1. Dipolar hard spheres

541 6
.
2. Competing patches

542 6
.
3. Janus

542 6
.
4. Re-entrant gels

544 7. Conclusions

1. – Introduction

Entropy plays a very important role in soft-matter self-assembly, the process by which
information encoded in the size and shape of the constituent particles produces meso-
scopic and macroscopic ordered states. Oppositely to the common-sense description of
entropy as a disordering agent, in a large variety of systems entropy constitutes the only
driving force for ordering. Some of these cases will be discussed in this article.

The focus of this review are colloidal dispersions, particles of nanometric or micro-
metric size dispersed in solution. The upper limit to the particle size is fixed by the
requirement that the thermal energy (kBT ) is able to compensate for gravitational sed-
imentation. Equilibrium statistical mechanics then provides a valuable framework for
predicting the collective behavior of the system.

The review begins (sect. 2) by discussing two classic soft-matter cases in which entropy
plays a fundamental role in ordering, specifically hard-sphere (and hard disk) crystalliza-
tion [1] and nematic ordering in elongated hard particles [2]. In these two cases, the role
of entropy is crystal clear, since by definition particles interact only via excluded volume.
In fact, the interaction potential is infinite if two particles overlap and zero elsewhere,
so that by construction energy does not play any role. The only relevant configurations
are the ones without particle-particle overlaps, and all of them are equally probable. For
each packing fraction, the volume in phase-space associated to ordered, partially ordered,
or disordered states is the quantity that decides the thermodynamic most stable phase.
An ordered state either orientational (nematic) or translational (crystallization) can arise
from the maximization of such a volume.

Today, colloidal particles can be engineered with sophisticated inter-particle inter-
action potentials, including attractive directional interactions [3-9]. A large variety of
colloidal particles with functionalized surfaces have been synthesised and shown to be
able to self-assemble in quite interesting structures, not all of them mimicking the ones
found in molecular systems. In some cases, the surface patterning is such that only
localized regions of the surface (patches) are able to bind with other particles, provid-
ing valence to colloids. Patchy colloids [10, 11, 6, 12-14], soft patchy micelles [15], DNA
patchy particles [16, 17] as well as some proteins [18-21] are important examples of this
category. These anisotropically interacting particles can bind to each other, reaching
sometimes states in which all possible patches are bonded. In this case, the energetic
driving force is fundamental in reaching the fully bonded ground state. But which of
all possible fully bonded structures is the thermodynamically stable one is decided by
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entropy (sect. 3). Thus patchy colloids, being able to explore their ground state at low
temperatures, exploit once more entropy as the main driving force for self-assembly.

The important role that entropy plays in soft-matter systems is often expressed in
terms of an effective particle-particle interaction potential. Differently from atoms and
molecules, colloidal particles interact via forces arising from a restricted thermodynamic
averaging of elementary interactions [22]. These effective forces, even at the two-body
level, include by construction an entropic part, being a Boltzmann-weighted average of
all phase-space points consistent with a fixed inter-particle distance and relative orien-
tation. In some cases, the effective force is completely entropic in origin but still can
induce strong particle-particle aggregation. The depletion interaction [23-25], arising
when large colloidal particles are immersed in a bath of smaller cosolutes, is the classic
example of this class of entropic effective potentials. Since their discovery, depletion inter-
actions have been progressively mastered to exploit particle and cosolute shape [26-28,13]
(including positive and negative curvature cases), particle roughness [29], cosolute aggre-
gation [30, 31]. Another important class of entropy-driven effective potentials originates
from combinatorial contributions [32], a phenomenon amplified by the possibility ex-
ploited by specific colloidal particles to equivalently give rise to intra- or inter-particle
bonding. Depletion interactions and colloidal association driven by combinatorial contri-
butions are reviewed in sect. 4. The discussion of few soft-matter cases in which entropy
and energy compete in the self-assembly process, resulting in systems in which the struc-
tural and dynamic properties are strongly sensitive to temperature or pressure, concludes
the review.

It would be unfair not to mention that quite a few interesting entropy-controlled
phenomena of soft-matter relevance are found in polymer physics [33]. Those are not
discussed here. The interested reader can consult refs. [34, 35]. Finally, I also recom-
mend two beautiful reviews related to this work by Daan Frenkel [36] and Fernandez
Escobedo [37] as well as the stimulating book by Roberto Piazza [38].

2. – The classical cases

2.1. Phase transition in hard spheres. – In January 1957 in New Jersey during a
symposium on many-body problems, Alder and Wainwright presented their first results
on molecular dynamics simulations of hard spheres (HS), suggesting the possibility of
a transition toward an ordered crystalline phase on increasing the density of the HS
fluid [1]. George Uhlenbeck, during the discussion time, asked the participants to express
their personal feeling on such a possibility and the vote ended up even [39]. The cartoon
in fig. 1(b) and the commonly but improperly assumed connection between entropy and
disorder possibly explain the difficulty of reaching a consensus on this question. Hard
spheres interact only via excluded volume, preventing any pair of particles from becoming
closer than their diameters (fig. 1(a)). No energy is involved in the interaction. Thus,
thermodynamic is fully controlled by the entropic term in the free energy. Improperly,
the possibility of hard-sphere crystallization was perceived as contradicting the meaning
of entropy as a driving force toward increasing disorder. How can a crystal be more
disordered than a fluid configuration?

To properly answer the question, one needs to consider the number of microstates
explored in the fluid and in the crystal phase. In the crystal, particles move in cages
provided by their own neighbours, as vividly shown in the cathode-ray tube used by
Alder and Wainwright to visualize the molecular dynamics trajectories of two-dimensional
crystalline hard disks (fig. 1(d)). The width of the spots created by the bright line
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paths is a visual measure of the phase-space sampled by each particle. The log of the
number of sampled microstates constitutes the entropy of the crystal, which we can name
vibrational or cage entropy. In the fluid, we can distinguish two contributions to the
entropy: a vibrational contribution, which again depends on the available volume inside
the cage and a second contribution which measures the number of different disordered
arrangements of the particles, commonly named as configurational entropy. The mean
square displacement (MSD) of a particle in the dense fluid or in the crystal can be
considered as a proxy for the vibrational contribution to entropy. Figure 1(e) contrasts
the MSD in disordered and ordered dense HS configurations to provide evidence that
the phase-space volume explored by the particles in the cage (vibrational motion) is
significantly smaller in disordered configurations. The difference in vibrational entropy
can be so large that the additional configurational contribution is not any longer sufficient
to thermodynamically stabilise the fluid phase. The ordered crystal has a larger entropy
than the fluid.

Quite accurate estimates of the HS entropy are nowadays available. The fluid phase
entropy per particle can be approximated with the Carnahan-Starling (CS) expres-
sion [41] (slightly more accurate expressions than the one by Kolafa —first appeared
as eq. (4.46) in [42]— are available)

(1)
SCS

ex

kB
= −4φ − 3φ2

(1 − φ)2
,

where φ is the packing fraction. The face-centered-cubic (FCC) crystal free energy can
be approximated using Hall expression [43], a phenomenological expression based on
computer simulation results. Hall noted that the compressibility factor ZHS of the FCC
HS crystal can be quite accurately modelled by

(2) ZHS =
βP

ρ
=

1 + φ + φ2 − 0.67825φ3 − φ4 − 0.5φ5 − 6.028φ6f(φ)
1 − 3φ + 3φ2 − 1.004305φ3

,

with f(φ) = exp((π
√

2/6−φ)[7.9−3.9(π
√

2/6−φ)]). In order to calculate the excess en-
tropy Sex per particle from the compressibility factor ZHS, a thermodynamic integration
in φ can be performed, obtaining

(3)
Sex(φ)

kB
=

Sex(φ∗)
kB

−
∫ φ

φ∗

(
βP

ρ
− 1

)
dφ′

φ′ .

The integration in eq. (3) is usually started from φ∗ = 0.544993, a value for which an
accurate estimate of the excess crystal entropy Sex(φ∗)

kB
= −5.91889 based on computer

simulation is available [44].
Figure 1(h) shows the fluid and crystal entropy per particle as a function of the volume

per particle for the HS system. In the case of hard bodies, the free energy F has only
the entropic contribution F = −TS. Thus the pressure, the volume derivative of the
free energy, is P = T∂S/∂V |T . The pressure is thus nothing more than the derivative
of the entropy function reported in fig. 1(h). Hence, the common tangent line shown
in fig. 1(h) identifies two phases (fluid and crystal) with the same T , P and identical
chemical potential μ (being μ = (F + PV )/N , see caption of fig. 1). The equality of
T , P and μ sets the condition for phase coexistence. In the region between the two
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Fig. 1. – The hard-sphere model. (a) The radial dependence of the interaction potential, βV (r).
The potential is infinite for r smaller than the particle diameter and zero everywhere else. (b) A
cartoon of a crystalline and of a fluid configuration to highlight the different order perceived
by our eyes, trained to capture only the configurational part of the entropy. (c) An electron
microscope image of a colloidal crystal (courtesy of D. Pine). The particles in the photograph
are made from polystyrene, a common commercial plastic. Notice that there are both hexagonal
and square planes visible, which is consistent with a face-centered cubic lattice. (d) The original
trajectories detected in the first molecular dynamics calculation of hard disks [1] as shown by
the cathode-ray tube used by Alder and Wainwright (redrawn from ref. [1]). (e) A comparison
between the mean square displacement of HS particles in the fluid and in the crystal phase.
In the crystal phase, particles rattle in larger cages, a confirmation of the larger vibrational
entropy. (f) A cartoon of a polymer-grafted colloid. (g) The fluid, coexisting and crystal phases
observed in the classic experiment by Pusey and van Megen [40] (Courtesy of P. Pusey). (h) The
volume dependence of the fluid and crystal entropy (with an arbitrary additive constant) as
predicted by the CS and the Hall equation of state. The dashed line is tangent to both the
fluid and the crystal entropy. Since P = T dS/dV , the two tangent points indicate two volumes
Vxt and Vfluid for which both temperature and pressure are identical. If we further indicate
with S0 the intercept of the same line at zero volume, then we can write for these two points
S = S0+V dS/dV = S0+PV/T . Then the Gibbs free energy per particle G/N = (−TS+PV )/N
is equal to −TS0/N for both Vxt and Vfluid, proving that these two volumes have also the same
chemical potential μ ≡ G/N . Thus, Vxt and Vfluid are two coexisting phases.

coexisting phases, in the thermodynamic limit, entropy is maximised by the presence of
two coexisting phases.

Despite common jokes suggest that most objects in the physicist’s mind are hard
spheres, the laboratory realisation of a HS model has been delayed by the difficulties
of synthesise quite monodisperse colloidal particles with negligible electrostatic and van
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der Waals attractions. To experimentally realize the ideal HS potential one needs to
suppress the inevitable van der Waals (short-range) interaction originating from the
particle polarizability [45]. The colloids are chemically treated, for example via steric
stabilization, to prevent close approach. To further reduce the effect of van der Waals
interactions (and increase the transparency of the sample) particles are dispersed in
a solvent of comparable refractive index. Steric stabilization requires the grafting of
polymer chains on the surface of the colloidal particle (fig. 1(f)). Similarly, a density
match between solvent and colloidal particles helps to minimize the effect of gravity. One
of the most studied model systems is composed of poly-(methyl methacrylate) (PMMA)
particles, grafted with a layer of poly-(12-hydroxy stearic acid) (PHSA) in a solvent
composed of decalin and tetralin. The measured equation of state does not deviate
from the one of a perfect HS system under any relevant experimental condition [46], for
particle sizes larger than 50 nm in diameter and for packing fractions as large as 0.64. An
ingenious measurement of the equation of state for HS colloids is possible by detecting the
equilibrium sedimentation profile resulting from the presence of the Earth gravitational
field [47]. Figure 1(g) shows one of the first experimental evidences of HS crystallisation
(and glass formation) in the laboratory [40].

2.2. Phase transition in hard disks. – The phase behavior of hard disks (HD), the
two-dimension (2-d) counterpart of the hard-sphere system, is particularly interesting.
Controversies concerning the nature of HD crystallization process have persisted for
decades. Its investigation stimulated the development of numerical methodologies (in-
cluding the first Monte Carlo [48] and Molecular Dynamics calculations [49]). Recent
numerical results, based on the event-chain Monte Carlo algorithm (ECMC) [50], sup-
ported by experimental evidence [51], have shown that the crystallization scenarios in HD
are more complex than previously thought. On increasing surface fraction, the isotropic
fluid transforms via a first-order fluid-hexatic transition to an intermediate phase [52].
The hexatic phase is characterized by sixfold orientational order which extends over
(quasi-)long range, while the positional order is short-ranged. It is this intermediate
phase that, upon further increase of the density, gives then rise to a continuous hexatic-
solid transition. The fluid then transforms into a solid through an intermediate hex-
atic phase. The existence of an intermediate phase is not consistent with the standard
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario [53,54], predicting a con-
tinuous transition both from the fluid to the hexatic and from the hexatic to the solid.
It also differs from other first-order liquid-solid transition scenarios, which exhibit no
intermediate hexatic phase (see ref. [55] and references therein).

Recent calculations [56] on binary HD mixtures have shown that the stability window
of the hexatic phase progressively shrinks on increasing the concentration of small disks
until the line of continuous transitions terminates at an end point beyond which melting
becomes a first-order liquid-solid transition. The surprisingly low concentrations of small
disks at the end point (less than 1%), emphasizes the fragility of the hexatic phase with
respect to disorder in the particles diameter.

2.3. Nematic ordering in hard cylinders. – While HS crystallisation, in two and three
dimensions, shows the power of the entropy associated to particle center-of-mass position,
the nematic transition provides evidence of the important entropic contributions arising
from particle orientation. Interestingly, the possibility that entropy could act as an
ordering force was already evident in Onsager’s theory on the effect of shape in colloidal
solutions [2], a contribution which appeared in the Annales of the New York Academy of
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Science already in 1949, several years before the debate on hard-sphere crystallization.
Let us assume that particles can be considered distinct according to the orientation

of their principal axis a. The idea is to write the configurational part of the partition
function Zig(V ) of an ideal gas of particles oriented according to some pre-defined dis-
tribution {Ni}, where Ni is the number of particles oriented in the solid angle ΔΩi. If
the {Ni} are chosen to be equally probable (isotropic distribution of orientations), then
ln Zig(V ) will provide the appropriate free energy (the entropy) of the isotropic phase. If
the {Ni} are chosen in such a way that one particular orientation is preferred, then the
calculated lnZig(V ) will provide the entropy of the nematic phase described by {Ni}.
This exercise can be repeated for several {Ni} distributions to identify the most probable
one (the one with the highest entropy). By comparing the entropy of the isotropic phase
and the entropy of the most disordered nematic phase, Onsager predicted the existence
of a first-order phase transition.

For a set of orientations {Ni}, Zig(V ) can be written as (setting the thermal wave-
length as unit of length)

(4) Zig(V ) =
∏

i

1
Ni!

[
ΔΩi

4π

∫
dr

]Ni

,

corresponding, using Stirling’s approximation, to an entropy S(V ) ≡ kB ln Z(V )

(5)
Sig(V )

kB
=

∑
i

Ni

[
1 + ln

(
V ΔΩi

4πNi

)]
.

If we add the virial contribution, therefore going beyond the ideal gas approximation,
we obtain

(6)
S(V )
kB

=
∑

i

Ni

[
1 + ln

(
V ΔΩi

4πNi

)]
+

1
2V

∑
i,j

β(ai,aj)NiNj ,

where −β(ai,aj)/2 is the virial coefficient (the excluded volume) between two particles
oriented as ai and aj. The virial contribution is strongly dependent on the relative
orientation of the two particles, as shown in fig. 2(a-b). Parallel cylinders can be packed
much more efficiently then perpendicular cylinders.

For cylinders of length L and diameter D, indicating with γ the angle between ai and
aj [2]

(7) −β(γ) =
π

2
D3 sin γ +

π

2
LD2 +

π

2
LD2| cos γ| + 2LD2E(sin γ) + 2L2D sin γ,

where

(8) E(sin γ) =
∫ π

2

0

(1 − sin2 γ sin2 φ)1/2dφ.

In the limit of elongated particles, L � D,

(9) β(γ) = −2L2D| sin γ|.
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Fig. 2. – Isotropic-nematic phase for hard cylinders. (a) Excluded volume between two coaxial
cylinders. The center of mass of the red cylinder can not explore the volume πD2L, where D is
the diameter and L the length. (b) Excluded volume between two perpendicular cylinders. The
center of mass of the red cylinder can not explore the volume ≈ 2DL2. (c) The functional form
for the probability of orientation θ with respect to the nematic vector selected by Onsager for
the case α = 10. (d) The volume V dependence of the different entropic contributions. (e) The
entropy of the isotropic and of the nematic phase calculated according to the Onsager theory
for cylinders of diameter D = 1 and L = 5. The dashed line is tangent to both the isotropic and
the nematic entropy. Hence, since P = T dS/dV , the two tangent points indicate two volumes
Visotropic and Vnematic for which temperature, pressure, and chemical potential are identical.

Hence, in this limit, parallel cylinders do not exclude volume (| sin γ| = 0), while perpen-
dicular ones exclude the largest possible volume 2L2D.

To evaluate S(V ) it is convenient to express Ni as Ni = Nf(a)ΔΩ such that f(a)
becomes the probability of observing a particle oriented in the solid angle ΔΩ centered
around a. Naturally,

(10)
∫

f(a)dΩ = 1.

In the isotropic phase all orientations are equally probable and f(a) = 1
4π .

In the nematic phase we do not know a priori f(a). As commonly done by physicists,
Onsager postulated a reasonable functional form for f(a) based on a free parameter α,
a form for which he was able to solve all integrals requested in the calculation of S(V ).
The parameter α was then evaluated as the one that maximizes the resulting nematic
entropy.
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The functional form chosen by Onsager was based on the physical intuition that in
the nematic phase all particles are essentially oriented around the nematic direction (as
in matches or spaghetti in their boxes). f(a) should then be peaked around θ = 0 and
θ = π, indicating with θ the angle between a and the nematic direction. For mathematical
convenience he chose the function

(11) f(θ) =
( α

4π sinhα

)
cosh(α cos θ),

whose angle dependence is reproduced in fig. 2(c). In the limit of α � 1 this functional
form is indeed peaked around θ = 0 and θ = π.

The entropy at the ideal gas level, for either the isotropic or the nematic phase is

Sig(V )
kB

=
∑

i

Ni

[
1 + ln

(
V ΔΩi

4πNi

)]
(12)

= N

[
1 + ln

(
V

N

)]
− N

∫
f(a) ln (4πf(a)) dΩ.

The first contribution is the entropy associated to the center of mass of the particles, the
standard ideal-gas contribution. The second contribution depends only on the distribu-
tion of orientations and defines the orientational entropy of the system.

In the isotropic case, the orientational contribution vanishes since f(a) = 1
4π and

(13)
∫

f(a) ln [4πf(a)] dΩ = 0.

In the nematic phase the ideal-gas orientational entropy is not zero. For the functional
form postulated by Onsager (eq. (11)) the orientational entropy can be calculated for
large α resulting in

(14)
∫

f(a) ln (4πf(a)) dΩ ≈ log α − 1.

This contribution diverges to minus infinity on growing α, as expected by localization in
classical physics.

The entropy associated to the excluded volume of course depends on the inter-particle
orientation. Figure 2(a-b) shows the different excluded volume between pairs of cylinders
perpendicularly or parallelely oriented. For the isotropic case, always in the limit L � D,
(using

∫ π

0
sin2 γ dγ = π/2 and

∫ 2π

0
dφ = 2π) the virial contribution to entropy can be

expressed as

∑
i,j

β(ai,aj)NiNj = 2L2D

∫∫
β(γ)

N2

(4π)2
dΩdΩ′(15)

= N2 1
4π

∫
β(γ) sin γ dγ dφ = −π

2
L2DN2.

The corresponding expression for the nematic case (see Onsager article) is

(16)
∑
i,j

β(ai,aj)NiNj = N2

∫
β(γ)f(Ω)f(Ω′) sin γ dγ dφ ≈ −2L2DN2

√
π

α
,



520 FRANCESCO SCIORTINO

which approaches zero for large values of α.
For each value of α, Onsager was than able to estimate the system entropy. By taking

the derivative of the nematic entropy with respect to α and equating it to zero, he was
also able to evaluate the value αmax for which the total entropy, sum of the ideal gas and
of the virial term, is largest. Substitution of αmax in eq. (16) and eq. (14) provides the
best approximation (based on the selected functional form eq. (11)) to the nematic free
energy.

Figure 2(d) shows, for cylinders with L = 5 and D = 1, the orientational and virial
contributions to the entropy. A significant volume dependence of the entropy is present
in the virial component of the isotropic phase (due to the change in the available volume
accessible to the center of mass) and in the orientational component of the nematic phase
(due to progressive reduction of the particle orientation).

The resulting final expressions for the entropy in the isotropic and nematic phase as
predicted by the Onsager theory for cylinders are (defining ρ = N/V )

(17) SOnsager
iso = N

[
1 − ln(ρ) − ρ

πL2D

4

]

and

(18) SOnsager
nematic = −N

[
ln

(
ρ3D2L4 π

4

)]
.

Figure 2(e) shows SOnsager
iso and SOnsager

nematic (per particle) for L/D = 5 and again the
ordered phase has a larger entropy at large densities. As in the previous HS case, the
common tangent line to the expressions S vs. V (equal P and μ) selects the densities of
the two coexisting phases.

The theory of Onsager, despite its approximations, has the strong merit of high-
lighting the important role of orientational entropy in the ordering process of colloidal
anisotropic particles. Indeed, this theory has become the starting approach for under-
standing more and more complex mesophases (smectic [57, 58], chiral [59], discotic [60],
biaxial nematic [61], twist-bend nematic [62, 63]), progressively accompanying the syn-
thesis of colloidal particles of more and more complex geometry [64], including ellipsoids,
disks, helices and bent-shaped particles. It also provides a relevant framework for inter-
preting the self-assembly of colloidal particles aggregating in persistent one-dimensional
structures [65-67].

2.4. Dense hard-bodies phases . – The search for the densest ordered phase in colloids
interacting only via excluded volume (hard bodies) has been a central topic in soft matter
in the last years. These studies, starting from oblate and prolate ellipsoids [68, 69] have
now been extended to significantly more complex structures. The dense regular packing of
polyhedra and non-convex particles have been thoroughly investigated numerically [70,71]
and, to a certain extent, experimentally [72]. It has been suggested that simple measures
of particle shape and local order in the fluid can help predicting the final fate of their
densest phases, ending either in liquid crystal, plastic crystal, or crystal states [71].
The concept of entropic bond has been proposed, based on calculation of the effective
potential between particles in dense configurations. As for chemical bonds, entropic
bonding can be quantified in terms of local entropy density and bond lifetimes [73, 74].
By designing the shape of the (hard) colloidal particles, these bonds can also be exploited
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to control entropic valence, suggesting the possibility of exploiting these bonds to achieve
the desired self-assembly. As for the nematic case discussed previously, different forms
of entropy compete. For example, in the case of regular polyhedra, rotating the particle
with respect to its symmetry axis produces the same local geometry, stabilising in some
cases rotational phases. It has also been suggested that shape and mixing entropy can
be exploited to favour required crystal structures in mixtures of hard bodies of different
shape [75].

Very recently, Glotzer and coworkers [76] reported a quite intriguing and novel phe-
nomenon. Investigating a one-component system composed of hard particles with spe-
cific shapes, the authors discover the presence of a fluid-fluid transition which precedes
crystallization. While it is known that hard particles can have several mesophases (the
nematic phase is just one of them), these mesophases are usually characterized by some
partial ordering process (orientations in the case of nematic phases). As we have seen,
an intermediate phase is also observed in hard disks. Lee et al. [76] showed that for
three different particle shapes, designed to favour clustering into one-, two- and three-
dimensional clusters, the fluid first transforms into a higher-density fluid via a first-order
fluid-fluid transition and then crystallizes. But both the low- and the high-density fluid
are disordered over macroscopic scales, both in position and orientation. Order manifests
itself at shorter ranges, via the formation of specific geometry-related motifs. Also the
resulting crystal phases are quite interesting, being characterized by very large unit cells.
This study provides a beautiful example of how relevant entropy can be in controlling
self-assembly of colloidal particles.

3. – Entropy in the ground state

3.1. Patchy colloids: sampling the ground state. – Colloidal particles with novel
shape and surface patterning are constantly synthesised in laboratories all over the
world [3, 4, 29, 12, 6, 7, 14]. These novel nano- and micron-sized particles hold promise
to become the building blocks of tomorrow tunable materials, significantly expanding
over atomic and molecular compounds. An interesting class of these novel colloidal par-
ticles is constituted by limited-valence colloids, particles with ability to selectively bind to
a controlled number of neighbors [77] providing specificity to the particle-particle interac-
tion. This binding specificity is achieved by particles design, as in DNA nano-stars [16],
or via specific patterning of the surface properties which can be decorated by well-defined
patches (for example hydrophobic or hydrophilic areas [11]) or functionalised with spe-
cific molecules (including DNA single strands [78]). These directional colloids, besides
providing the community with the nano- and micro-size analog of molecules, significantly
expand the possibilities offered by quantum mechanics in the design of the inter-particle
interactions.

When the valence is limited, on cooling the particles start to cluster forming larger
and larger aggregates, eventually giving rise to a network in which the nodes are the
particles and the functionality of the network (the number of links departing from each
node) is provided by the particle valence. Differently from supramolecular chemistry
systems [35], colloidal bonds are not permanent. The ability to break and reform bonds
makes it possible for the system to avoid any trapping in a metastable state and, at low
T , to reach a condition in which all possible bonds are formed, i.e. to sample the ground
state.
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3.2. Liquid or crystal again: the role of bond flexibility. – The ability of limited-valence
patchy colloidal particles to form a fully bonded network adds an interesting twist in the
low-temperature behavior of these systems. As stated in textbooks, all substances (except
helium, owing to quantum effects) crystallize at low T . The lower energy of the ordered
phase compared to the disordered one, together with the vanishing role of entropy on
cooling (entering in the free energy with a multiplicative T factor) explains the inevitable
crystallization ability of all atomic and molecular systems. But this explanation ceases
to be applicable when the disordered liquid has the same energy as the ordered crystal,
as it is the case in these novel colloidal particles. As for the HS colloid case, entropy
becomes the main factor ruling the relative thermodynamic stability of the liquid and of
the crystal, opening the unexpected possibility that, for a suitable choice of the inter-
particle interaction, the disordered state can remain the thermodynamically stable phase
down to vanishing T .

A recent study [79] has demonstrated that it is possible indeed to design patchy
colloidal particles which never crystallize in a wide range of densities, being the disordered
network the lowest free energy state at all T . To grasp why this is possible, we have to
focus on the entropy of the liquid and of the crystal. As for the HS case, both phases
have vibrational entropy, originating both from the constrained center-of-mass motion
and from the molecular rotations, a measure of all microstates which can be sampled by
the system at fixed bonding pattern. In these network-forming fluids, the bonds provide
energetic cages which constrain the motion of the particles [80], similarly to the excluded-
volume cage confining particles in glasses. As for the HS case, the ordered configuration
has a larger vibration entropy. As we have discussed in the HS section, crystal cages are
more regular, allowing on average a larger mean square displacement of the particles.
Again, as for the HS case, the disordered phase has an additional entropic stabilisation
arising from the different disordered arrangement of all particles compatible with a fully
bonded network. The freedom to modify the parameters of the interaction potential, a
possibility missing in the HS case, makes it possible to tune the configurational entropy
of the liquid. In particular, it has been shown that the flexibility of the bonds (encoded in
the angular patch width) has a strong effect on the strength of the liquid configurational
entropy. The patch width, a quantity which can be controlled in the design of patchy
colloidal particles, then becomes a key element in controlling the entropy of the liquid as
compared with that of the crystal.

As shown in ref. [79], on decreasing the directionality of the bonds the liquid entropy
progressively increases, becoming larger than the crystal entropy for rather flexible bonds.
The increase in the number of distinct fully bonded networks arises from the possibility,
offered by very flexible bonds to increase the diversity of the close-bond rings. For
very flexible bonds the network topology includes closed rings formed by three and four
consecutive links (fig. 3(a)). This significantly increases the configurational part of the
network entropy compared to the diamond crystal topology in which only rings of six are
present. The larger liquid entropy, in the density region where the fully bonded network
can form, stabilizes the liquid phase which becomes, beyond a certain threshold angle,
the stable phase even at very low temperatures (fig. 3(d)). Figure 3(e) and (f) compare
the phase diagram of two tetrahedral patchy models (with valence four), differing only
in the patch width. In the case of quite directional bonds, the standard scenario is
observed. The stability field of the open diamond crystal structure meets with the gas-
liquid coexistence curve at the triple point, such that the low T phases are the gas phase
and the crystal phases. When bonds become more flexible, the diamond crystal loses its
thermodynamic stability and a funnel of liquid states opens up at intermediate densities
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Fig. 3. – Effect of the bond flexibility on the phase diagram of tetrafunctional patchy particles.
(a) A cartoon of a two-dimensional network of fully bonded particles connected by flexible bonds,
highlighting the diversity of bond topologies. Closed rings of bonds of different size (starting
from three) are shown. (b-c) Schematic plot of two possible behaviors of the crystal and fluid
entropy (both fully bonded) with the flexibility, as encoded in the patch width. (b) The case
corresponding to a crystal which is always more stable than the fluid (larger entropy). (c) The
case in which, beyond a cross-over patch width, the fluid entropy becomes larger than the
crystal one. (d) Estimate [79] of the liquid and diamond crystal (DC) entropies as a function
of the width of the patch. The liquid entropy is separated in its two component: vibrations at
fixed bonding pattern and configurational (counting the number of different networks topologies
compatible with the fully bonded state). The crossing point between the total liquid entropy
and the DC entropy indicates the patch width value beyond which the fully bonded liquid
is the thermodynamically stable phase. Calculated phase diagrams [79] for a directional (e)
and a flexible (f) case. In the latter case, a funnel of thermodynamically stable liquid states
extending to vanishing temperatures is found between the gas-liquid phase coexistence and the
region of stability of the dense crystals (body-centered cubic BCC and face-centered cubic FCC).
((d-f) redrawn from ref. [79]).

between the gas-liquid and the liquid dense-crystal coexistence regions. In this density
funnel, the disordered fully bonded network remains the stable state down to vanishing T .

The idea that bond flexibility, by increasing the entropy, favours the thermodynamic
stability of disordered fully bonded systems is not limited to patchy colloids in three di-
mensions, but has found important application in the interpretation of the phase behavior
of several two-dimensional systems [81].
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Fig. 4. – Cartoons of the (a) Cubic Diamond (DC) structure formed by tetrafunctional patchy
colloidal particles and of the (b) Body Centered Cubic (BCC) structure. (c) The entropy of
the two crystals as a function of density (redrawn from ref. [88]) for a Kern-Frenkel model with
interaction range 0.24σ.

The discovery that limited-valence models with flexible bonds can give rise to ther-
modynamically stable phases is also of relevance to the physics of glasses. They indeed
provide a neat example of systems which can slow down their dynamics on cooling with-
out ever crystallizing. In this respect, they constitute models for an ideal glass, a system
which never crystallizes and for which the ground state can be reached in thermodynamic
equilibrium (at least in finite-size systems). Systems composed of limited-valence particle
retain configurational entropy even at vanishing temperatures [82,83,79]. The dynamics
in flexible patchy systems, the flexible analogues of the atomic and molecular network
glass formers [84], both on the computer and in the real world [85] follow an Arrhenius
dynamics with an activation energy related to the bond strength. In these systems, the
Kauzmann temperature [86] is zero.

3.3. Entropy selection of the stable crystals. – As discussed previously, particles dec-
orated by a limited number of patches, with interactions which can be assumed to be
quantized (on-off bonds), possesses a well-defined ground state, defined by the condition
that all possible bonds are formed. When this condition is met, the role of entropy as
the only driving force for selecting the thermodynamically most stable phase among all
possible fully bonded structures is re-established. Entropy does not only control the
relative stability of the fully bonded disordered network compared to the ordered crys-
tals, but also the relative thermodynamic stability of the different ordered fully bonded
polymorphs.

Tetrahedral patchy particles offer a good example of this entropy selection. Indeed,
besides the diamond crystal, it is also possible to form denser lattices in which particles
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retains their tetrahedral coordination. Examples of these lattices are the sodium-thallium
crystal (NaTl, consisting of two interpenetrating diamond crystals), the body-centred-
cubic (bcc) crystal and the fascinating open clathrate structures, in which fully bonded
tetrahedral particles arrange into crystalline cages of different diameter [87]. It has been
found that at ambient pressure the less dense diamond lattice is the thermodynamically
stable phase [88]. Figure 4 shows the density dependence of the entropy evaluated via
thermodynamic integration from the Einstein model [89, 90] for the DC and two inter-
penetrating DC lattices. Similarly to what we have seen for the case of hard spheres and
hard cylinders, a common tangent construction allows us to calculate the coexistence
between the two crystals and their region of thermodynamic stability.

A similar role of the vibrational entropy in stabilising open crystals has also been
recently predicted [91] for mobile DNA-coated colloids [92, 93]. These colloidal particles
are covered by a layer of mobile DNA strands, which can be recruited in the presence
of a nearby particle coated with complementary DNA effectively forming patches on
demand. Interestingly, the amount of DNA coated on the particle surface controls the
number of patches that each colloidal particle can form [94, 95]. Despite the valence
selection mechanism is not yet fully clarified, even in this type of colloidal particles at
low T fully bonded conditions are achieved, leaving entropy as main driving force for
crystal selection.

Another case in which the orientational contribution plays an important role in the
crystal selection is offered by triblock Janus particles [11], colloidal particles decorated
with two hydrophobic poles of a tunable area separated by an electrically charged middle
band. Upon addition of salt, the overall electrostatic repulsion is screened and the hy-
drophobic patch-patch interaction becomes the dominant interparticle interaction. The
patch width in the experimental system, of the order of 65 degrees, allows the simulta-
neous bonding of two particles per patch for geometric reasons (a minimum angle of π/3
is requested to realize a two-bonds-per-patch condition). Under high-salt conditions,
particles form all possible bonds by creating a four-coordinated structure known as a
Kagome lattice [11] (fig. 5(a) and (e)). These particles provide a good example of design-
controlled self-assembly, since by selecting the patch width it is possible to control the
maximum number of bonded neighbours [96]. The equilibrium phase diagram, calculated
in ref. [97], predicts, besides a fluid phase, a coexistence of the Kagome lattice with a
triangular phase (fig. 5(a)).

As for the tetrahedral patchy particles, also for the triblock Janus particles transla-
tional entropy favours the open crystal lattices [98]. In the open crystal, particles have
indeed larger vibrational amplitudes. Interestingly, in the case of triblock Janus particles
the Kagome lattice is not the only possible open crystal (fig. 5(f,g)). Here, orientational
entropy [98] plays the dominant role in selecting the Kagome as the thermodynamic most
stable structure. In two dimensions, orientational entropy is a measure of the angle that
a particle can explore without breaking the hydrophobic bond. The Kagome lattice is
indeed the one (see fig. 5(c,e)) for which the rotational angle is largest.

3.4. Vitrimers: entropy-driven dynamics in the ground state. – Very recently, an in-
novative class of polymeric reconfigurable covalent networks, named vitrimers (fig. 6(a)),
has been synthesized [99]. The name originates from their dynamical properties, which
fall into the category of strong glass formers [102]. Just like silica glass, these materials
can be heated and reworked to take any shape without dissolving. The evolution of
the network topology is controlled by a properly designed bond swap mechanism (con-
trolled via a thermally sensitive catalyst) that preserves the total number of bonds. The
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Fig. 5. – Triblock Janus particles in two dimensions. (a) The calculated equilibrium phase
diagram showing the isotropic liquid phase, the Kagome lattice at small pressure and high
interaction strength and the dense triangular lattice at high pressure (redrawn from ref. [97]).
In both crystals the energy is the same since the patch width allows at most two bonds per
patch. A bond is present if the line connecting the particle centers passes by both patches.
(b-d) Cartoon of the possible orientation of a central particle surrounded by four other bonded
ones. In (b) the patch width is exactly π/3 and the central particles can not rotate without
breaking a bond. In (c) the patch width 2θ is larger then π/3 showing that the central particle
can rotate by an angle equal to 2θ−π/3, providing rotational entropy to this lattice. In (d) the
same patch width is shown, but for particles arranged in a less symmetric lattice. This reduced
symmetry reduces also the amplitude of the possible rotations of the central particle. Cartoon
of the Kagome lattice (e) and of two other open but less symmetric fully bonded lattices (f-g),
which are topologically possible but entropically less favoured than the Kagome lattice (redrawn
from ref. [98]).

bonds provide rigidity typical of plastics but the reconfiguration makes it possible to
relax internal stress and to drive the system toward its minimum free energy state. The
physics of vitrimers builds on polyfunctional condensation [35] of binary mixtures when
only bonds between monomers of different type are possible. When NA A-particles with
functionality fA are mixed with NB B-particles with functionality fB , the relative con-
centration in the system x = NA/(NA + NB) controls the low-T state. In stoichiometric
conditions (NAfA = NBfB) when all possible bonds are formed the resulting network is
fully bonded and no free links exist. When off-stoichiometric compositions are selected,
the minority species forms all possible bonds, while the majority species remains with
some of its binding sites unsatisfied [103]. The unbonded binding sites are thus available,
if a swap mechanism is present, to substitute sites involved in existing bonds, allowing
for network reconfiguration. Since the total number of bonds (the energy) is always
constant, ideally the evolution of the system is only controlled by the maximisation of
entropy [100].



ENTROPY IN SELF-ASSEMBLY 527

Fig. 6. – Strolling in the bottom of the energy landscape: Vitrimers. (a) A schematic represen-
tation of the restructuring step in a polymeric network of tetrafunctional and bifunctional units.
A bond swap changes the local topology without altering the total number of bonds. Redrawn
from ref. [99]. (b) A patchy colloidal particle analog of vitrimers, a binary mixture of A and B
patchy particles with only AB swappable bonds. (c) Theoretical and numerical phase diagram
of the patchy colloidal model for the case of a mixture of valence four and valence two [100].
Thick lines are phase coexistence boundaries. Thin lines indicate the coexisting phases. The
shaded area indicates the region where a spanning network (a gel) is found. (d) Comparison
between the theoretical estimate of the entropy based on Wertheim theory and its numerical
counterpart (redrawn from ref. [100]). (e) Cartoon of the experimentally realized [101] DNA gels
in which patchy particles are made by appropriate DNA sequences. The central panel shows
the swapping process. The lower panel the associated corresponding binding process (redrawn
from ref. [101]).

To theoretically model vitrimers, the complexity of the particles themselves can be
simplified by selecting a coarse-grained description which only preserves the fundamen-
tal ingredients: a binary mixture of A and B particles with off-stoichiometric conditions
complemented by a swap mechanism (fig. 6(b)). These simple ingredients open the pos-
sibility of describing the phase behaviour of a vitrimer system (fig. 6(c)) as the T → 0
case of a binary mixture of A and B patchy particles with fA and fB patches, respec-
tively, with only AB interactions of strength ε. In this model, the number of bonds
directly provides the potential energy. At low T , the number of bonds nb is always
nb = min(fANA, fBNB) and the energy is U = −nbε.

Following Wertheim theory [104], a theory originally developed to model associating
liquids and shown to provide a quite accurate description of patchy colloids [77,105], the
free energy of the fully bonded binary patchy system can be written as

(19) F = −nbε − T (Sbond + SCS + Smixing),
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where SCS is the reference Carnahan-Starling [41] HS entropy, Smixing is the entropy
associated to the mixing of the two species (A and B), and

(20) Sbond = Scomb(fANA, fBNB) + kBnb log
Vb

V
,

where [100]

(21) Scomb(n,m) =

⎧⎪⎪⎨
⎪⎪⎩

kB log
n!

(n − m)!
, if n > m,

kB log
m!

(m − n)!
, otherwise,

corresponds (assuming m > n) to the entropy associated with the number of ways n
(distinguishable) bonds can be distributed over m patches, and is therefore associated
with the configurational entropy in the system. The last term in eq. (20) represents
the change in entropy from creating a bond (where Vb is the so-called bonding volume)
multiplied by the number of bonds nb. Since the total number of bonds is constant, being
fixed to its largest possible value, the deciding factor entering in the free energy is entropy,
rather than energy, despite the low T . The resulting entropic phase diagram is shown in
fig. 6(c). At low densities a phase-separation is present. A sample prepared inside the
unstable region phase-separates into a low-density phase rich of the majority component
in monomeric form, and into a dense network which incorporates most of the nb bonds.
This numerical result proves that vitrimers do not dissolve when diluted. Interestingly,
due to the limited valence, the theoretical estimate of the entropy represents quite well
the “exact” numerical calculation (fig. 6(d)).

Very recently, an experimental realization of an all-DNA gel composed of tetra-
functional DNA nanoparticles, acting as network nodes, and bi-functional ones, acting as
links, capable of bond-swapping at low T , has been reported [101]. Exploiting ideas from
DNA nanotechnology, the binding bases sequence incorporates an appropriate exchange
reaction which allows links to swap, constantly retaining the total number of network
links (fig. 6(e)). Thus, the resulting DNA gel is able to rearrange its topology at low
temperature while preserving its fully bonded configuration.

4. – Entropy attracts

4.1. Depletion interactions. – One of the most powerful ways to control the attractive
interaction between hard bodies is provided by the so-called depletion interaction [25].
The addition in solution of small (compared to the colloids) non-absorbing cosolutes (i.e.
not interacting with the particles, apart from the excluded volume) induces an entropic
attraction between the colloids proportional to a first approximation to the concentration
of cosolutes. The physics behind this important attractive interaction was clarified by two
Japanese polymer scientists, Asakura and Oosawa [23], in a study which has remained
unnoticed for more than two decades before becoming a seminal contribution.

Asakura and Oosawa proposed to focus on an idealized model, i.e. two large hard
particles of diameter σc (the colloids) in the presence of M small hard particles (the
depletants) of diameter σp in a volume V (fig. 7(a-b)). They derived the statistical-
mechanics description of the system to evaluate the probability to find the two colloids
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Fig. 7. – Depletion interactions: (a) A large colloidal particle immersed in a solution of small
particles (usually polymers). The center of the polymer is prevented from accessing the volume
occupied by the particle and the corona around it. (b) When two colloidal particles are close by,
the coronas of the two particles overlap increasing the volume accessible to polymers. (c) The
shape of the depletion interaction potential calculated by Asakura-Oosawa. (d-e) Confocal
images of a colloid polymer mixture for two different polymer concentrations (redrawn from
ref. [106]). In (d) the colloids are dispersed in a fluid phase. In (e) the depletion interaction
has grown driving the system through a spinodal decomposition process, which leads to the
formation of a two-phase system. In the dense phase the dynamics of the particles is strongly
reduced, generating a depletion gel. (f-g) Depletion in dumbbells composed of particles with
smooth and rough surfaces. The rough surface generates a smaller overlap volume and hence
a less intense attraction between rough surfaces as compared to the attraction between smooth
surfaces (redrawn from ref. [29]). (i-h) Lock-and-key colloids. With the appropriate size ratio
of the buckled region and the colloidal particle, it is possible to maximize the excluded volume,
generating a preferential binding. (h) A colloidal polymer resulting from a lock-and-key depletion
mechanism ((i-h), redrawn from ref. [13]).

at relative distance r, under the simplifying assumption that the depletants do not inter-
act among themselves (an ideal gas) but do interact via excluded volume with the two
colloids.

Indicating with �r and �s the positions of the colloids and of the cosolutes, the partition
function in the canonical ensemble can be written as

(22) Q =
1

2λ6
1

1
M !λ3M

2

∫
e−βV11(�r1,�r2)d�r1d�r2

∫
d�s1 . . . d�sMe−βV12(�r1,�r2,�sM ),
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where V11 is the HS potential between the colloids and V12 the HS potential be-
tween the depletants and the two colloids. Since V12 is pair-wise additive (V12 =∑M

i=1 v12(�r1, �r2, �si))

(23) Q =
1

2λ6
1

1
M !λ3M

2

∫
e−βV11(�r1,�r2)d�r1d�r2

[∫
d�s1e

−βv12(�r1,�r2,�s1)

]M

.

The integral between square brakets is exactly the volume accessible to a single depletant,
i.e. the total volume of the system minus the volume prohibited by the presence of the
two colloids. Since the depletant-colloid distance cannot be smaller than σc+σp

2 , the
prohibited volume is twice V0, the volume of a sphere of diameter (σc + σp)/2 minus,
if the two colloids are close by, the overlap volume Voverlap between the two spheres of
diameter (σc + σp)/2. Thus,

(24)
∫

d�s1e
−βv12(�r1,�r2,�s1) = V − 2V0 + Voverlap(|�r1 − �r2|),

where the overlap volume can be calculated geometrically using sphere-sphere intersection
properties as

(25) Voverlap(r) =
π

12
[2(σc + σp) + r] [(σc + σp) − r]2 .

Then

[V − 2V0+Voverlap(|�r1 − �r2|)]M =(V − 2V0)M

[
1+

Voverlap(|�r1 − �r2|)
V − 2V0

]M

(26)

≈ (V − 2V0)M

[
1+M

Voverlap(|�r1 − �r2|)
V − 2V0

]
=(V − 2V0)M

[
1+ρMVoverlap(|�r1 − �r2|

)]
,

where M/(V − 2V0) ≡ ρM is the number density of small spheres. Inserting this result
in eq. (23), it is apparent that the two large colloids interact with a total interaction
potential which is the sum of the original HS (V11) potential complemented by an effective
potential Veff(r) induced by the presence of the cosolutes whose r dependence is (fig. 7(c))

(27) Veff(r) = −kBT ln[1 + ρMVoverlap(r)] ≈ kBTρMVoverlap(r) = ΠVoverlap(r),

where Π ≡ kBTρM is the ideal gas pressure originating from the cosolutes.
We note on passing that an alternative but equivalent derivation can be formulated

in terms of the net force induced by the osmotic pressure on the surface of the two
colloids. While when the two large particles are far apart the cosolutes hit the colloids
symmetrically, when the two large particles are close-by, the cosolutes are excluded in the
overlap volume region, producing a net unbalance in the average pressure which pushes
inward the two colloids. The analytic derivation of the unbalanced pressure, which can
be found in ref. [25], provides the same expression for the effective potential as the one
in eq. (27). Thus, the essence of the depletion interaction is the tiny gain of entropy
experienced by each cosolute when colloids are close by (and Voverlap is different from
zero), originating from the possibility of additionally exploring the overlap volume. This
entropy gain, once multiplied by the large number M of small cosolutes, results into a
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net attractive potential between the two colloids, which can easily become of the order
of the thermal energy kBT . The concentration of cosolutes then determines the strength
of the interaction while their size determines the interaction range, explaining the large
versatility of depletion interaction in the design of effective potentials between colloids.

Depletion forces have found several applications in colloidal science to induce crystal-
lization [26], phase separation [107], shape fractionation [28]. The ability to control the
interaction range has been exploited to investigate the existence of the liquid state [108],
colloidal gelation [106] (fig. 7(d-e)), glass-glass transitions [109,110]. More recently, deple-
tion interactions have been exploited to control the self-assembly of dumbbells composed
of fused spheres of different surface roughness [29, 111] (fig. 7(f-g)) and of colloidal par-
ticles with indented surfaces [13] (fig. 7(h-i)), to imitate the lock-and-key mechanism
of protein selectivity. The different overlap volume between rough and smooth spheres
and between locks and keys of comparable size is the crucial element in the self-assembly
process. The same physics can also be exploited to direct the motion of colloidal particles
on properly patterned surfaces [27] or to drive crystallization on patterned surfaces [112].
Recently, depletion interactions arising from highly polydisperse cosolutes clusters, typi-
cal of systems in proximity of a sol-gel transition, have been evaluated numerically [31].
The observed exponential attractive effective potential and the tunable range of the in-
teraction (depending on the distance from percolation) suggests a similarity with critical
Casimir forces [113,30].

4.2. Entropic effective potential: from two dimensions to quasi-two dimensions. –
Another interesting case where entropy displays its power in defining the effective po-
tential between colloidal particles is offered by HS in strong confinement, a topic which
has recently received renewed interest [114,115]. If HS are constrained in a slab of width
σ, the system clearly behaves as a two-dimensional hard-disk system (of diameter σ),
which, as we have discussed previously, is characterized by a hexatic mesophase between
the isotropic and the crystal ones.

If the slab confinement is slightly larger than σ, i.e. σ + L, with L � σ, the center
of the hard spheres can explore a perpendicular section of length L. This additional
freedom (entropy) transforms the hard-disk interaction potential in a novel effective 2D
potential, composed of a renormalized hard-disk potential of diameter

√
σ2 − L2 < σ

decorated by an additional soft repulsion. Calling ẑ the direction normal to the plane,
x and y the coordinates along the plane and t =

√
x2 + y2 the radial distance projected

on the xy plane, the effective potential βVeff(t) in the two-body approximation can be
calculated by evaluating the configurational part of the partition function for two hard
spheres in a slab, one of the two fixed at the origin of the plane (x1 = 0, y1 = 0) and
free to move only in the z-direction (see fig. 8). The second particle is located at radial
distance t =

√
x2

2 + y2
2 , exploring all possible z2 values. The partition function can be

written, considering for symmetry only negative values of z1 (and adding the factor of 2
in front of the integral to compensate)

(28) Z(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t <
√

σ2−L2,

2
L2

∫ 0

−L/2

dz1

{∫ L/2

z1+
√

σ2−t2
dz2+

∫ z1−
√

σ2−t2

−L/2

dz2

}
,

√
σ2−L2 <t<σ,

1, t > σ.
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Fig. 8. – Cartoon of hard spheres in a slab of width L+σ. The centers of the spheres are confined
in the z-direction in a slab of width L. (a) In the limit of L � σ, the distance of closest approach
projected on the xy plane is

√
σ2 − L2. The red lines in (b) indicate the possible values of z2

(corresponding to the two integration intervals in eq. (28)), for a fixed z1 value. (c) Resulting 2d
effective potential (eq. (30)) formed by a hard-disk component of diameter

√
σ2 − L2 followed

by a soft entropic interaction potential arising from the possibility of exploring different z1 and
z2 values at fixed t, for L/σ = 0.4.

In the region of interest,
√

σ2 − L2 < t < σ, the solution of the two integrals gives

(29) Z(t) =
2
L2

(L −
√

σ2 − t2)2

2
,

corresponding to

βVeff(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞, t <
√

σ2 − L2,

− ln Z(t) = −2 ln

(
1 −

√
σ2 − t2

L

)
,

√
σ2 − L2 < t < σ,

0, t > σ,

describing a hard-disk potential (with diameter
√

σ2 − L2, smaller than σ) followed by a
potential which diverges logarithmically for t →

√
σ2 − L2 and reaches zero as a square

root for t → σ.
This interesting example shows how the transition from a pure 2D system to a quasi-

2D system takes place and how the additional entropy generated by the availability to
sample the direction orthogonal to the plane affects the effective potential in the limit of
extreme confinement. Franosh and coworkers [114] have shown that the pure 2D phase
transitions are robust and survive small non-vanishing L. The disappearance of the
hexatic phase under addition of disorder in the particle diameters [56] correlates with
the disappearance of the hexatic fase on moving from 2D to quasi-2D [115].

4.3. Combinatorial entropy: microemulsion droplets linked by telechelic polymers. –
Another source of entropy, different from the translational, orientational, or depletion
cases we have previously discussed, plays an important role in soft matter self-assembly
processes. This entropy arises from the different combinatorial ways one can distribute
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Fig. 9. – Cartoon of the microemulsion droplets (yellow spheres) connected by telechelic polymers
(red) with hydrophobic ends (blue). (a) A schematic representation of a gas-like phase in which
both ends of the polymers are immersed in the same droplet. (b) A dense percolating liquid-like
phase, in which polymers connect different droplets. (c) Experimental phase diagram showing
a phase coexistence between a dilute and a dense phase of droplets, induced by the increase in
the number of polymers per droplet r (redrawn from ref. [116]). (d) Theoretical phase diagram
(redrawn from ref. [32]).

bonds between distinct clusters. One interesting case is offered by a solution of mi-
croemulsion droplets linked by telechelic polymers [116]. The two hydrophobic ends of
each polymer are energetically constrained to reside inside the oil droplets, in the same
or in two different ones. Thus, the polymers can provide links between different droplets.
To a first approximation, energy does not play a relevant role and the behaviour of the
system is mainly controlled by the different ways the polymer ends can be distributed
over the accessible droplets.

Ideally, since all ends must be inside oil droplets, one would think that the state of
maximum entropy is the one in which both ends of the polymers reside in the same
droplet (fig. 9(a)). Indeed, in this configuration all droplets retain their translational
freedom. Binding between droplets to generate a connected structure (fig. 9(b)) would
imply a loss of translational entropy. This simple argument neglects the fact that the
possibility to connect with neighbouring droplets significantly increases the number of
microstates so much to overcome, beyond a certain packing fraction and beyond a certain
number of polymers per droplet, the loss of translational entropy upon binding.

A theoretical analysis of this system, highlighting the importance of the combinatorial
entropy has been presented in ref. [32]. The authors propose to write a zero-order free
energy as a function of two independent parameters: the droplet concentration ρd = N

V
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and the polymer concentration ρp = Np

V . By neglecting coupling between the droplets
and the polymers, the free energy can be expressed as βF = βFdroplet +βFpolymer, where

(30) βFpolymer = −Np ln Zp, with Zp = N
Σd

Σp

(
Σd

Σp
+ Naccessible

d

Σd

Σp

)
.

Here Naccessible
d ∼ ρd indicates the number of droplets that can be connected by a polymer

originating in an arbitrary selected droplet. Note that we have assumed that Σd

Σp
is the

number of attachment points on a droplet (proportional to the surface area Σd of the
droplet divided by the surface area Σp of the polymer head). Each polymer can then end
on the same droplet with probability Σd

Σp
and on a distinct but accessible droplet with

probability Naccessible
d

Σd

Σp
. Note that the polymer free energy does not incorporate any

energetic contribution.
The system is thermodynamically stable if the free energy is a convex function of

both ρp and ρd. This means that the second derivative of the free energy (δ2F =
Fρd,ρd

δρ2
d + 2Fρd,ρp

δρdδρp + Fρp,ρp
δρ2

p) has to be positive. Equivalently, the matrix

(31)

(
Fρd,ρd

Fρd,ρp

Fρd,ρp
Fρp,ρp

)

must posses two positive eigenvalues, allowing us to separate stable from unstable states
(mean-field spinodals). The results of the calculations for different values of the number
of polymers per droplet r are shown in fig. 9(d) and compared with the corresponding
experimental data (fig. 9(c)). Beyond a critical value of r, at low densities the system
prefers to phase separate in a gas phase of droplets, in which polymers start and end in
the same droplet, and in a connected phase (a network) in which the ends of the polymer
preferentially explore the interior of different droplets. The connected phase emerging
from the entropic phase separation constitutes a dense gel phase, being the number of
connections per droplet significantly larger than the percolation threshold.

4.4. Combinatorial entropy: DNA grafted particles. – Another interesting and very
recent application, where combinatorial entropy plays an important role in controlling
attraction between particles, is found in DNA grafted colloids. These are gold (at the
nanoscale) or polymeric particles coated with DNA strands [117-119]. The DNA strands
end with a specific sequence A (sticky end) that can bind to complementary sequences
Ā on nearby coated colloids.

If the particles are grafted with both A and Ā sticky ends [120, 121] (or if A is
self-complementary and, thus, able to bind to itself satisfying the Watson-Crick pair-
ing rules) the situation is analogous to the microemulsion droplets linked by telechelic
polymers [116]. Indeed particles can always satisfy their bonds (exploiting intra- or inter-
particle links), rendering the energetic contribution to binding irrelevant [122]. In this
case, again, only the combinatorial contributions dictate the net attraction between the
particles. This is quite relevant since, for several-bases-long sticky sequences, the bind-
ing energy can easily become dozens of kBT which would suggest at a first glance an
irreversible aggregation process. Differently, the combinatorial term can be tuned to be
of the order of a few kBT , making a reversible self-assembly process possible, especially
if the bonding scheme is associated to a toehold displacement mechanism [123].
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Fig. 10. – Cartoon of a nanoparticle (black) decorated by grafted polymers ending with a sticky
sequence (blue and red, respectively). (a) Two isolated particles in which all sticky ends form
intraparticle bonds. (b) Two close-by particles in which some of the bonds involve chains of
different particles (red-blue pairs). (c) Combinatorial entropy change associated to the formation
of interparticle bonds. Redrawn from ref. [122].

To clarify the role of combinatorial entropy in the case of palindromic DNA sticky
sequences A = Ā, consider the case of two particles with grafted polymers ending with
a sticky site that can bind to only one other distinct sticky site (see fig. 10). When
the particles are far, all sticky sites find their own partner among chains grafted on the
same particle. At low T , all sticky sites are essentially paired. One would then expect
that under these conditions there is no additional energetic gain that can compensate for
the loss of translational entropy upon inter-particle binding. Instead, when the particles
probe distances x compatible with intra-particle binding (see fig. 10) a finite number
B(x) of chains on each particle can bind to partners grafted on the other particle.

To estimate the strength of the entropic attraction, let us focus on this pool of ap-
proximatively 2B(x) interacting sites, which can pair to form B(x) bonds. If each site
can bind to any other site, independently of where the corresponding chain is grafted,
then the number of distinct bonding patterns is (2B(x) − 1)!! (being !! the symbol for
double factorial). Indeed the first site can bind to 2B(x) − 1 other sites, the first of
the remaining 2B(x) − 2 sites can bind to 2B(x) − 3 others, and so on, resulting in the
double factorial term. If instead a site can only bind to sites of the same particle, then
the number of distinct bonding configurations is (B(x)−1)!! for each particle. Thus, the
change in entropy introduced from allowing inter-particle binding can be quantified as

(32)
ΔScomb(x)

kB
= ln

[
(2B(x) − 1)!!
[(B(x) − 1)!!]2

]
.
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Fig. 11. – Superselectivity: (a) A schematic representation of a surface covered with receptors
and exposed to a solution containing nanoparticles decorated with ligands. (b) The case of
a single ligand per nanoparticle. (c) The case of multiple ligands. (d) Comparison between
the adsorption efficiency of mono- and multivalent nanoparticles, contrasted with the ideal case
of an on-off behavior. (e) Simulation results modelling the different adsorption properties of
monovalent and multivalent nanoparticles. In both cases, the concentration of the receptors is
increased by the same amount from left to right. In the case of the multivalent particles, the
increase in the concentration of receptors significantly increases the number of colloidal particles
adsorbed on the surface. ((a,d,e) redrawn from ref. [124]).

For typical nanoparticles grafting densities, B(x) ∼ 5–25, corresponding to entropic
attraction ΔScomb/kB ∼ 2.7–16. Such entropic contribution is sufficient to compensate
the repulsive contribution arising from the overlap between the brushes, and to provide
a net attractive potential sufficiently strong to drive aggregation of the colloidal particles
into a dense liquid or into a crystal phase.

4.5. Combinatorial entropy: superselectivity . – As a last example of the importance
of combinatorial entropy, let us focus on the binding between a ligand and a receptor
(fig. 11(a)), a topic of high relevance in biological physics as well as in materials mim-
icking biological functions. Usually the association between two distinct particles, either
macromolecules, proteins, or colloids, is controlled by the balance between the strength
of interaction and the number of microstates associated to the bonded state. The re-
sulting association efficiency (i.e. the probability of finding the two particles bonded)
increases on cooling and/or increasing the concentration, typically following a sigmoidal
curve. To increase the on-off efficiency of the binding process requires some cooperative
enhancement of the binding process. In a recent study [124], the power of combinatorial



ENTROPY IN SELF-ASSEMBLY 537

entropy has been exploited to design a super-selective binding particle. Based on the idea
that the binding strength can be enhanced if there are many possible equivalent binding
sites among receptors and ligands [125], the authors of ref. [124] proposed to decorate
the particle with a multiplicity k of ligands, each of them weakly interacting with one of
the nR receptors (fig. 11(c)). The bonded state now can be realised with a much larger
number of microstates, differing in the number of bonds #b, which can vary between
one and min(k, nR). In addition, for each number of receptor-ligand bonds Ω(#b), the
total number of microstates is the product between the number of ways #b elements can
be selected out of k [k(k − 1)(k − 2) . . . (k − #b)] —normalised by k! to account for the
indinstinguibility of the ligands— times the number of ways #b bonds can be distributed
over nR sites ([nR(nR − 1)(nR − 2) . . . (nR − #b)]). As a result of this combinatorial
multiplicity, the adsorption curve becomes significantly sharper on varying the receptor
coverage (fig. 11(d)) as shown pictorially in fig. 11(e).

5. – Equilibrium clustering

The synthesis of limited-valence colloids in the last years has brought a renewed
interest in their clustering process, a topic which had previously been the focus of
supramolecular chemistry and polymer physics. The old studies of Flory [126] and Stock-
mayer [127,103], despite their mean-field validity, provide useful guidance for predicting
the aggregation properties of limited-valence colloids and their thermodynamics. It is
not surprising, indeed, that the Wertheim theory [104], which has been extensively used
in recent years to deepen our understanding of the phase behavior of several patchy col-
loidal systems [77,105,128], assumes loop-less clusters, e.g. the same hypothesis of Flory
and Stockmayer [129]. The study of the clustering process provides another important
example of the role of entropy in controlling the self-assembly of limited-valence colloids.

It is quite instructive to predict the cluster size distribution for a system of N bi-
functional patchy particles dispersed in a volume V , knowing that these particles have
formed exactly P bonds. For particles with valence two, the possible clusters are chains
of variable length n. Then, assuming that the different chains do not interact, the
configurational part of the partition function of the system can be written as the prod-
uct of the partition functions of the individual clusters Qn, each of them normalised by
an Nn! term which accounts for permutations of identical clusters [130,131]

Q = e−βPFb

∏
n

QNn
n

Nn!
, with Qn =

Ωn

n!
V,

where Fb is the free energy associated to the existence of one bond, Ωn indicates the
number of ways n distinct particles, each with two distinct reactive sites, can be joined
into a chain of length n. The volume term V , expressed in units of the cube of the
thermal length, accounts for the cluster center-of-mass entropy. Considering that the
first patch in the chain can be selected in 2n ways, that the bonded patch of the second
particle can be selected in 2(n−1) ways and so on, one finds Ωn = 2nn!/2, where the 2 in
the denominator accounts for the over-counting since the same chain can be assembled
starting from the two distinct ends. As a result,

(33) Q = e−βPFb2P
∏
n

V Nn/Nn!.
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Apart from the constant contribution associated to the presence of P bonds, e−βPFb , the
remaining free-energy contribution (−kBT ln Q) is purely entropic and coincides (apart
from the trivial constant term P ln(2)) with the one of an ideal gas of chains distributed
according to Nn,

(34)
S

kB
= P ln(2) +

∞∑
n=1

Nn

{
1 − ln

Nn

V

}
.

The solution for the most probable distribution of chain lengths Nn can now be
calculated by requiring that entropy assumes the largest possible value, but satisfying the
two constraints in the problem: the conservation of the number of particles (

∑∞
n=1 nNn =

N) and the total number of bonds. Since each chain of length n has n − 1 bonds, the
constraint on the number of bonds can be formulated as

∑∞
n=1(n − 1)Nn = P .

Defining lnα and lnβ as the Lagrange multipliers associated to the two constraints,
the maximization of the entropy S with respect to Nn, including the contribution arising
from the Lagrange multipliers, gives

(35)
dS

dNn
=

(
1 − ln

Nn

V

)
− 1 + n ln α + (n − 1) ln β = ln

[
V

Nn
αnβn−1

]
= 0

or equivalently

(36)
Nn

V
= α(αβ)n−1.

Plugging this result in the equations defining the two constraints, it is possible to calculate
the exact values of α and β. In terms of fraction of formed bonds pb = P/N , one finds
αβ = pb and α = N

V (1 − p2
b), such that

(37) Nn = α(αβ)n−1 = N(1 − p2
b)p

n−1
b .

The equilibrium cluster size distribution Nn is thus exponential, a well known result of
equilibrium polymerization [35]. The result can also be easily interpreted as a chain with
two open bonds at the ends ((1−pb)2) times n−1 bonds between the n particles (pn−1

b ).
If the colloidal particles can form f bonds, the same method can be applied to evaluate

the cluster size distribution. The function Ωn is more complex than for the f = 2 case
and can be easily calculated only for very small n. The resulting expression for generic
f , first derived by Stockmayer [127], is

(38) Ωn =
fn(fn − n)!

(fn − 2n + 2)!

and the corresponding cluster size distribution is [127]

(39) Nn = N
Ωn

n!
(1 − pb)f

[
pb(1 − pb)f−2

]n−1
.

This expression predicts that when pb reaches the value pb = 1/(f − 1), the clusters size
distribution Nn becomes a power law in n with exponent −2.5, indicating the presence
of a percolation (infinite cluster) transition.
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Despite the hypothesis of absence of loops in finite-size clusters, the Flory-Stockmayer
predictions quite accurately describe clustering in limited-valence colloids, the agreement
increasing on decreasing f [128,132].

6. – When entropy competes with energy

Energy-entropy competition is at the heart of several very important self-assembly
processes in soft-matter systems (and in atomic and molecular systems too [133]). It
beautifully manifests itself in the emergence of structures controlled by energy competing
with structures stabilized by entropy. The possibility to exploit all the different forms of
entropy previously discussed can indeed lead to the entropic stabilization at intermediate
temperatures of local or global structures, which then give way on cooling to distinct
organizations at low T , where energy becomes the leading driving force.

6.1. Dipolar hard spheres. – The dipolar hard sphere (DHS) model is a paradigm for
the self-assembly of anisotropic particles [137] and a challenge for present day theories of
fluids. As we will see, in this model, the entropy associated to a network formation com-
petes with the energy promoting chain formation, resulting in significant T -dependent
structural changes. The DHS model, a point-dipole at the center of a hard sphere, can
be considered as the next simplest modification of the hard-sphere (HS) model, after
the point charge one (the restricted primitive model of electrolyte solutions [138, 139]).
Thus, it is quite interesting to note that, despite its simplicity, contrasting opinions still
exist about its phase behavior and specifically about the existence of a liquid phase dis-
tinct from the fluid one (e.g. the existence of a gas-liquid critical point). de Gennes and
Pincus [140] were the first to point out that, in the dilute limit, one could spherically
average the dipolar potential, resulting into an effective isotropic attraction. This could
promote a liquid-gas phase separation at low T as in ordinary van der Waals fluids. It
was then realized that the highly anisotropic character of the dipole-dipole interaction,
which promotes the self-assembly of dipoles into chains, imposes a local order that is
significantly different from the one characteristic of simple fluids [141-143]. Consistently,
the first computer simulation studies, although plagued by equilibration issues, provided
evidence of an extended nose-to-tail chaining and failed to found evidence of a phase
transition [144, 145]. The debate on the existence of a critical point in DHS was re-
juvenated by additional simulations studies [146, 134, 147] and by a seminal paper by
Tlusty and Safran (TS) [136]. A new type of phase transition was postulated, reinforced,
rather than weakened, by the chaining process. Despite the most recent numerical studies
suggest that the DHS model does not have a gas-liquid critical point [135], the TS the-
ory [136] deserves to be discussed since it provides a beautiful example of energy-entropy
competition in soft-matter systems.

They main idea of TS [136] is to describe the DHS fluid not in terms of particles
but in terms of a gas of defects. Indeed, as shown by the representative configuration
in fig. 12(b-c), particles form quite polydisperse chains of oriented dipoles. On cooling,
the average length of these chains (fig. 12(d)) increases and, at the same time, due to
the conservation of the total number of particles, the number of polymers decreases. TS
propose to consider the number of chain ends as the excitations (or defects) over the
T = 0 structure, the structure in which all particles belong to one infinite chain. If
chain ends were the only defect type, then DHS would behave as a living polymer system
and the fluid structure would be described (as discussed in sect. 5) by an exponential
distribution of chain lengths, with an average length diverging on approaching T = 0.
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Fig. 12. – Dipolar hard spheres: (a) Cartoon of two dipolar hard spheres in the head-tail con-
figuration and in the antiparallel configuration. (b) Reproduction of one of the first simulations
of DHS showing chaining (redrawn from [134]). (c) A typical low-temperature configuration
showing the presence of several ring structures (redrawn from [135]). (d) A cartoon of a DHS
polymer. (e) A cartoon of the Y junction. (f) A cartoon of a ring structure. (g) The re-entrant
phase diagram proposed by TS (redrawn from [136]).

Beside chain ends, TS also identified Y junctions (fig. 12(e)) as possible defects of the
chain gas (or, equivalently, as dominant terms in the polymer-polymer interaction). In a
Y junction, a polymer end binds to a monomer of another polymer to reduce the system
energy. The Y junctions offer the possibility of generating a three-dimensional network
of connected chains and therefore a liquid phase. In this model, entropy strongly enters
as the quantity controlling the number of distinct Y junctions which can be formed.

In the mean-field TS theory, both the density of chain ends and the density of junc-
tions follow a power law in density with exponents 1/2 and 3/2, respectively. These
exponents play a major role, controlling the density dependence of the system free en-
ergy. Accordingly, as the temperature is lowered, Y junctions and chain ends phase
separate in a dense network rich in Y junctions and a diluite gas rich in chain ends. The
possibility of such a phase transition, which crucially depends on the number density of
topological defects (chain ends and junctions) and their scaling with density, gives rise to
a peculiar re-entrant phase diagram, in which the density of the liquid phase approaches
the vanishing density of the gas phase on cooling (fig. 12(g)).

The TS model focuses on two types of topological defects of the network, chain ends
and branching points (junctions). Recent simulations studies [135] have shown that,
at low T and low density, a large fraction of particles organize themselves into rings
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Fig. 13. – Patchy particle model. (a) A colloidal particle is modelled as a hard sphere (red)
decorated by two green sites (A), providing chaining, and one blue site (B), providing branching.
Only AA and AB bonds are possible. (b) The infinite-chain structure. To evaluate the range of
εAA/εAB values for which the infinite chain is the ground state, consider the process by which a
bond is broken and the two newly created ends are connected with available B sites: to break a
bond costs an amount of energy ΔE1 = −εAA (c); the two newly created ends are reconnected
via AB bonds (d), with an energetic gain ΔE2 = 2εAB . The total energy cost in the process is
ΔE = ΔE1 + ΔE2 = −εAA + 2εAB . Thus, ΔE > 0 if εAB > εAA/2. In this case, the infinite
chain is the ground state. In the opposite case, branching becomes more convenient also at
T = 0 and the ground state is a branched structure.

(fig. 12(f)), a structure which is not considered in the TS assumptions. The possibility
for the chain ends to annihilate into the formation of a ring, originating essentially in
ground-state finite-size aggregates, is consistent with the numerically observed absence
of a gas-liquid critical point [135].

6.2. Competing patches. – Despite the TS model is not appropriate to describe DHS
due to the self-assembly of rings (and even more complex structures) at low T [148,149]
the assumptions of the TS model become exact for specifically designed competing patchy
colloids [150,151]. These are hard colloids with three attractive patches: two A sites and
one B site, with AA bonds of energy εAA providing chaining and AB bonds of energy
εAB providing branching. As shown in fig. 14, the ground state of this system changes
abruptly when εAB = 0.5εAA.

The free energy of this model can be calculated with the first-order perturbation
theory of Wertheim [152, 153] and the Flory-Stockmayer theory of polymerization [128,
154]. Thus, it is possible to study the criticality of patchy particles from a standard liquid-
state theory approach. At low densities and T , the resulting expression is equivalent to
the TS theory [155,150].
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In Wertheim’s approach [152, 153], the free energy of a system with N particles is
written as a sum of the reference HS free energy (given by, e.g., the Carnahan-Starling [41]
form) and a bonding contribution Fb,

(40)
βFb

N
= 2 log XA + fB log XB − XA − fB

2
XB +

1
2
(2 + fB),

where fB is the number of B patches in each particle, β ≡ (kBT )−1, T is the temperature,
and XA and XB are, respectively, the fractions of sites A and B which are not engaged
in a bond. XA and XB can be related to temperature and density through the laws of
mass action [150]

(41)

⎧⎪⎨
⎪⎩

XA + 2φΔAAX2
A + fBφΔABXAXB = 1,

XB + 2φΔABXAXB = 1,

where φ ≡ vsρ is the packing fraction, vs = π
6 σ3 is the particle volume, ρ is the number

density, and the quantities Δαβ (α, β = A,B) are given by

(42) Δαβ =
1
vs

∫
gHS(r) [exp(βεαβ) − 1] dr,

where gHS(r) is the HS radial distribution function, and the integral extends over the
bonding volume.

Differentiation of the free energy with respect to the volume yields the pressure P .
From the T - and ρ-dependences of P , one can locate, by standard methods, the critical
point and the liquid-vapour coexistence curve. The resulting phase diagram has the same
shape as the one predicted by TS for dipolar HS (fig. 12(g)).

6.3. Janus. – Another soft-matter example of competition between energy and entropy
is provided by Janus colloidal particles [156], i.e., particles which attract each other via
just one half of their surface (one hemisphere). The phase diagram of the disordered
phases has been revealed [157], showing that, at odds with a standard liquid-vapor phase
separation, the vapor phase is composed of micelles and vesicles. Particles in these
clusters have very precise orientations, allowing them to bind simultaneously with several
neighbours, providing a strong energetic driving force which overcomes the standard
entropic contribution in favour of a monomer state typical of standard gases. Thus,
particles in micelles have a very low energy as compared to the dense liquid phase, which
is instead stabilized by the much larger orientational entropy. On further cooling, the
entropic stabilization of the dense phase becomes less and less relevant, progressively
suppressing the two-phase region.

6.4. Re-entrant gels. – Both previous examples show the importance of being able
to design energy-stabilized structures which can act as independent clusters at low
temperature. Under these conditions, the low-temperature phase essentially consists
of a gas of aggregates interacting via excluded-volume effects. These examples have also
shown that if a competing mechanism exists that stabilises a different local structure
through entropy, then a different phase can emerge. As a last example of energy-entropy
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Fig. 14. – Re-entrant DNA gels. (a) Tetravalent patchy particle model and corresponding DNA
nanoparticle. An AA bond between two particles, resulting from the association of two comple-
mentary DNA single strands, is shown. (b) Tetravalent patchy particle model and corresponding
DNA nanoparticle bonded with bond “capping” particles. In the case of the DNA, these capping
particles are provided by two single-strand DNA sequences (green and red) complementary to
different parts of the A binding sequence. (c) Viscosity measurements as a function of temper-
ature showing the large increase on heating. (d) Phase diagram of the DNA system, showing
the Safran-like re-entrant behavior. (e) Cartoon of the structure of the system at different T .
At high T all strands are isolated. Around 65 ◦C, the DNA tetravalent nanoparticles are self-
assembled. Around T = 35 ◦C, the system forms a gel via AA bonds which then, on further
cooling, transforms into a gas of isolated capped nanostars. ((d), redrawn from ref. [158], (c,e)
redrawn from ref. [159]).

competition, I discuss here a (stoichiometric) binary mixture of tetravalent (A) and mono-
valent (B) particles, again with only AA and AB bonds. With an appropriate choice of
εAA and εAB , at low T , the system organizes itself into a gas of AB4 aggregates. With a
judicious choice of the bonding entropy, the AB bonds can be made less stable than the
AA ones such that, on rising the temperature, AB bonds are progressively substituted
with AA ones. When this is the case the system converts upon heating from a fluid of
freely diffusing AB4 aggregates into a tetrafunctional network of A particles coexisting
with a gas of B ones (see fig. 14). This system, which is a low-viscosity fluid at low T ,
progressively transforms into a viscous gel on heating, increasing its viscosity by several
orders of magnitude. Recently, such theoretical prediction has been transformed into an
experimental realisation [158] by realizing tetra-functional and mono-functional particles
completely made of DNA. The experimental results (see fig. 14) confirm that the system
exhibits a non-monotonic T dependence of the viscosity, covering about three orders of
magnitude.
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7. – Conclusions

In this review I have presented several soft-matter systems in which entropy plays
a dominant role as driving force favouring self-assembly of ordered structures. I have
attempted to clarify that order, in the way it is perceived by us, can correspond to
states of maximum entropy. This inevitably calls attention on the importance of always
evaluating entropy as the logarithm of the number of microstates concurring to the
same macroscopic state. I also hope I have clarified why in soft matter, oppositely
to atomic and molecular systems, entropy plays such an important role. Several cases
have been explored, starting from the self-assembly of hard colloidal particles, where
entropy is by definition the only driving force. We have seen how entropy associated
to translational and orientational degrees of freedom —the last arising from particles
shape or from anisotropic interactions in otherwise spherical particles— compete and
how entropy differently weights fluids, liquid crystals and crystal states. We have also
seen how entropy plays an important role in limited-valence particles, under conditions
where all possible bonds are formed, de facto creating a conceptual link with the self-
assembly of hard-body particles.

I have stressed how partial integration of the degrees of freedom associated to appar-
ently irrelevant variables —a process intrinsic in any coarse-graining approach— trans-
forms interactions into free-energy ones. The integrated degrees of freedom often leave
their trace into the entropic component. Finally, I have stressed how to exploit combi-
natorial entropy to design effective interactions with a controllable depth, a necessary
condition to avoid kinetic traps or to maximize efficiency in adsorption phenomena.
Learning how entropy controls in a subtle way the self-assembly of colloidal particles
offers us a handle on how to exploit entropy to direct particle aggregation or to select
desired structures.
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