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ABSTRACT: The goal of inverse self-assembly is to design interparticle
interactions capable of assembling the units into a desired target structure.
The effective assembly of complex structures often requires the use of
multiple components, each new component increasing the thermodynamic
degrees of freedom and, hence, the complexity of the self-assembly pathway.
In this work we explore the possibility to use azeotropy, i.e., a special
thermodynamic condition where the system behaves effectively as a one-
component system, as a way to control the self-assembly of an arbitrary
number of components. Exploiting the mass-balance equations, we show how
to select patchy particle systems that exhibit azeotropic points along the
desired self-assembly pathway. As an example we map the phase diagram of a
binary mixture that, by design, fully assembles into cubic (and only cubic)
diamond crystal via an azeotropic point. The ability to explicitly include
azeotropic points in artificial designs reveals effective pathways for the self-assembly of complex structures.
KEYWORDS: azeotropy, self-assembly, multicomponent mixtures, nucleation, patchy particles, DNA origami

When interactions between particles in a dilute fluid
phase have strength comparable to or larger than
the thermal energy, the fluid becomes unstable and

the particles condense searching for a lower free energy state.
The spontaneous formation of interparticle bonds gives rise to
aggregates whose final state can be either that of an ordered
lattice, a connected percolating structure (e.g., a liquid), or a
collection of finite size clusters. When finite size or periodic
structures are formed, this spontaneous search for the lowest
free energy state is called self-assembly.1,2

While the computation of the free energy of a structure is a
laborious but solved problem in statistical mechanics, several
challenges hamper our understanding of self-assembly and our
ability to mimic natural systems. In the direct self-assembly
problem, one starts from a set of predetermined elementary
units with known interparticle interactions and is tasked with
selecting structures that correspond to free energy minima.
This is done either with intuition (for simple structures), with
brute force approaches (direct molecular simulations), or with
specialized algorithms.3,4 Even more challenging is the inverse
self-assembly problem, where one is tasked with designing the
interparticle interactions that will self-assemble a desired target
structure.5,6 In this case the problems are 2-fold: first designing
an interaction-potential, second confirming that there are no
alternative structures that preempt the formation of the target
one.7 So far, two types of approaches have been explored:
optimization algorithms and geometrical strategies. Optimiza-

tion algorithms allow one to design a pair potential whose free-
energy minima is guaranteed to be the desired structure.6,8−16

However, the interparticle interactions that result from such
procedures are often too complex and require a degree of
precision that is out of reach for experimental realization. In
geometrical strategies, instead, one matches the geometric
features of the target structure by tuning some interaction
properties of the building units, e.g., the shape and the
directionality of the bonds, in order to match the geometric
features of the target structure.17−24 Although it is an
experimentally feasible approach, it is system specific, and it
requires a high degree of geometrical intuition.
A different solution strategy to the inverse self-assembly

problem is to extend the number of building blocks, going
from single component systems to multicomponent mixtures,
shifting the problem of designing complex single particle
potentials to that of optimizing simpler (and more geo-
metrical) interactions between multiple components.7,25−30

Extending the alphabet of building blocks, i.e., the number of
components, lowers the degree of symmetry in the final
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structure, allowing for a considerable reduction in competing
structures, and an easier assembly pathway toward the target
design. Compared to single-component mixtures, and leaving
experimental challenges aside, two major problems are
introduced by the increase in the number of components: a
combinatorial problem and a thermodynamic problem.
The combinatorial problem arises from the fact that each new

component increases exponentially the space of possible
solutions and with that the computational time required to
find a solution. To tackle it, advanced optimization algorithms
are necessary, such as genetic algorithms31 or machine learning
techniques.16,32 Some of us have recently introduced an
approach called SAT-assembly,26,33 which encodes the bond
topology of the target structure into a system of Boolean
equations (a satisfiability problem commonly named SAT)
whose solution gives the interaction matrix between different
patches. The sophistication of modern SAT solvers34 allows to
effectively tackle the combinatorial problem for complex
assemblies, including open crystalline structures, photonic
crystals, and clathrate structures.
The thermodynamic problem arises instead because, accord-

ing to Gibbs rule of phases,35 each component represents an
additional thermodynamic degree of freedom of the system,
extending the phase behavior phenomenology in ways that can
interfere with the self-assembly pathway. No general strategy to
tackle this problem has so far been proposed. Full phase
diagram calculations are in fact very time-consuming and are
often avoided in multicomponent systems due to their
complexity. The goal of this article is to show how to
overcome the thermodynamic difficulties associated with the
use of multicomponent mixtures by explicitly encoding
azeotropic points in the self-assembly designs of patchy
particles. The azeotropic point is a point where the free-
energy of the mixture can be written as that of an effective one-
component system (see Supporting Information I for a concise
explanation of azeotropy), a condition that ensures that
coexisting phases will have the same concentration as the
parent homogeneous system. The ability to explicitly include
azeotropic points along the self-assembly pathways of these
systems represents an attractive strategy to tame the complex-
ity in phase behavior usually associated with multicomponent
mixtures. Some of the advantages of combining azeotropic
behavior with self-assembly are listed here. (i) The ability to
(considerably) increase the reaction rates of the self-assembly
process by quenching the system in a region of (liquid−gas)
metastability: in fact, it is well-established that for one-
component systems nucleation rates increase in proximity of
density fluctuations like the ones found near liquid−gas critical
points36 and spinodal loci.37 (ii) Increase the kinetics of the
self-assembly reaction: if the concentration of the azeotropic
point is the same as the crystal composition, one can avoid
slow diffusion-limited processes, where the crystal nucleus has
to wait for the concentration of the local environment to match
the one of the target structure.38 (iii) The yield of the self-
assembly process can proceed theoretically until all compo-
nents are exhausted (to 100%), as the liquid phase will form at
the same composition of the target crystalline structure.
In this article, we will first show that it is indeed possible to

effectively control the self-assembly of suitably designed patchy
particles by exploiting the encoded azeotropic properties. As a
proof of concept, we then investigate in detail a binary mixture
that is designed to form (only) the cubic diamond crystal. This
mixture also shows a very interesting phase behavior, where

phase-separation only occurs for mixed states and not for the
pure components.

RESULTS AND DISCUSSION
Our results pertain to systems whose components aggregate by
forming bonds, i.e., to the vast class of associating systems.39

The main assumption is that the systems are in equilibrium
and that bond formation is controlled by a mass-balance
equation. We propose general design rules that realize
azeotropy in any system that satisfies these conditions. To
demonstrate the effectiveness of our approach we will give
concrete examples that considers mixtures of patchy particles
(Figure 1). For example, patchy particles can be realized with

DNA origami, engineering distinct regions on the origami
structures with complementary DNA sequences that precisely
match the complementary sequences on the functionalized
nanoparticles. This design enables selective binding and
controlled assembly through hybridization interactions, leading
to the formation of patchy particles with specific binding sites.
A detailed description of the connections between DNA-
origami and patchy particles is reported in the Methods
section. For these mixtures of patchy particles, thermodynamic
properties will be computed both via Wertheim’s first order
perturbation theory,39−48 and via molecular simulations, both
confirming the presence of the azeotropic point embedded in
the phase diagram by design. In particular, to calculate the
phase behavior of the studied systems theoretically, we adopt
the isochoric thermodynamic’s framework, while to study it
numerically, we implement Monte Carlo simulations in the
Gibbs ensemble. All these techniques are summarized in the
Methods section.
In the rest of this article energy is measured in units of the

square-well depth (ϵ), distances in units of the patchy particle
diameter (σ), pressure in units of ϵ/σ3 and kB = 1.
Law of Mass Action. In deriving the azeotropy conditions

we will make use of the law of mass action,41,44,47 which
quantifies the probability for a patch α to be nonbonded, and
which we denote by Xα

(i), where the index α runs over all
patches of species i

= +
=

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑX x X1i

j N
j

j
j( )

1,
( )

( )
( )

1

s (1)

where Γ(j) is the set of all patches of species j, Δαγ quantifies
the strength of the interaction between patches α and γ, and ϕ
is the total packing fraction. A detailed expression for Δαγ is
reported in the Methods section, but in the remainder we will
consider the following simplification: any pair of interacting

Figure 1. Patchy particles schematic. Two patchy particles with
four tetrahedrally arranged patches (in blue) interacting with the
Kern−Frenkel potential defined in the Patchy Particles section in
the Methods.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c05569
ACS Nano 2023, 17, 24841−24853

24842

https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c05569/suppl_file/nn3c05569_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c05569?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c05569?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c05569?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c05569?fig=fig1&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c05569?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


patches forms bonds of the same type (bonding volume Vb and
energy ϵ), so that Δαγ = Δ if α and γ interact, or Δαγ = 0 if they
do not. We call ϒ the interaction matrix, whose elements ϒαγ =
Δαγ/Δ are ones if patches α and γ interact, and zeros if they do
not. By construction, ϒ is a symmetric matrix (if patch α binds
with patch γ, then also patch γ binds with patch α).
One possible strategy to compute ϒ, i.e., to determine which

pair of patches should interact, such that the particles will self-
assemble into a desired structure, is the SAT-assembly
framework.26 Here we focus on the general conditions one
needs to impose on ϒαγ in order to obtain azeotropic mixtures,
regardless of the desired target structure.
Azeotropy Design Rules. We consider a Ns-component

mixture with all species having the same diameter σ, the same
number (Np) and placements of patches, and differing only in
the patches type (patches color). We first notice that a
sufficient condition for azeotropy is obtained by imposing that
all probabilities Xα

(i) in eq 1 are the same for all patches in the
system, Xα

(i) = X. In this way, all species will behave like an
effective one-component system where all bonds have the same
probability to be formed. The same condition can be
demonstrated to hold within Wertheim’s perturbation theory:
in the Wertheim Perturbation Theory section in the Methods
we notice that the equality of all Xα

(i) implies that the
Helmholtz bonding free energy (eq 15) reduces to that of a
one-component system.
In order to determine whether there is a thermodynamic

point where all Xα
(i) have the same value, we turn to the mass

balance condition, eq 1, which is a set of Ns × Np equations in
the variables Xα

(i). Looking for the rules under which all the
mass balance equations become equivalent provides a sufficient
condition for the appearance of azeotropy in a multi-
component mixture.
In the following, we examine three families of rules that

ensure azeotropy:
• The bond exclusivity condition. This rule generates
azeotropic points at equimolar conditions.
• The bond multiplicity condition. This rule allows for
azeotropic points at nonequimolar conditions.
• The fully connected bond condition. This rule generates
always-azeotropic mixtures, e.g., where the concentration
remains the same during demixing for every point in the
coexistence region.

Bond Exclusivity Condition. One condition ensuring
azeotropy is the bond exclusivity constraint requiring that
each patch has only one bonding partner (that can be itself in
the case of self-complementarity) among all patches of all
species in the mixture. This implies that all patches are
different and that ϒ has a single one for each row, located at a
different column for different rows. This condition, with its
symmetric bonding rules, can be realized when two species of
particles are functionalized with complementary DNA strands,
a system which has found great success in nanotechnology.49,50

We consider here the case where all bonds have the same
bonding energy such that azeotropy appears at equimolar
conditions: a Ns-component mixture will be azeotropic if it is
prepared by mixing all of the Ns components at the equimolar
concentration 1/Ns. To see this, we note that the bond
exclusivity condition implies that the sum over the patches
(∑γ∈Γ(j)) and the sum over the species (∑j=1,N ds

) in eq 1 reduce
to a single contribution since patch α belonging to species i can
interact only with its partner patch γ belonging to species j (j

can be also equal to i as well as α can be equal to γ). Therefore,
the Ns × Np mass balance equations for Xα

(i) reduce all to
equations of the form

= [ + ]X x X1i j j( ) ( ) ( ) 1
(2)

which couple only Xα
(i) with Xγ

(j). Moreover, by designing bonds
with the same strength, Δαγ ≡ Δ for all patches α and γ. By
considering the pair of equations for Xα

(i) and Xγ
(j) one obtains,

without knowing the exact patchy particles design, that the Ns
× Np mass balance equations become all equivalent to

+ [ ] + =X x X x x X( ) 1 0i i i j i i( ) ( ) ( ) 2 ( ) ( ) ( ) (3)

With the equimolarity condition, x(i) = 1/Ns, the Ns × Np
equations above admit the azeotropic solution Xα

(i) = X, where
X is the solution of

+ =X
N

X 1 0
s

2

(4)

Thus, the bond exclusivity condition generates an azeotrope
at equimolar concentration, which can be exploited to self-
assemble target structures composed of an equal number of all
species. An example of interaction matrix satisfying the bond
exclusivity condition is given in the next section, where we will
verify explicitly the presence of an equimolar azeotropic point
not only with Wertheim’s thermodynamic theory but also
explicitly with Monte Carlo simulation of a patchy particle
realization of the interaction matrix.
The bond exclusivity condition is easily generalized to cases

where multiple-bonding is allowed (one patch capable of
bonding to more than one patch), a case that can be realized
with DNA functionalization, as explained in Supporting
Information IV and/or when the patches are not distinct
(when the interaction matrix has repeated columns or rows,
i.e., when its determinant is zero). In these cases, to have
equimolar azeotropy conditions, one needs to ensure that
every patch has the same total number (m) of bonding
partners (distributed over one or more species). In this case
the mass-balance equation admits the solution Xα

(i) = X
(azeotropy), with X satisfying the following equation

+ =X m
N

X 1 0
s

2

(5)

Bond Multiplicity Condition. A simple generalization of the
bond exclusivity condition allows moving the azeotropic point
to off-equimolar conditions. Considering a binary mixture
where the ratio between the two species (denoted as (1) and
(2)) is 1:n, in order to have an azeotrope at x(2) = nx(1) (i.e.,
x(1) = 1/(n + 1) and x(2) = n/(n + 1)) it is sufficient to enforce

• bond exclusivity to all patches bonding to species (2),
i.e., each patch has a unique bonding partner with
species (2).
• n-bond multiplicity to all patches bonding to species
(1), i.e., each patch has n bonding partners with species
(1).

With these conditions, all mass balance equations, eq 1,
admit the azeotropic solution Xα

(i) = X with X satisfying the
following equation

+
+

=X
n

n
X

1
1 02

(6)
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The bond multiplicity rule is a generalization of the previous
bond exclusivity case, that we recover if n = 1. This recipe is
generalizable to multicomponent mixtures with more than two
species: the bond multiplicity condition will require to establish
a bond with m patches belonging to certain species, where m is
the least common multiple between component ratios.
An explicit example of a binary system of patchy particles

with bond multiplicity is reported in Supporting Information
II, and an example of a ternary system having an azeotropic
point off equimolar conditions is reported in Supporing
Information IV.
In short, bond multiplicity provides a way to shift the

azeotropic point at a concentration different from the
equimolar one. However, we underline that, with the presented
rules, once the number of species and of patches is set, it is not
possible to design a mixture exhibiting azeotropy at arbitrary
concentration. For instance, for a binary mixture with four
patches tetrahedrally arranged, there is no design satisfying our
bonding rules for the ratio 1:3. More general conditions can be
built by lifting the requirement that all bonds have the same
energy, Δαγ ≠ Δ, but bearing in mind that a fine control over
bonding energies represents a significant experimental
challenge.
Fully Connected Bond Condition. The fully connected bond

condition introduces bonding rules that ensure full azeotropy
at all concentrations without the need to tune bonding
energies. In this case, the concentration of the two coexisting
phases is always constant during demixing. For a general Ns-
component mixture of patchy particles with Np patches, the
fully connected bond condition is achieved when each patch can
bind with Ns patches, each located on a different species. In
this case the sum ∑γ∈Γ(j) in the mass balance equation (eq 1)
drops out, as there is only one bonding partner on each
species, becoming

= +
=

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑX x X1i

j N
j j( )

1,
( ) ( )

1

s j (7)

where the patch β on particle j is the unique bonding partner
of patch α on species i. Now, assuming that all bonds are of the
same type, Δαγ = Δ, and remembering that ∑jx(j) = 1, we see
that the mass balance equation admits azeotropic solutions Xα

(i)

= X where X satisfies

+ =X X 1 02 (8)

A possible interaction matrix for a binary mixture satisfying
the fully connected bond condition is reported in Supporting
Information III and a DNA implementation in Supporting
Information V.
Application to Cubic Diamond Crystals. One of the

most interesting and challenging bottom-up realizations of a
target structure is that of the cubic diamond.51,52 Realizing a
cubic diamond on colloidal scale would allow the creation of a
photonic crystal that allows for light manipulation in a
controlled way.53−55 The self-assembly of a cubic diamond is
complex since its lattice is an open structure which competes
with the hexagonal diamond structure, which prevents the
cubic diamond from forming without defects such as stacking
faults.56 Several studies have been performed to overcome
these difficulties,56,57 including solutions obtained within the
SAT-assembly framework.26,33 Because of the topology of the
cubic diamond lattice, patchy particles of valence four with a
tetrahedral arrangement of the patches are used to self-

assemble the crystal. The minimal SAT-designed solution (the
one requiring the smallest number of distinct particles) is the
so-called N2c8s2 binary mixture58 that uses two species (N2),
eight patches types (colors) (c8) and two self-interacting
colors (s2) and it is schematized in Figure 2 where colors

identify the interacting (and not the different) patches
according to the interaction matrix ϒ. Note that the number
of self-interacting colors is also the trace of matrix ϒ.
The N2c8s2 interaction matrix, encoding the design with 2

species and 8 distinct patches (or colors), is

=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0

N2c8s2

(9)

We notice that having a single one for each row, the bond
exclusivity condition is satisfied, and we thus expect to find an
azeotrope line at concentration x(1) = x(2) = 1/2. The N2c8s2
mixture is thus an ideal candidate to test the appearance of
azeotropy and to investigate in detail its self-assembly
properties.
In order to verify the effective presence of an azeotrope

when the two species are mixed at equal ratio, we first use
Wertheim’s theory40 to determine the binodal curve in
pressure−concentration and density-concentration phase dia-
grams. The thermodynamic conditions for a stable state of the
mixture at constant pressure and temperature are found when
the Gibbs free energy per particle g has a minimum. g, the
Legendre transform of the Helmholtz free energy per particle f,
is defined as

= +g
P

f
(10)

where P is the pressure and ρ is the total number density. Since
the same total density can be achieved by mixing species at
more than one pair of concentrations x1 ≡ x and x2 = 1 − x1,
first we must minimize g for each fixed concentration x with
respect to the density ρ. In this way, the Gibbs free energy
becomes only a function of concentration. Coexisting phases
having the same temperature, pressure and chemical potential
can be obtained by searching those points on g(x) that are

Figure 2. 3D representation of the two patchy particles species (a)
and (b) of the SAT-designed N2c8s2 binary mixture. Equal patch
colors indicate which patches can bind to each other and the
colors appearing only once are assigned to self-interacting patches.
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connected by a common tangent.42 Starting from a single pair
of coexistence points found with the common tangent rule, we
use the isochoric thermodynamics equations (Isochoric
Thermodynamics section in the Methods) to trace the
coexistence lines as a function of concentration and pressure.
For all the following numerical calculations, we fix the potential
parameters to the values cos θmax = 0.98 and δ = 0.2. This
choice follows from previous studies demonstrating that the
nucleation is facilitated at small apertures of the angle
θmax.

39,56,59

The pressure concentration phase diagram obtained at T =
0.07 is shown in Figure 3a. This phase diagram confirms that

the N2c8s2 has an azeotropic point at concentration equal to x
= 0.5: it is exactly at x = 0.5 that the bubble point curve (where
the vapor phase first appears when pressure is lowered starting
from a point greater than the total vapor pressure60) and the
dew point curve (where the liquid phase first originates when
pressure in increased starting from a point in the vapor
phase60) are tangent and the coexistence region reduces to a

point. Moreover since the azeotrope is at the lower extremum
in the pressure−concentration phase diagram, the N2c8s2
binary mixture is a negative azeotropic binary mixture.60,61

In Figure 3b we plot the coexistence region in the density-
concentration phase diagram. The azeotropic nature of the
solution with x = 0.5 is evident from the slope of the tie-lines:
only at x = 0.5 is the tie-line a vertical line, indicating that only
if the binary mixture is prepared by mixing together an equal
concentration of the two species will the coexisting phases
preserve the same concentration.
Unexpectedly, the shape of the coexistence regions in the P

− T plane (sometime called the phase diagram “top-
ology”60,61) indicates that the N2c8s2 mixture belongs to a
distinctive type of binary phase diagram in which the pure
components (x = 0 and x = 1) do not have a liquid−gas
transition but their mixture does. Figure 4 shows that with

decreasing temperature, the coexistence region becomes larger
without ever crossing the limit concentrations x = 0 and x = 1.
The topology of the phase diagram is equivalent to that of an
ordinary azeotropic binary mixture but in which the binary
critical point line goes to (P, T) → 0 as the concentration goes
to x → 0 or x → 1.
This unconventional behavior is originated by the fact that

patchy particles of the same species can bind to each other
with no more than two bonds, as encoded in the interaction
matrix (eq 9). Hence, under pure component conditions,
particles can aggregate only into chains as depicted in Figure 5.
Therefore, even if particles have four patches, when x = 0 or x
= 1 they behave like bifunctional particles and hence have no
liquid−gas phase separation.43 We note that the idea that
systems with two-patches have a hidden critical point at P = 0
and T = 0 has been recently revisited in ref 62 and generalized
to colored patches in ref 63.
Going beyond Wertheim’s theory, we study the numerical

phase behavior of the N2c8s2 mixture via Monte Carlo
simulations in the Gibbs ensemble. Simulations are performed
at different temperatures (T = 0.1, T = 0.09, T = 0.08) and, for
each temperature, at different averaged (over the two boxes)
densities and concentrations in order to compute the binodal
curve in the density-concentration phase diagram, as shown in
Figure 6a. System size is fixed at N = 500 particles for all
simulations since equilibration of these systems at the (low)
temperatures, where phase separation is located, is particularly

Figure 3. Wertheim pressure-concentration (a) and density-
concentration (b) phase diagrams for the N2c8s2 SAT-designed
binary mixture. The (a) phase diagram is computed at temperature
T = 0.07 while the (b) one at temperature T = 0.08, x is the
concentration of the first species. In (a) circles and squares,
connected by red tie-lines, represent the coexistence points
obtained from the common tangent construction on the Gibbs
free energy curve. Blue lines indicate the binodal curve computed
by numerically integrating eq 24. Triangles are at the location of
binary critical points. In (b) the only vertical tie-line is the one at
the azeotropic concentration: only a binary mixture prepared in a
homogeneous phase at the azeotropic concentration retains the
original ratio between components when it phase separates. Tie-
lines are not straight since the density axis is in logarithmic scale.

Figure 4. Comparison of Wertheim pressure-concentration phase
diagrams for the N2c8s2 SAT-designed binary mixture at
temperatures T = 0.07, T = 0.08, and T = 0.084. Circles represent
points belonging to the dew point curve. Squares represent points
belonging to the bubble point curve. Triangles indicate critical
points.
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challenging.64 This is reflected in the non-negligible error bars
in Figure 6a; however, we argue that they are more significant
than size-effect errors. Nevertheless, the trend of the numerical
computed binodal curves as well as the topology of the density-

concentration phase diagrams are the same as the Wertheim
ones, as shown in Figure 6b. As commonly observed,39

Wertheim’s theory tends to overestimate the size of the
coexistence region. In detail, the bubble point curves align
almost perfectly, while Wertheim’s prediction places the dew
point curves at densities higher than those of the simulated
one. Still, Monte Carlo simulations confirm the phase diagram
topology with the presence of an azeotrope at concentration 1/
2 in the N2c8s2 binary mixture.
Next, we studied the self-assembly process through the

azeotropic point. We prepare disordered configurations at
equimolar concentration for different state points on a regular
grid, with ρ ∈ [0.1, 0.5] and Δρ = 0.05, T ∈ [0.920, 0.104]
and ΔT = 0.002. For each (ρ, T) state point we run 5
independent trajectories in the NVT ensemble with AVB
biased moves65 (Monte Carlo Simulations: AVB Moves and
Gibbs Ensemble section in the Methods). The considered state
points are enclosed in the green shaded area in Figure 7b and
each trajectory is run for 5 × 108 MC sweeps or until
crystallization. The centers of the red circles in Figure 7b

Figure 5. In single component systems only chain aggregates can
form. If the SAT-designed N2c8s2 binary mixture becomes a single
component system, composed either just by patchy particles of the
first species (a) or just by patchy particles of the second species
(b), patchy particles can aggregate only forming chains, i.e., they
behave like patchy particles with valence two.

Figure 6. SAT-designed N2c8s2 binary mixture density-concen-
tration phase diagrams for different temperatures. Comparison
between the binodal curves obtained from Monte Carlo
simulations (a) and the binodal curves computed within the
Wertheim first order perturbation theory (b). Circles represent
points belonging to the dew point curve, while squares represent
points belonging to the bubble point curve. Triangles indicate
critical points.

Figure 7. Nucleation plots. (a) Snapshot from a fully self-
assembled solution prepared from a random configuration at T
= 0.1, ρ = 0.3, and with patchy parameters fixed at θmax = 0.98 and
δ = 0.2. Patchy particles are colored red or white according to their
species. (b) T − ρ phase diagram obtained from Gibbs ensemble
simulations (black lines). The red circles are drawn in
correspondence of the state points which nucleated. The radius
of the red circles is proportional to the fraction of runs that
successfully assembled within the simulation time of up to 5 × 108
MC sweeps.
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represent the state points that crystallized within the
simulation time. The diameter of each circle is proportional
to the fraction of simulation runs (out of a total of 5 runs) that
have crystallized at the corresponding state point. To
understand why crystallization occurs only at selected state
points, we superimpose (black line) the results from Gibbs
Ensemble simulations that have been initialized at equimolar
conditions. Error bars are computed on 10 independent runs
for each temperature, and the black lines connecting the points
are guides to the eyes to help identifying the gas and liquid
branches. We confirmed that, once phase separation has
occurred, both boxes (liquid and gas) are still found at
equimolar concentration for all temperatures; i.e., we are
always at azeotropic conditions. From Figure 7b it is clear that
the self-assembly of the cubic diamond (red circles) occurs in
correspondence with the phase separation boundaries. Self-
assembly is aided by the formation of dense liquid regions
during the phase-separation process. Interestingly, some state
points in Figure 7b have nucleated outside the binodal
boundaries but close to the critical temperature. The system
thus represents an interesting example of nucleation aided by
critical fluctuations, as predicted in ref 36 for isotropic
interactions.
To summarize, the self-assembly pathway at the azeotropic

point is the following: an equimolar disordered solution first
generates equimolar critical fluctuations or first demixes in an
equimolar dense liquid, which then crystallizes in an equimolar
crystalline structure. Self-assembly under azeotropic conditions
has the advantage of bypassing the difficulties associated with
concentration fluctuations, which could otherwise severely
limit the nucleation rate.
We further analyze the self-assembly process by studying the

nucleation of solutions prepared at different densities and
concentrations at temperature T = 0.1. The considered state
points are located on the regular grids ρ ∈ [0.15, 0.4] and x ∈
[0.15, 0.5] with Δρ = 0.05 and Δx = 0.05, as shown with blue
lines in Figure 8. For each of these state points, we run 10
independent Monte Carlo simulations in the NVT ensemble
with AVB dynamics and 500 patchy particles for 3.5 × 108 MC
sweeps. Running almost 500 nucleation trajectories, traditional
molecular dynamics simulations are impractical for studying
nucleation due to the slowness of particle diffusion. Since the
kinetic contribution to the nucleation rate is usually negligible
compared to the thermodynamic contribution (the nucleation
barrier) we choose to employ biased MC simulations to
explore the nucleation behavior across an extensive region of
the system’s phase diagram. We look for state points exhibiting
at least one nucleation event that gives rise to a cubic diamond
with 350 or more patchy particles. In Figure 8 we mark these
state points with red circles with a radius proportional to the
fraction of trajectories that have nucleated. The fraction of
particles in the cubic diamond phase are identified with local
bond-order analysis.66 By superimposing the grid to the
density concentration phase diagram, we can see that
crystallization occurs exclusively within the liquid−vapor
coexistence region. Figure 8 confirms that extended crystals
are formed only close to the azeotropic point. Indeed it is
exactly at azeotropic condition that the ratio between the two
components in the liquid phase is the same as that of the cubic
diamond crystal. This becomes evident upon examining Figure
9 which illustrates that at the end of the process almost all
particles belong to the crystal phase, a consequence of the
azeotropy of the liquid phase. Figure 9 also shows that the

number of particles in the crystalline phase belonging to the
first and second species is identical.
In Figure 10 we show the nucleation rate computed, for each

x, from 56 Monte Carlo trajectories ran at temperature T =
0.097, density ρ = 0.3 and with N = 1000 particles for three
concentrations: x = 0.35, x = 0.4, and x = 0.5. The nucleation
rate is estimated as the number of trajectory that successfully
nucleates within 3.5 × 108 MC sweeps, per unit of time and
volume. Also at this temperature we observe that the
nucleation rate increases toward the azeotropic concentration.
The snapshots display the last configuration of a mixture
prepared at the azeotropic condition (x = 0.5) and one away
from it (x = 0.35). A visual inspection of these snapshots
highlights that crystal growth is limited when the concentration

Figure 8. Nucleation events at T = 0.1 superimposed to a
schematic representation of the density-concentration phase
diagram. The binodal line is obtained from fitting the Gibbs
ensemble results of Figure 6a. The formation of crystals with a
fraction of particles in the cubic diamond phase equal or greater
than 0.7 occurs mostly near the liquid branch around x = 0.5
(azeotropic condition). The blue grid defines all the state points
considered; those showing no nucleation event are crossed out,
while state points where at least one trajectory nucleated are
represented with red circles. The radius of the circles is
proportional to the fraction of trajectory that have nucleated
within 3.5 × 108 MC sweeps. The yellow circle indicates the
critical point located at the intersection of the bindoal curve and
the rectilinear diameter line, i.e., the (dashed) straight line passing
through the midpoint of the tie lines connecting each pair of
coexisting points.

Figure 9. Progress of nucleus size for a nucleating trajectory at the
azeotropic concentration x = 0.5, at temperature T = 0.1 and
density ρ = 0.3. The blue and the red lines represent the number of
particles in the crystalline phase of the first and the second species,
respectively.
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of the liquid phase is different from the stoichiometric ratio of
the target crystal components. Nucleation at the azeotropic
point is advantageous as self-assembly can proceed up to 100%
without one component depleting before the other and an
extended crystal can form. On the contrary, at off-azeotropic
conditions, the self-assembled cubic diamond coexists with a
gas phase composed of the majority component that can only
aggregate into chains. Going toward the azeotropic point, the
density of the majority component diminishes until eventually
all particles belong to the crystalline phase. Finally, regarding
the quality of the crystals, we observe nuclei free from defects.
The interaction matrix was indeed designed to avoid the
hexagonal diamond phase and this also forbids the formation
of stacking faults, which are the most common type of defects
in cubic diamond crystals.

CONCLUSIONS
Self-assembling complex structures requires designing complex
interaction potentials that not only need to have the target
structure as a free energy minimum but also have to avoid
competing local minima that can kinetically frustrate the
assembly process. In recent years it has become increasingly
clear that using multicomponent mixtures can shift the
problem from the need to accurately design the shape of the
potential (e.g., introducing torsional interactions to assemble
cubic diamond and avoid hexagonal diamond23) to the
optimization of a generic interaction matrix between different
components. This last problem is amenable to an effective
numerical solution via the so-called SAT-assembly frame-
work,33 where the interactions between the different
components are found by solving satisfiability problems. But
adding components increases the thermodynamic degrees of
freedom, which considerably complicates the phase behavior
and the assembly pathway.
In this work, we have shown that much of the

thermodynamic difficulties can be removed by preparing the
self-assembly pathway on an azeotropic point, where the
system behaves effectively as a one-component mixture. We
then show under which conditions we can include azeotropy in
self-assembly designs.
As a proof of concept, we have focused on the case of patchy

particles, which represent a convenient model for systems

whose interactions can be described by isotropic repulsion and
strong directional attractions. Exploiting the laws of mass-
action, we have shown that in these systems azeotropy can be
directly included in the interaction matrix. Different cases have
been considered. The simplest condition, named bond
exclusivity, asserts that an equimolar azeotropic point can be
obtained by imposing that each patch has a unique interaction
partner. The equimolar condition can be relaxed, and the
azeotropic point can be located at a desired concentration
vector x, by considering the bond multiplicity condition, which
requires some patches to have more than one possible
interaction partner. Finally, the fully connected bond condition,
where each patch has one interaction partner on each of the
species in the system, corresponds to a always azeotropic
mixture.
We have then provided a fully worked example of a binary

mixture designed to self-assemble colloidal diamond while
avoiding the hexagonal form and that obeys the bond exclusivity
condition. We have explicitly derived its phase diagram, both
within Wertheim’s perturbation theory and via Gibbs ensemble
simulations and have shown that it contains the predicted
negative azeotrope at equimolar conditions. This class of phase
diagram is characterized by a binary critical point line that
approaches (P, T) → 0 as x → (0, 1), signifying that the
system undergoes phase separation only during the process of
mixing. Finally we have analyzed the self-assembly pathway for
systems prepared at azeotropic conditions and shown that the
pathway is the same as in one-component systems: more
precisely, an equimolar mixture condensates into an equimolar
liquid, which, given the coincidence in concentration between
the crystal and the melt, then nucleates into a crystal that
grows without concentration defects.
We believe that the ability to explicitly include azeotropic

points into artificial designs represents an exciting step toward
a fully consistent framework for the self-assembly of arbitrary
structures. Efforts are now geared toward experimental
realization of these designs, for example through wireframe
DNA origami,2,49,51,67 that naturally encode binding specificity.

METHODS
Patchy Particles. We consider multicomponent mixtures of

patchy particles. Patchy particles are spherical colloids whose surface
is decorated by attractive sites, named patches, and different species of
patchy particles can differ by the number, the arrangement, and/or
the type of the patches. To model their interaction we choose the
Kern−Frenkel68,69 potential which describes hard-core spherical
particles of diameter σ, interacting with an additional square well
potential VSW of depth ϵ and width δ, modulated by a term F
depending on the patchy particles orientation. Two patchy particles
attract in a strongly directional way if they are at a distance between σ
and σ + δ. More precisely, the interaction potential V between particle
i and j, with a center to center distance rij is

=V V r Fr r r r r r( , , ) ( ) ( , , )ij i j ij ij i j, , SW , , (11)
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For identical patches, the Kern−Frenkel potential is characterized
by the two independent parameters δ and θmax that specify the range

Figure 10. Nucleation rate and final configuration snapshots.
Nucleation rate (black dots) as a function of concentration for
systems of 1000 particles at temperature T = 0.097 and density ρ =
0.3. The two snapshots display the last configuration of a trajectory
at x = 0.35 and at x = 0.5. Red and blue colors indicate the species
to which a particle belongs: blue for the minority component, and
red for the majority component.
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and the angular width of the patches respectively (see Figure 1) and
that can be tuned giving rise to different phase diagrams.59

DNA-Based Implementation. Patchy particle models are
particularly suited to tackle the inverse self-assembly task since it is
possible to control the valence and to encode the desired topology in
the number, placement, and type of patches. Apart from their
computational convenience, patchy particles are also experimentally
viable systems: short ranged anisotropic interactions between colloidal
particles have in fact been achieved via chemical patterning of their
surfaces,70−73 and via modeling of their shape.74

The most promising approach to realize specific interactions uses
DNA nanotechnologies to create a selective binding between
particles: matchable colors75 correspond to complementary single
DNA strands, equal colors to self-complementary sequences. Multiple
color interactions can also be realized as discussed in Supporting
Information V. Popular systems include DNA functionalized
colloids76 or DNA origami51,77−80 where single strands of DNA are
attached to well-defined positions on the particle surface.77,79,81−84

Figure 11 shows a possible realization of a binary mixture of patchy
colloids with eight different patches (colors). The decorated hard-

sphere colloidal model (which can be closely experimentally
realized85) is displayed together with a DNA-origami implementa-
tion.51 The tetrahedron vertices are functionalized with DNA strands,
exploiting DNA addressability to encode patch−patch interactions. In
Supporting Information V we describe in full details an algorithm
which allows us to determine the sequences of DNA strands that
satisfy predefined bonding rules, applicable to both same-, distinct-,
and multiple-color interactions. To apply the algorithm one needs to
select the total length ns of the oligomer grafted on each patch (for
example an oligomer composed by six bases) and a rule quantifying
the binding strength between any two oligomers (for example the
melting temperature, estimated according to SantaLucia86 or the
number of consecutive paired bases). See Supporting Information V
for a full description of the algorithm.
Wertheim Perturbation Theory. Here we report the results of

the Wertheim first order perturbation theory40 that was originally
developed to derive a mean-field theory of associating fluids and that
can be easily generalized to patchy particles.41,42 Recently,39,43−48 the
theory has been adopted to study in detail the static (e.g., percolation)
and thermodynamic (e.g., phase behavior) properties of patchy
particle systems, both in pure components and in mixtures, showing
excellent qualitative agreement with numerical simulations. The main
assumptions are that each attractive site cannot be engaged in more
than one bond at the same time (one-bond-per-patch condition) and
that a new bond occurs only between particles belonging to different

clusters (loop formations are forbidden). Wertheim developed a
perturbative method that, applied to patchy particles, estimates the
effect of the attractive patches on the Helmholtz free energy of the
reference system of hard spheres. The power of this theory is the
chance to provide a good estimate of the Helmholtz free energy of a
multicomponent system of patchy particles by only knowing the
structure of the reference system and the interaction potential
characterizing patchy particles. Here we follow the conventions of refs
44 and 47. The Helmholtz free energy per particle in units of kBT of a
n-component mixture can be expressed as

= +f f freference bonding (13)

The reference free energy is the sum of the ideal gas contribution
βf ideal and of the hard spheres excess term βf HS. This hard spheres
contribution takes into account the excluded volume of the patchy
particles and it is given by the Carnahan−Starling formula87 since the
different species have all the same diameter.
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where ρ is the density, x(i) is the molar fraction of species i, Vi is the
thermal volume, and ϕ is the packing fraction equal to ρVs where Vs =
σ3π/6 is the volume of a single particle.

The bonding contribution contains the sum over the species (∑i=1
n )
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Xα
(i) is the probability that a patch α on a species i is not bonded and it

is defined by the mass balance equation:
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where Δαγ
(ij) does not depend on the species, since the diameter is

always the same, and it is given by
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where gHS is the radial distribution function of hard spheres, Vαγ is the
bonding volume and ϵαγ is the bonding energy both related to a bond
between patches α and γ. As for any short-ranged patchy potential (in
the single-bond per patch condition), the static properties are
controlled by the bonding volume,39 i.e., the volume in which a
particle can move while being bonded to another particle, which for
the Kern−Frenkel potential assumes the following simple expression
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Δαγ characterizes the bond between the patch α on the patchy
particle of species i and the patch β on the patchy particle of species j.
Patches are in general different, and therefore, they can interact
following different potentials (Kern−Frenkel in our case). In the
following we consider that all bonds have the same bonding volume
and we approximate the radial distribution function with an expansion
around its value at contact, as detailed in refs 88 and 89. With these
approximations, affecting the results only quantitatively, but not
qualitatively, eq 17 becomes

Figure 11. Sketch of two patchy particles realized through DNA
origami. The four patches tetrahedrally arranged are mapped in
single-stranded overhangs at each vertex of a tetrahedron made by
nanoscale folding of DNA. Different interacting patches corre-
spond to complementary single DNA strands and the self-
interacting ones to palindromic DNA strands.
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The theory allows for the computation of the Helmholtz free
energy for any state point. Notice that solutions of the type Xα

(i) = X in
eq 15 (remembering that ∑jx(j) = 1) formally reduce the free energy
of the mixture to that of a single component, i.e., the solutions
correspond to azeotropic points.
Isochoric Thermodynamics. One way to calculate the binodal

curve for a single component system is offered by the integration of
the Clausius−Clapeyron differential equation. Also in the case of
multicomponent mixtures it is possible to define a set of differential
equations that if integrated provides the binodal curve. Here we carry
out the integration of these differential equations in the isochoric
thermodynamics framework.90,91 We provide here a brief summary of
this framework. In the canonical ensemble, the thermodynamic state
of a n-component mixture is specified by temperature T, molar
density ρ, and mole fractions xi. However, the mole fractions have
some disadvantages: they are not independent variables and,
conversely to density, they are dimensionless, causing the density
mole fractions space to have an ill defined metric. On the contrary, in
the isochoric thermodynamics the independent variables are molar
densities ρi and the fundamental thermodynamic potential is the
Helmholtz energy density Ψ. They are defined as

=

= =

x

T
A
V

a( , )

i i

(21)

where A is the Helmholtz energy and a is the molar Helmholtz
energy, ρ is the molar density of the n-component mixture ρ = ∑i=1

n ρi
while ρ is the vector of molar densities ρ = (ρ1, ρ2, ..., ρn).

The local curvature of the Helmholtz energy density is encoded in
the Hessian matrix:
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If it is positively defined, then the state is a stable state. We know
that two phases (labeled ′ and ″ in the following) coexist in
equilibrium at constant temperature if, along the phase boundary, the
pressure and the chemical potentials of each component are equal for
both phases. This means that the variation of the pressure and of the
chemical potentials along the phase boundary must be the same for
both phases:

= =

=

d d i n

dP dP

with 1, 2, ...i i

(23)

having defined the chemical potentials and the pressure as μi = ∂Ψ/
∂ρi and P = −Ψ + ∑i=1

n ρiμi.
Integrating this system of first order differential equations allows us

to numerically evaluate the coexistence region. For the isothermal
phase equilibrium of a binary mixture we must solve:
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where HΨ,i indicates the i-th row of the Hessian matrix with n = 2 in
eq 22 and the subscript σ indicates that derivatives are calculated
along the phase boundary.

By starting from available accurate initial values, the integration of
the derivatives of the molar densities in the coexisting phases over the
desired range of pressure predicts how molar densities of vapor and
liquid change with pressure. This enables the construction of binary
mixture pressure−concentration and density-concentration binodal
curves. In summary, by knowing one pair of coexisting points, it is
possible to determine the entire coexistence region by calculating how
these coexisting points move along the binodal curve. Integration gets
stiff and does not proceed further close to critical points, where the
step-size of the adaptive step-size integrator91 progressively decreases
as the Hessian determinant vanishes at the critical points. Hence
critical points, indicated in Figure 3a by triangles, are computed by
imposing the Hessian determinant to be zero and the stability
conditions.
Monte Carlo Simulations: AVB Moves and Gibbs Ensemble.

When simulating patchy particle systems interacting via anisotropic
and short-range interactions, rota-translation moves are not always
sufficient to ensure a good sampling of the phase space. Indeed patchy
particle self-assembly occurs when the thermal energy is much smaller
than the bonding energy ϵ, which makes the Metropolis acceptance
probability of a MC move that breaks a bond extremely low. Thus,
almost all moves that try to break a bond are rejected not allowing the
system to equilibrate. To overcome this drawback, we have
introduced aggregation-volume-bias-moves (AVB)64,65 that facilitate
bond breaking by enhancing the acceptance probability. In particular,
there are two types of AVB moves: the AVB-B move and the AVB-U
move. The AVB-B move attempts to create a bond by moving one
patchy particle in the bonding volume (Vb) of another patchy particle,
thus giving rise to a bond between two patchy particles that were not
bonded to each other. Conversely, the AVB-U move tries to break a
bond by taking one bonded patchy particle outside the bonding
volume (Vo = 4πV − Vb) of the patchy particle to which it is bonded,
thus eliminating an existing bond between a patchy particles pair.
These moves are biased, and their acceptance probabilities are
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where Ni is the number of particles that are bonded to particle i.
Importantly, the acceptance probability of breaking a bond is
enhanced with respect to the one of simple rototranslation move as
the ratio Vo/Vb is much larger than one since the bonding volume Vb
is much smaller than its complementary volume Vo = 4πV − Vb, where
V is the volume of the simulation box.

In order to study the coexistence between two phases at a certain
temperature, we employ Gibbs ensemble simulations,92,93 where
coexistence occurs between two simulation boxes that virtually
interact among each other without an explicit interface. In addition to
rototranslational moves, the Gibbs ensemble incorporates volume
moves (which alter the size of the two boxes, keeping the total volume
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fixed) and particle transfer moves (where a particle is moved from one
simulation box to the other).

ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnano.3c05569.

Explanation of azeotropy, example of a binary mixture
satisfying the bond multiplicity condition, example of a
binary mixture satisfying the fully connected bond
condition, example of a 1:1:2 azeotropic ternary mixture
self-assembling into a cubic diamond, description of an
algorithm to generate DNA strands from the interaction
matrix (PDF)

AUTHOR INFORMATION

Corresponding Author
John Russo − Dipartimento di Fisica, Sapienza Universita ̀ di

Roma, 00185 Rome, Italy; orcid.org/0000-0002-6234-
6344; Email: john.russo@uniroma1.it

Authors
Camilla Beneduce − Dipartimento di Fisica, Sapienza

Universita ̀ di Roma, 00185 Rome, Italy
Francesco Sciortino − Dipartimento di Fisica, Sapienza

Universita ̀ di Roma, 00185 Rome, Italy; orcid.org/0000-
0002-2418-2713
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