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ABSTRACT
We present a neural network (NN) potential based on a new set of atomic fingerprints built upon two- and three-body contributions that probe
distances and local orientational order, respectively. Compared with the existing NN potentials, the atomic fingerprints depend on a small set
of tunable parameters that are trained together with the NN weights. In addition to simplifying the selection of the atomic fingerprints, this
strategy can also considerably increase the overall accuracy of the network representation. To tackle the simultaneous training of the atomic
fingerprint parameters and NN weights, we adopt an annealing protocol that progressively cycles the learning rate, significantly improving
the accuracy of the NN potential. We test the performance of the network potential against the mW model of water, which is a classical three-
body potential that well captures the anomalies of the liquid phase. Trained on just three state points, the NN potential is able to reproduce
the mW model in a very wide range of densities and temperatures, from negative pressures to several GPa, capturing the transition from an
open random tetrahedral network to a dense interpenetrated network. The NN potential also reproduces very well properties for which it was
not explicitly trained, such as dynamical properties and the structure of the stable crystalline phases of mW.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139245

I. INTRODUCTION

Machine learning (ML) potentials represent one of the emerg-
ing trends in condensed matter physics and are revolutionizing the
landscape of computational research. Nowadays, different methods
to derive ML potentials have been proposed, providing a powerful
methodology to model liquid and solid phases in a large variety of
molecular systems.1–17 Among these methods, probably the most
successful representation of a ML potential so far is given by Neu-
ral Network (NN) potentials, where the potential energy surface is
the output of a feed-forward neural network.18–35

In short, the idea underlying NN potentials construction is to
train a neural network to represent the potential energy surface of a
target system. The model is initially trained on a set of configurations
generated ad hoc, for which the total energies and forces are known,
by minimizing a suitable defined loss function based on the error
in the energy and force predictions. If the training set is sufficiently
broad and representative, the model can then be used to evaluate the

total energy and forces of any related atomic configuration with an
accuracy comparable with the original potential. Typically, the orig-
inal potential will include additional degrees of freedom, such as the
electron density for density functional theory (DFT) calculations, or
solvent atoms in protein simulations, which make the full computa-
tion very expensive. By training the network only on a subset of the
original degrees of freedom, one obtains a coarse-grained represen-
tation that can be simulated at a much-reduced computational cost.
NN potentials thus combine the best of two worlds, retaining the
accuracy of the underlying potential model, at the much lower cost
of coarse-grained classical molecular dynamics (MD) simulations.
The accuracy of the NN potential depends crucially on how local
atomic positions are encoded in the input of the neural network,
which needs to retain the symmetries of the underlying Hamilto-
nian, i.e., rotational, translational, and index permutation invari-
ance. Several methods have been proposed in the literature,12,36 such
as the approaches based on the Behler–Parrinello (BP) symmetry
functions,18 the Smooth Overlap of Atomic Positions (SOAP),37
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N-body iterative contraction of equivariants (NICE)38 and poly-
nomial symmetry functions,39 or frameworks like the DeepMD,23

SchNet,22 and RuNNer.18 In all cases, atomic positions are trans-
formed into atomic fingerprints (AFs). The choice of the AFs is
particularly relevant, as it greatly affects the accuracy and general-
ity of the resulting NN potential. It is achieved either via physical
intuition or with a feature selection algorithm40,41 to fix the AFs
parameters independently from neural network weights. Then, the
parameters of the AFs are kept fixed, and only the neural network
weights are optmized in the training procedure.

We develop here a fully learnable NN potential in which the
AFs, although retaining the simplicity of typical local fingerprints,
do not need to be fixed beforehand but instead are learned during
the training procedure. The simultaneous training of the atomic fin-
gerprint parameters and the network weights makes the NN training
process more efficient since the NN representation is spontaneously
built on a variable atomic fingerprint representation and eliminates
arguably the most difficult step (feature selection of AFs) in setting
up a neural network potential. To tackle the combined minimiza-
tion of the AF parameters and of the network weights, we adopt an
efficient annealing procedure, which periodically cycles the learning
rate, i.e., the step size of the minimization algorithm, resulting in a
fast and accurate training process.

We validate the NN potential on the mW model of
water,42 which is a one-site classical potential that has found a
widespread adoption to study water’s anomalies43,44 and crystalliza-
tion phenomena.45,46 Since the first pioneering MD simulations,47,48

water is often chosen as a prototypical case study, as the large num-
ber of distinct local structures that are compatible with its tetrahedral
coordination makes it the molecule with the most complex thermo-
dynamic behavior,49 for example displaying a liquid–liquid critical
point at supercooled conditions.50–54 NN potentials for water have
been developed starting from density functional calculations, with
different levels of accuracy.55–62 NN potentials have also been pro-
posed to parametrize accurate classical models for water with the
aim of speeding up the calculations when multi-body interactions
are included,63 as in the MBpol model64–66 or for testing the rel-
evance of the long-range interactions, as for the SPC/E model.67

We choose the mW potential as our benchmark system because
its explicit three-body potential term offers a challenge to the NN
representation that is not found in molecular models built from
pair-wise interactions. We stress that we train the NN-potential
against data that can be generated easily and for which struc-
tural and dynamic properties are well known (or can be evaluated
with small numerical errors) in a wide range of temperatures and
densities. In this way, we can perform a quantitative accurate com-
parison between the original mW model and the hereby proposed
NN model.

Our results show that training the NN potential at even just
one density–temperature state point provides an accurate descrip-
tion of the mW model in a surrounding phase space region that is
∼100 K wide. A training based on three different state points extends
the convergence window extensively, accurately reproducing state
points at extreme conditions, i.e., large negative and (crushingly)
positive pressures. We will show that the NN reproduces thermody-
namic, structural, and dynamical properties of the mW liquid state,
as well as the structural properties of all the stable crystalline phases
of mW water.

The paper is organized as follows: In Sec. II, we describe the new
atomic fingerprints and the details about the Neural Network poten-
tial implementation, including the warm restart procedure used to
train the weights and the fingerprints at the same time. In Sec. III,
we present the results, which include the accuracy of the models
built from training sets that include one or three state points, and
a comparison of the thermodynamic, structural, and dynamic prop-
erties with those of the original mW model. In Sec. IV, we provide
the conclusion.

II. THE NEURAL NETWORK MODEL
The most important step in the design of a feed-forward neu-

ral network potential is the choice of how to define the first and the
last layers of the network, respectively, named the input and out-
put layers. We start with the output layer, as it determines the NN
potential architecture to be constructed. Here, we follow the Behler
Parrinello NN potential architecture,18 in which the total energy
of the system is decomposed as the sum of local fields (Ei), each
one representing the contribution of a local environment centered
around atom i. Being this a many-body contribution, it is important
to note that Ei is not the energy of the single atom i, but of all its envi-
ronment (see also Appendix A). With this choice, the total energy
of the system is simply the sum over all atoms, E = ∑Ei, and the
force ⃗f i acting on atom i is the negative gradient of the total energy
with respect to the coordinates ν of atom i, e.g., fiν = −∂E/∂xiν. We
have to point out that a NN potential is differentiable, and hence,
it is possible to evaluate the gradient of the energy analytically. This
allows us to compute forces of the NN potential in the same way as
other force fields, e.g., by the negative gradient of the total potential
energy.

The input layer is built from two-body (distances) and three-
body (angles) descriptors of the local environment, D⃗ (i) and T(i),
respectively, ensuring translational and rotational invariance. The
first layer of the neural network is the Atomic Fingerprint Con-
structor (AFC), as shown in Fig. 1, which applies an exponential
weighting on the atomic descriptors, restoring the invariance under
permutations of atomic indices. The outputs of this first layer are
the atomic fingerprints (AFs), and in turn, these are given to the first
hidden layer. We will show how this organization of the AFC layer
allows for the internal parameters of the exponential weighting to
be trained together with the weights in the hidden layers of the net-
work. In the following, we describe in detail the construction of the
inputs and the calculation flow in the first layers.

A. The atomic fingerprints
The choice of the input layer presents considerably more free-

dom, and it is here that we deviate from previous NN potentials. The
data in this layer should retain all the information needed to properly
evaluate the forces and energies of the particles in the system, possi-
bly exploiting the internal symmetries of the Hamiltonian (which in
isotropic fluids are the rotational, translational, and permutational
invariance) to reduce the number of degenerate inputs. Given that
the output was chosen as Ei, the energy of the atomic environment
surrounding atom i, the input uses an atom-centered representation
of the local environment of atom i.
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FIG. 1. Schematic representation of the Neural Network Potential flow. (a) Starting
from the relative distances and the triplets angles between neighboring atoms,
the input layer evaluates the atomic descriptors D⃗ (i)

= {D(i)
j } [Eq. (1)] and

T(i)
= {T(i)

jk } [Eq. (2)]. (b) The first layer is the Atomic Fingerprint Constructor
(AFC), which combines the atomic descriptors into atomic fingerprints, weighting
them with an exponential function. The red nodes perform the calculation of Eq. (5),

where from the two-body descriptors a weighting vector D⃗(i)
w (α) = {e

αD(i)
j } is

calculated (square with α) and then the scalar product D⃗ (i)
⋅ D⃗(i)

w (α) is com-
puted (square with point) and finally a logarithm is applied (circle). The blue nodes
perform the calculation of Eq. (7), where two weighting vectors are calculated
from the two-body descriptors namely D⃗(i)

w (γ) and D⃗(i)
w (δ) and one weighting

matrix from the three-body descriptors T(i)
w (β) = {e

βT(i)
jk /2}. Finally in the com-

pression unit [Eq. (6)], the values are combined as 0.5[D⃗ (i)
○ D⃗(i)

w (γ)]T[T(i)
○

T(i)
w (β)][D⃗ (i)

○ D⃗(i)
w (δ)] where we use the circle symbol for the element-wise

multiplication. The output value of the compression unit is given to the logarithm
function (circle). The complete network (d) is made of ten AFC units and two hidden
layers with 25 nodes per layer, and here, it is depicted 2.5 times smaller.

In the input layer, we define an atom-centered representation
of the local environment of atom i, considering both the distances rij
with the nearest neighbors j within a spatial cutoff Rc and the angles
θjik between atom i and the pair of neighbors jk that are within a cut-
off R ′c . More precisely, for each atom j within Rc from i, we calculate
the following descriptors

D(i)j (rij; Rc) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2
[1 + cos(π

rij

Rc
)], rij ≤ Rc,

0, rij > Rc,
(1)

and, for each triplet j − i − k within R ′c from i,

T(i)jk (rij, rik, θjik) =
1
2
[1 + cos(θjik)] D(i)j (rij; R ′c )

×D(i)k (rik; R ′c ). (2)

Here, i indicates the label of i-th particle, whereas indices j and
k run over all other particles in the system. In Eq. (1), D(i)j (rij; Rc)

is a function that goes continuously to zero at the cutoff (including
its derivatives). The choice of this functional form guarantees that

D(i)j is able to express contributions even from neighbors close to
the cutoff. Other choices, based on polynomials or other non-linear
functions, have been tested in the past.31 For example, we tested a
parabolic cutoff function that produced considerably worse results
than the cutoff function in Eq. (1). The function T(i)jk (rij, rik, θjik)

is also continuous at the triplet cutoff R ′c . The angular function
1
2 [1 + cos(θjik)] guarantees that 0 ≤ T(i)jk (rij, rik, θjik) ≤ 1. We note
that the use of relative distances and angles in Eqs. (1) and (2)
guarantees translational and rotational invariance.

The pairs and triplets descriptors are then fed to the AFC layer
to compute the atomic fingerprints, AFs. These are computed by
projecting the D(i)j and T(i)jk descriptors on a set of exponential
functions defined by

D (i)(α) = ln
⎡
⎢
⎢
⎢
⎢
⎣

∑

j≠i
D(i)j eαD(i)

j + ϵ
⎤
⎥
⎥
⎥
⎥
⎦

− Zα, (3)

T (i)(β, γ, δ) = ln

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑

j≠k≠i

T(i)jk eβT(i)
jk eγD(i)

j eδD(i)
k

2
+ ϵ
⎤
⎥
⎥
⎥
⎥
⎥
⎦

− Zβγδ. (4)

These AFs are built summing over all pairs and all triplets
involving particle i, making them invariant under permutations and
multiplying each descriptor by an exponential filter whose para-
meters are called α for distance AFs and β, γ, δ for the triplet AFs.
These parameters play the role of feature selectors, i.e., by choos-
ing an appropriate list of α, β, γ, δ, the AFs can extract the necessary
information from the atomic descriptors. The best choice of α, β, γ, δ
will emerge automatically during the training stage. In Eqs. (3) and
(4), the number ϵ is set to 10−3 and fixes the value of energy in the
rare event that no neighbors are found inside the cutoff. Parameters
Zα and Zβγδ are optimized during the training process, shifting the
AFs toward positive or negative values, and act as normalization
factors that improve the representation of the NN.

The definitions in Eqs. (3) and (4) can be reformulated in terms
of product between vectors and matrices in the following way. The
descriptors in Eqs. (1) and (2) for particle i can be represented as a
vector D⃗ (i) = {D(i)j } and a matrix T(i) = {T(i)jk }, respectively. Given

a choice of α, β, γ and δ, three weighting vector D⃗(i)w (α) = {eαD(i)
j },

D⃗(i)w (γ) = {eγD(i)
j }, and D⃗(i)w (δ) = {eδD(i)

j } and one weighting matrix

T(i)w (β) = {e
βT(i)

jk /2} are calculated from D⃗ (i) and T(i). The two-body
atomic fingerprint [Eq. (3)] is finally computed as

D (i)(α) = ln[D⃗ (i) ⋅ D⃗(i)w (α) + ϵ] − Zα. (5)

The three-body atomic fingerprint [Eq. (4)] is computed first by
what we call the compression step in Fig. 1 as

T c
(i)
=
[D⃗ (i) ○ D⃗(i)w (γ)]T[T(i) ○ T(i)w (β)][D⃗ (i) ○ D⃗(i)w (δ)]

2
, (6)

and finally by

T (i)(β, γ, δ) = ln[T c
(i)
(β, γ, δ) + ϵ] − Zβγδ , (7)
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where we use the circle symbol for the element-wise multiplication.
The NN potential flow is depicted in Fig. 1 following the vectorial
representation.

In summary, our AFs select the local descriptors useful for the
reconstruction of the potential by weighting them with an expo-
nential factor tuned with exponents α, β, γ, δ. A similar weighting
procedure has been shown to be extremely powerful in the selection
of complex patterns and is widely applied in the so-called attention
layer first introduced by Google Brain.68 However, the AFC layer
imposes additionally physically motivated constraints on the neural
network representation.

We note that the expression for the system energy is a sum over
the fields Ei, but the local fields Ei are not additive energies, involving
all the pair distances and triplets angles within the cutoff sphere cen-
tered on particle i. This non-additive feature favors the NN ability to
capture higher-order correlations (multi-body contribution to the
energy) and has been shown to outperform additive models in com-
plex datasets.69 The NN non-additivity requires the derivative of the
whole energy E (as opposed to Ei) to estimate the force on particle
i. In this way, contributions to the force on particle i come not only
from the descriptors of i but also from the descriptors of all parti-
cles who have i as a neighbor, de facto enlarging the effective region
in space where interactions between the particles are included. This
allows the network to include contributions from length scales larger
than the cutoffs that define the atomic descriptors. Appendix A
provides further information on this point.

B. Hidden layers
We employ a standard feed-forward fully connected neural net-

work composed of two hidden layers with 25 nodes per layer and use
the hyperbolic tangent (tanh) as the activation function. The nodes
of the first hidden layer are fully connected to the ones in the sec-
ond layer, and these connections have associated weights W that are
optimized during the training stage.

The input of the first hidden layer is given by the AFC layer
where we used five nodes for the two-body AFs [Eq. (3)] and five
nodes for the three-body AFs [Eq. (4)] for a total of 10 AFs for each
atom. We explore the performance of some combinations for the
number of two-body and three-body AF in Appendix B, and we
find that the choice of five and five is the best compromise between
accuracy and computational cost.

The output is the local field Ei, for each atomic environment i,
whose sum E = ∑N

i=1 Ei represents the NN estimate of the potential
energy E of the whole system.

C. Loss function and training strategy
To train the NN potential, we minimize a loss function com-

puted over n f frames, i.e., the number of independent configurations
extracted from an equilibrium simulation of the liquid phase of the
target potential (in our case the mW potential). The loss function is
the sum of two contributions.

The first contribution, H[{Δϵk, Δ f k
iν}], expresses the difference

in each frame k between the NN estimates and the target values
for both the total potential energy (normalized by total number of
atoms) ϵk and the atomic forces f k

iν acting in direction ν on atom i.

The n f energy ϵk values and 3Nn f force f k
iν values are combined in

the following expression:

H[{Δϵk, Δ f k
iν}] =

pe

n f

n f

∑

k=1
hHuber(Δϵk

)

+

pf

3Nnf

n f

∑

k=1

N

∑

i=1

3

∑

ν=1
hHuber(Δ f k

iν), (8)

where pe = 0.1 and p f = 1 control the relative contribution of the
energy and the forces to the loss function, and hHuber(x) is the
so-called Huber function,

hHuber(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

0.5x2 if ∣x∣ ≤ 1,

0.5 + (∣x∣ − 1) if ∣x∣ > 1,
(9)

pe and p f are hyper-parameters of the model, and we selected them
with some preliminary tests that found those values to be near the
optimal ones. The Huber function70 is an optimal choice when-
ever the exploration of the loss function goes through large errors
caused by outliers, i.e., data points that differ significantly from pre-
vious inputs. Indeed, when a large deviation between the model and
data occurs, a mean square error minimization may give rise to an
anomalous trajectory in parameters space, largely affecting the sta-
bility of the training procedure. This may happen especially in the
first part of the training procedure when the parameter optimization,
relaxing both on the energy and forces error surfaces may experience
some instabilities.

The second contribution to the loss function is a regularization
function, R[{αl, βm, γm, δm

}], that serves to limit the range of posi-
tive values of αl and of the triplets βm, γm, δm (where the indices l and
m run over the five different values of α and five different triplets of
values for β, γ, and δ) in the window −∞ to 5. To this aim, we select
the commonly used ReLU function,

rrelu(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

x − 5 if x > 5,

0 if x ≤ 5,
(10)

and write

R[{αl, βm, γm, δm
}] =

5

∑

l=1
rrelu(α

l
) +

5

∑

m=1
[rrelu(β

m
)

+ rrelu(γ
m
) + rrelu(δ

m
)]. (11)

Thus, the R function is activated whenever one parameters of
the AFC layer becomes, during the minimization, larger than 5.

To summarize, the global loss function L used in the training
of the NN is

L[ϵ, f] = H[{Δϵk, Δ f k
iν}] + pbR[{αl, βm, γm, δm

}], (12)

where pb = 1 weights the relative contribution of R compared
with H.

Compared with a standard NN-potential, we train not only the
network weights W but also the AFs parameters Σ ≡ {αl, βm, γm, δm

}

at the same time. The simultaneous optimization of the weights
W and AFs Σ prevents possible bottlenecks in the optimization of
W at a fixed representation of Σ. Other NN potential approaches
implement a separate initial procedure to optimize the Σ parameters
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followed by the optimization of W at fixed Σ.40 The two-step pro-
cedure (TSP) not only requires a specific methodological choice for
optimizing Σ but also may not result in the optimal values, com-
pared with a search in the full parameter space (i.e., both Σ and W).
In Appendix C, we compare our approach with a popular two-step
procedure.40 Since the complexity of the loss function has increased,
we have investigated in some detail some efficient strategies that lead
to fast and accurate trainings. First, we initialize the parameters W
via the Xavier algorithm, in which the weights are extracted from a
random uniform distribution.71 To initialize the Σ parameters, we
used a uniform distribution in interval [−5, 5]. We then minimize
the loss function using the warm restart procedure proposed in Ref.
72. In this procedure, the learning rate η is reinitialized at every cycle
l, and inside each cycle, it decays as a function of the number of
training steps t following equation:

η(l)(t) = Al{
(1 − ξ f )

2
[1 + cos(

πt
Tl
)] + ξ f } 0 ≤ t ≤ Tl, (13)

where ξ f = 10−7, Al = η0ξl
0 is the initial learning rate of the l-th cycle

with η0 = 0.01 and ξ0 = 0.9, and T l = bτl is the period of the l-th cycle
with τ = 1.4 and b = 40. The absolute number of training steps n dur-
ing cycle l can be calculated summing over the length of all previous
cycles as n = τ +∑l−1

m=0Tm.
We also decided to evaluate the loss function for groups of four

frames (mini-batch), and we randomly select 200 frames n f = 200
for a system of 1000 atoms, and hence, we split this dataset in 160
frames (%80) for the training set and the 40 frames (%20) for the
test set.

In Fig. 2(a) we represent the typical decay of the learning rate of
the warm restart procedure, which will be compared to the standard
exponential decay protocol in the Results section.

D. The target model
To test the quality of the proposed NN, we train the NN with

data produced with the mW42 model of water. This potential, a re-
parametrization of the Stillinger–Weber model for silicon,73 uses a
combination of pairwise functions complemented with an additive
three-body potential term,

E = ∑
i
∑

j>i
U2(rij) + λ∑

i
∑

j≠i
∑

j>k
U3(rij, rik, θjik), (14)

where the two-body contribution between two particles i and j at a
relative distance of rij is a generalized Lennard-Jones potential,

U2(rij) = Aϵ[B(
σ
rij
)

p

− (
σ
rij
)

q

] exp(
σ

rij − aσ
), (15)

where the p = 12 and q = 6 powers are substituted by q = 0 and p =
4, multiplied by an exponential cutoff that brings the potential to
zero at aσ, with a = 1.8 and σ = 2.3925 Å. Aϵ (with A = 7.050 and
ϵ = 6.189 kcal mol−1) controls the strength of the two body part. B
controls the two-body repulsion (with B = 0.602).

The three-body contribution is computed from all possible
ordered triplets formed by the central particle with the interact-
ing neighbors (with the same cutoff aσ as the two-body term) and

FIG. 2. Model convergence properties: (a) Learning rate schedule [Eq. (13)] as a
function of the absolute training step n (one step is defined as an update of the
network parameters). (b) The training and validation loss [see L[ϵ, f ] in Eq. (12)]
evolution during the training procedure, reported as a function of the number of
epoch ne (an epoch is defined as a complete evaluation of the training dataset).
Root mean square (rms) error of the total potential energy per particle (c) and of the
force Cartesian components (d) during the training evaluated in the test dataset.
Data in panels (b)–(d) refer to the NN3 model, and the green point shows the best
model location.

favors the tetrahedral coordination of the atoms via the following
functional form,

U3(rij, rik, θjik) = ϵ[cos(θjik) − cos(θ0)]
2 exp(

γσ
rij − aσ

)

× exp(
γσ

rik − aσ
), (16)

where θjik is the angle formed in the triplet jik, and γ = 1.2 con-
trols the smoothness of the cutoff function on approaching the
cutoff. Finally, θ0 = 109.47○ and λ = 23.15 control the strength of the
angular part of the potential.

The mW model, with its three-body terms centered around a
specific angle and non-monotonic radial interactions, is based on
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a functional form that is quite different from the radial and angu-
lar descriptors selected in the NN model. The NN is thus agnostic
with respect to the functional form that describes the physical system
(the mW in this case). However, having a reference model with
explicit three-body contributions offers a more challenging target for
the NN potential compared with potential models built entirely from
pairwise interactions. The mW model is thus an excellent candidate
to test the performance of the proposed NN potential.

III. RESULTS
A. Training

We study two different NN models, indicated with the labels
NN1 and NN3, differing in the number of state points included
in the training set. These two models are built with a cutoff of
Rc = 4.545 Å for the two-body atomic descriptors and a cutoff of
R ′c = 4.306 Å for the three-body atomic descriptors. R ′c is the same
as the mW cutoff, whereas Rc was made slightly larger to mitigate
the suppression of information at the boundaries by the cutoff func-
tions. The NN1 model uses only training information based on mW
equilibrium configurations from one state point at ρ1 = 1.07 g cm−3,
T1 = 270.9 K where the stable phase is the liquid. The NN3 model
uses training information based on mW liquid configurations in
three different state points, two state points at ρ1 = 0.92 g cm−3,
T1 = 221.1 K, and ρ2 = 0.92 g cm−3, T2 = 270.9 K, where the sta-
ble solid phase is the clathrate Si34/Si13674 and one state point at
ρ3 = 1.15 g cm−3, T2 = 270.9 K.

This choice of points in the phase diagram is aimed to improve
agreement with the low temperature-low density as well as high-
density regions of the phase diagram. Importantly, all configurations
come from either stable or metastable liquid state configurations.
Indeed, the point at ρ2 = 0.92 g cm−3, T2 = 270.9 K is quite close to
the limit of stability (respect to cavitation) of the liquid state.

To generate the training set, we simulate a system of
N = 1000 mW particles with a standard molecular dynamics code
in the NVT ensemble, where we use a time step of 4 fs and run 107

steps for each state point. From these trajectories, we randomly select
200 configurations (frames) to create a dataset of positions, total
energies, and forces. We then split the dataset in the training and
in the test datasets, the first one containing 80% of the data. We then
run the training for 4000 epochs with a minibatch of 4 frames. At the
end of every epoch, we check if the validation loss is improved and
we save the model parameters. In Fig. 2, we plot the loss function for
the training and test datasets (b), the root mean square error of the
total energy per particle (c), and of the force (d) for the NN3 model.
The results show that the learning rate schedule of Eq. (13) is very
effective in reducing both the loss and error functions.

Interestingly, the neural network seems to avoid overfitting
(i.e., the validation loss is decreasing at the same rate as the loss
on the training data), and the best model (deepest local minimum
explored), in a given window of training steps, is always found at
the end of that window, which also indicates that the accuracy could
be further improved by running more training steps. Indeed, we
found that by increasing the number of training steps by one order
of magnitude, the error in the forces decreases further by 30%. Simi-
lar accuracy of the training stage is obtained also for the NN1 model
(not shown).

The training procedure always terminates with an error on
the test set equal or less than Δϵ ≃ 0.01 kcal mol−1 (0.43 meV)
for the energy and Δ f ≃ 1.55 kcal mol−1 nm−1 (6.72 meV Å−1)
for the forces. These values are comparable with the state-of-the-
art NN potentials23,56,57,63 and within the typical accuracy of DFT
calculations.75

We can compare the precision of our model with that of alter-
native NN potentials trained on a range of water models. In Ref. 24,
a neural network potential was trained on the mW model from a
dataset made of 1991 configurations of 128 particles at different
pressures and temperatures (including both liquid and ice struc-
tures) with Behler–Parinello symmetry functions. The training of
this model (which uses more atomic fingerprints and a larger cut-
off radius) converged to an error in the energy of Δϵ ≃ 0.0062 kcal
mol−1 (0.27 meV) and Δ f ≃ 3.46 kcal mol−1 nm−1 (15.70 meV Å−1)
for the forces. In a recent study searching for liquid–liquid transition
signatures in an ab initio water NN model,57 a dataset of configura-
tions spanning a temperature range of 0–600 K and a pressure range
of 0–50 GPa was selected. For a system of 192 particles, the train-
ing converged to an error in the energy of Δϵ ≃ 0.010 kcal mol−1

(0.46 meV) and Δ f ≃ 9.96 kcal mol−1 nm−1 (43.2 meV Å−1) for the
forces. In the NN model of MB-POL,63 a dataset spanning a tem-
perature range from 198 to 368 K at ambient pressure was selected.
In this case, for a system of 256 water molecules, an accuracy of
Δϵ ≃ 0.01 kcal mol−1 (0.43 meV) and Δ f ≃ 10 kcal mol−1 nm−1

(43.36 meV Å−1) was reached. Finally, the NN for water at T = 300 K
used in Ref. 56, reached precisions of Δϵ ≃ 0.046 kcal mol−1 (2 meV)
and Δ f ≃ 25.36 kcal mol−1 nm−1 (110 meV Å−1). Although a direct
comparison between NN potentials trained on different reference
potentials is not a valid test to rank the respective accuracies, the
comparisons above show that our NN potential reaches a similar
precision in energies and possibly an improved error in the force
estimation. Moreover, our results suggest that the difficulty to prop-
erly reproduce a two- and three-body potential that can be calculated
analytically can be comparable with the difficulty to represent DFT
calculations, which may suffer from intrinsic statistical errors/noise.

The accuracy of the NN potential could be further improved by
extending the size of the dataset and the choice of the state points. In
fact, although the datasets in Refs. 56, 57, and 63 have been built with
optimized procedures, the dataset used in this study was prepared by
sampling just one (NN1) or three (NN3) state points. Also, the size
of the datasets used in the present work is smaller or comparable
with the ones of Refs. 56, 57, and 63.

In Appendix C, we compare the simultaneous training of AFs
and NN weights with a two-step procedure in which the AFs are pre-
selected according to the Farthest Point Sampling (FPS) method.40

The results show that the simultaneous training of AFs leads to a
more accurate training, even when using an overall small number
of AFs.

In Fig. 3, we compare the error in the energies (a) and the
forces (b) between 60 independent training runs using the standard
exponential decay of the learning rate (points) and the warm restart
protocol (squares). The figure shows that although the errors in the
energy computations are comparable between the two methods, the
warm restart protocol allows the forces to be computed with higher
accuracy. Moreover, we found that the warm restart procedure is less
dependent on the initial seed and that it reaches deeper basins than
the standard exponential cooling rate.
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FIG. 3. Comparison of the root mean square error calculated on the validation
set for 60 replicas differing in the initial seed of the training procedure using both
an exponential decay of the learning rate (points) and the warm restart method
(squares) for the energy [panel (a)] and the forces [panel (b)]. For the forces, a
significant improvement both in the average error and in its variance is found for
the warm restart schedule.

B. Comparing NN1 with NN3
The NN potential model was implemented in a custom MD

code that makes use of the TensorFlow C API.76 We adopted the
same time step (4 fs), the same number of particles (N = 1000) and
the same number of steps (107

) as for the simulations in the mW
model.

As described in the Training Section, we compare the accuracy
of two different training strategies: NN1, which was trained on a
single state point, and NN3, which is instead trained on three dif-
ferent state points. In Fig. 4, we plot the energy error (Δϵ) between
the NN potential and the mW model with both NN1 [panel (a)]
and NN3 [panel (b)]. Starting from NN1, we see that the model
already provides excellent accuracy for a large range of temperatures
and for densities close to the training density. The biggest short-
coming of the NN1 model is at densities lower than the trained
density, where the NN potential model cavitates and does not retain
the long-lived metastable liquid state displayed by the mW model.
We speculate that this behavior is due to the absence of low-density

FIG. 4. Comparison between the mW total energy and the NN1 model (a) and
NN3 model (b) for different temperatures and densities. Although the NN3 model
is able to reproduce the mW total energy with good agreement in a wide region
of densities and temperatures, the NN1 provide a good representation only in a
limited region of density and temperature values. Blue squares represent the state
points used for building the NN models.

configurations in the training set, which prevents the NN poten-
tial model from correctly reproducing the attractive tails of the mW
potential.

To overcome this limitation, we have included two addi-
tional state points at a low density in the NN3 model. In this
case, Fig. 4(b) shows that NN3 provides a quite accurate reproduc-
tion of the energy in the entire explored density and temperature
window (despite being trained only with data at ρ = 0.92 g cm−3 and
ρ = 1.15 g cm−3).

We can also compare the accuracy obtained during produc-
tion runs against the accuracy reached during training, which was
Δϵ ≃ 0.01 kcal mol−1. Figure 4(b) shows the error is of the order of
0.032 kcal mol−1 (1.3 meV), for density above the training set den-
sity. However, in the density region between 0.92 and 1.15, the error
is even smaller, around 0.017 kcal mol−1 (0.7 meV) at the lowest
density boundary.

We can thus conclude that the NN3 model, which adds to the
NN1 model information at lower density and temperature in the
region where tetrahedality in the water structure is enhanced, is
indeed capable to represent, with only three state points, a quite large
region of the phase space, encompassing dense and stretched liquid
states. This suggests that a training based on few state points at the
boundary of the density/temperature region that needs to be studied
is sufficient to produce a high-quality NN model. In the following,
we focus entirely on the NN3 model.

C. Comparison of thermodynamic, structural,
and dynamical quantities

In Fig. 5, we present a comparison of thermodynamic data
between the mW model (squares) and its NN potential represen-
tation (points) across a wide range of state points. Figure 5(a)
plots the energy as a function of density for temperatures rang-
ing from melting to deeply supercooled conditions. Perhaps, the
most interesting result is that the NN potential is able to capture

FIG. 5. Comparison between the mW total energy and the NN3 total energy as
a function of density along different isotherms (a) and comparison between the
mW pressure and the NN3 pressure as a function of temperature along different
isochores (b). The relative error of the NN vs the mW potential grows with density
but remains within 3% even for densities larger than the densities used in the
training set.
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the energy minimum, also called the optimal network forming den-
sity, which is a distinctive anomalous property of water and other
empty liquids.77

Figure 5(b) shows the pressure as a function of the tempera-
ture for different densities, comparing the mW with the NN3 model.
Also, the pressure shows good agreement between the two models in
the region of densities between ρ = 0.92 g cm−3 and ρ = 1.15 g cm−3,
which, as for the energy, tends to deteriorate at ρ = 1.22 g cm−3.

In the large-density region explored, the structure of the liq-
uid changes considerably. On increasing density, a transition from
tetrahedral-coordinated local structure, prevalent at low T and low
ρ, toward denser local environments with interstitial molecules
included in the first coordination shell takes place. This structural
change is well displayed in the radial distribution function, shown
for different densities at a fixed temperature in Fig. 6. Figure 6
also shows the progressive onset of a peak around 3.5 Å develop-
ing on increasing pressure, which signals the growth of interstitial
molecules, coexisting with open tetrahedral local structures.78,79 At
the highest density, the tetrahedral peak completely merges with
the interstitial peak. The NN3 model reproduces quite accurately
all features of the radial distribution functions, maxima and min-
ima positions, and their relative amplitudes, at all densities, from
the tetrahedral-dominated to the interstitial-dominated limits. In
general, the NN3 model reproduces quite well the mW potential
in energies, pressures, and structures, and it appreciably deviates
from mW pressure and energy quantities only at densities (above
1.15 g/cm3) that are outside of the training region.

To assess the ability of NN potential to correctly describe also
the crystal phases of the mW potential, we compare in Fig. 7 the g(r)
of mW with the g(r) of the NN3 model for four different stable solid
phases:74 hexagonal and cubic ice (ρ = 1.00 g cm−3 and T = 246 K),
the dense crystal SC16 (ρ = 1.20 g cm−3 and T = 234 K), and the

FIG. 6. Comparison between the mW radial distribution functions g(r) and the
NN3 g(r) at T = 270.9 K for four different densities. The tetrahedral structure
(signaled by the peak at 4.54 Å) progressively weakens in favor of an interstitial
peak progressively growing at 3.5–3.8 Å. Different g(r) have been progressively
shifted by two to improve clarity.

FIG. 7. Comparison between the mW radial distribution functions g(r) and the
NN3 g(r) for four different lattices: (a) hexagonal diamond (the oxygen positions
of the ice Ih), (b) cubic diamond (the oxygen positions of the ice Ic , (c) the SC16
crystal (the dense crystal form stable at large pressures in the mW model), and
(d) the Si136 clathrate structure, which is stable at negative pressures in the mW
model. Different g(r) have been progressively shifted by four to improve clarity.

clathrate phase Si136 (ρ = 0.80 g cm−3 and T = 221 K). The results,
shown in Fig. 7, show that despite no crystal configurations having
been included in the training set, a quite accurate representation of
the crystal structure at finite temperature is provided by the NN3
model for all distinct sampled lattices.

Finally, we compare in Fig. 8 the diffusion coefficient (evalu-
ated from the long time limit of the mean square displacement) for
the mW and the NN3 model in a wide range of temperatures and
densities, where water displays a diffusion anomaly. Figure 8 shows
again that also for dynamical quantities, the NN potential offers an
excellent representation of the mW potential, despite the fact that
no dynamical quantity was included in the training set. A compar-
ison between fluctuations of energy and pressure of mW and NN3
potential is reported in Appendix D.

FIG. 8. Comparison between the mW diffusion coefficient D and the NN3
corresponding quantity for different temperatures and densities in the interval
221–271 K. In this dynamic quantity, the relative error is, for all temperatures,
around 8%. Note also that in this T window, the diffusion coefficient shows a clear
maximum, reproducing one of the well-know diffusion anomalies of water. Diffusion
coefficients have been calculated in the NVT ensemble using the same Andersen
thermostat algorithm80 for mW and NN3 potential.
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IV. CONCLUSIONS
In this work, we have presented a novel neural network (NN)

potential based on a new set of atomic fingerprints (AFs) built
from two- and three-body local descriptors that are combined in a
permutation-invariant way through an exponential filter [see Eq. (3)
and (4)]. One of the distinctive advantages of our scheme is that the
AF’s parameters are optimized during the training procedure, mak-
ing the present algorithm a self-training network that automatically
selects the best AFs for the potential of interest. Indeed, this scheme
eliminates the feature selection step, so that a NN potential can be
trained with a unified procedure. Moreover, this scheme improves
the convergence of the training, allowing for better accuracy and/or
the use of a smaller number of AFs (see Appendix C).

We have shown that the added complexity in the concurrent
training of the AFs and NN weights can be overcome with an
annealing procedure based on the warm restart method,72 where the
learning rate goes through damped oscillatory ramps. This strategy
not only gives better accuracy compared with the commonly imple-
mented exponential learning rate decay but also allows the training
procedure to converge rapidly independently from the initialization
strategies of the model’s parameters.

Moreover, we show in Appendix E that the potential hyper-
surface of the NN model has the same smoothness as the target
model, as confirmed by (i) the possibility to use the same time step
in the NN and in the target model when integrating the equation of
motion and (ii) by the possibility of simulating the NN model even
in the NVE ensemble with proper energy conservation.

We test the novel NN on the mW model,42 a one-component
model system commonly used to describe water in classical simu-
lations. This model, a re-parametrization of the Stillinger–Weber
model for silicon,73 although treating the water molecule as a sim-
ple point, is able to reproduce the characteristic tetrahedral local
structure of water (and its distortion on increasing density) via the
use of three-body interactions. Indeed, water changes from a liquid
of tetrahedrally coordinated molecules to a denser liquid, in which
a relevant fraction of interstitial molecules is present in the first
nearest-neighbor shell. The complexity of the mW model, both due
to its functional form as well as to the variety of different local struc-
tures that characterize water, makes it an ideal benchmark system to
test our NN potential.

We find that training based on configurations extracted by
three different state points is able to provide a very accurate rep-
resentation of the mW potential hypersurface, when the densities
and temperatures of the training state points delimit the region in
which the NN potential is expected to work. We also find that the
error in the NN estimate of the total energy is low, always smaller
than 0.03 kcal mol−1, with a mean error of 0.013 kcal mol−1. The NN
model reproduces very well not only the thermodynamic properties
but also the structural properties, as quantified by the radial distri-
bution function, and the dynamic properties, as expressed by the
diffusion coefficient, in the extended density interval from ρ = 0.92
g cm−3 to ρ = 1.22 g cm−3.

Interestingly, we find that the NN model, trained only on dis-
ordered configurations, is also able to properly describe the radial
distribution of the ordered lattices that characterize the mW phase
diagram, encompassing the cubic and hexagonal ices, SC16, and
Si136 clathrate structures.74 In this respect, the ability of the NN

model to properly represent crystal states suggests that, in the case
of the mW and as such probably in the case of water, the geomet-
rical information relevant to the ordered structures is contained in
the sampling of phase space typical of the disordered liquid phase.
These findings have been recently discussed in Ref. 81 where it has
been demonstrated that liquid water contains all the building blocks
of diverse ice phases.

We conclude by noticing that the present approach can be gen-
eralized to multicomponent systems, following the same strategy
implemented by previous approaches.18,23 Work in this direction is
under way.
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APPENDIX A: THE RANGE OF THE NN POTENTIAL

In this appendix, we discuss the effective spatial range cov-
ered by a NN potential whose fingerprints are defined based on pair
information confined within a sphere of cutoff radius Rc.

As noted in Ref. 31, multi-body potentials and especially non-
additive multibody potentials induce local interactions beyond the
cutoff radius, enlarging the sphere of interaction. Indeed, the force
on particle i comes from the derivative of the local field of i and of
all its neighbors with respect to the coordinates of particle i.

Figure 9 graphically explains the effective role of Rc in the NN
potential. In panel (a), we describe particle 1 with only one neigh-
bor (particle 2) within Rc. We also represent the sphere centered on
particle 3, which also includes particle 2 as one of its neighbor. In
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FIG. 9. (a) Two-body interactions and (b) three-body interactions in a non-linear
local field model Ei . The non-linearity of the local field enlarges the interaction
cut-off where a neighbor particle (blue) makes a bridge between non-neighboring
particle (red and blue).

this case, the energy of the system will be represented as a sum over
the local fields E1, E2 and E3. Due to the intrinsic non-linearity of the
NN, the field Ei mixes together the AFs, and consequently, the dis-
tances and angles entering in the AFs are non-linearly mixed in Ei.
The force on atom 1 is then written as

f1ν = −
∂E1(r12)

∂x1ν
−
∂E2(r21, r23)

∂x1ν
= −

∂E1(r12)

∂x1ν

−
∂E2(r21, r23)

∂r21

∂r21

∂x1ν
−
∂E2(r21, r23)

∂r23

∂r23

∂x1ν
(A1)

Although the last term vanishes, the next to the last retains an intrin-
sic dependence on the coordinates both of particle 2 as well as of
particle 3, if the local field E2 is non-linear. Thus, even if particle 3
is further than Rc, it enters in the determination of the force acting
on particle 1. A similar effect is also present in the angular part of
the AFs, as shown graphically in panel (b). Indeed, for the angular
component of the AF, the force on particle 1 is

f1ν = −
∂E1(θ512)

∂x1ν
−
∂E2(θ123, θ124, θ324)

∂x1ν
. (A2)

Also, in this case, two contributions can be separated: (i) the inter-
action of particle 1 with triplets 123 and 124 is an effect of the
three-body AF and it is present also in additive-models such as the
mW model and (ii) the interaction of particle 1 with triplet 324 is an
effect of the non-additive nature of the NN local field Ei.

APPENDIX B: ACCURACY WITH VARYING THE
NUMBER OF AFs

In this appendix, we investigate the efficiency of the training
over different choices for the number and types of atomic finger-
prints introduced in the Neural Network Model section. We start
by using only one three-body (n3b = 1) and one two-body (n2b = 1)
AF and subsequently increasing the number of the AF. For every
combination of n2b and n3b, we run a 4000 epochs training, and at
the end of each training, we extract the best model. We summarized
these results in Table I where we compare the error on forces over
all the investigated model. From Table I, it emerges that the choice
of n3b = 5 and n2b = 5 is the more convenient both for accuracy and
computational efficiency. Doubling the number of the three-body
AF marginally improves the error on forces, whereas increases the

TABLE I. Table of errors on forces at the end of the 4000 epoch-long training
procedure for different combination of the number and type of the AF.

n3b n2b Δ f (meV Å−1) n3b n2b Δ f (meV Å−1)

1 1 72.79 5 1 16.53
1 2 67.92 5 2 7.53
1 5 56.25 5 5 6.72
1 10 56.00 5 10 6.87
1 15 56.02 5 15 6.95
2 1 53.76 10 1 7.98
2 2 43.95 10 2 7.17
2 5 32.43 10 5 5.79
2 10 32.39 10 10 6.55
2 15 24.70 10 15 6.19

computational cost due to the increase in the size of the input layer
of the first hidden layer and due to the additional time to com-
pute the three-body AF. Moreover, in the RESULTS section, we
show that the choice n3b = 5 and n2b = 5 is sufficient to represent
the target potential. Finally, the accuracy of the training after dou-
bling the configurations in the dataset reaches an error on forces of
Δ f = 5.85 meV Å−1 that is 0.87 times the error value found with a
half of the dataset.

APPENDIX C: COMPARISON WITH TWO-STEP
TRAINING

In this appendix, we compare our simultaneous training of AFs
and NN weights, with a two-step procedure (TSP) that selects AFs
and trains NN weights separately. The two step-procedure is per-
formed as follows: (1) all the parameters of the AFs in Eqs. (3) and (4)
are fixed by a feature selection scheme and then (2) the neural net-
work potential is trained by keeping frozen the previously selected
AF parameters and optimizing only the hidden layer weights W. Dif-
ferent methods have been proposed for the AF parameters selection,
and we choose to use the Farthest Point Sampling (FPS).40 Hence,
we initialized the parameters for 1000 AFs, 500 for each type of AFs
(two-body and three-body), and we evaluate all the 1000 AFs on a
dataset of 168 configurations of N = 1000 particles (the same of the
training set in the Results section). Next, we implement the FPS algo-
rithm, and we select the first best 40 AFs among the initial 1000 AFs.
To test this AFs selection, we train a neural network with 2 layers
and 25 nodes per layer (same of NN3) with the first 5, 10, 15, 20, and
25 AFs as the input for the first hidden layer. We repeat the FPS algo-
rithm with two independent selections of the first AF, and we show
the results in Fig. 10. Panels (a) and (c) plot the Root mean square
(rms) error for the forces and energies, respectively, when using up
to 10 AFs. The figures show that the TSP procedure is far obtaining
the accuracy of the NN3 model (which also employs 10 AFs). More-
over, for the TSP procedure there is a clear saturation of the learning
curve for both forces and energies. In Fig. 10, we increase the num-
ber of AFs used in the TSP procedure and compare the results with
NN3. Also, in this case, NN3 (with 10 AFs) has a better accuracy
[especially for the forces, panel (b)] compared with the best model
built with TSP (that uses 20 AFs).
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FIG. 10. Comparison of Full and two-step training procedure. (a) Forces training
curve for NN3 (Full) and for the two-step by using 5 and 10 AFs and two seeds.
(b) Forces training curve for NN3 (Full) and for the two-step by using 15, 20, 25,
and two seeds. (c) Energy training curve for NN3 (Full) and for the Two-step by
using 5 and 10 AFs and two seeds. (d) Energy training curve for NN3 (Full) and
for the two-step by using 15, 20, 25, and two seeds.

APPENDIX D: ENERGY AND PRESSURE
FLUCTUATIONS

In this appendix, we provide further thermodynamics com-
parisons between mW and NN3 potential focusing on the pressure
and energy fluctuations. We depict in Fig. 11 the standard devia-
tions of the total energy (normalized by N) in panel (a) and the
standard deviation of virial pressure in panel (b). Energy fluctu-
ations of NN3 follow qualitatively and quantitatively the trend of
mW potential. Pressure fluctuations of NN3 are in good agreement
with the mW model but, as for the pressure [Fig. 5(b)], the accuracy
decreases approaching state points outside the density range used for
the training.

APPENDIX E: ENERGY CONSERVATION

In this appendix, we show a comparison between the mW and
NN3 potentials in terms of the energy conservation in the NVE
ensemble. In Fig. 12, we depict both total energy and potential

FIG. 11. (a) Standard deviation of total energy (normalized with the number of
particles) and (b) standard deviation of virial pressure for both NN3 model (red)
and mW model (black).

FIG. 12. NVE molecular dynamics at T = 299 K and ρ = 1.07 g cm−3 for both NN3
and mW model. The time step is dt = 4 fs for both models.

energy for mW and NN3 potential. The potential energy and total
energy of the two models are in good agreement.
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