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ABSTRACT
We quantify the statistical properties of the potential energy landscape for a recently proposed machine learning coarse grained model for
water, machine learning-bond-order potential [Chan et al., Nat. Commun. 10, 379 (2019)]. We find that the landscape can be accurately mod-
eled as a Gaussian landscape at all densities. The resulting landscape-based free-energy expression accurately describes the model properties
in a very wide range of temperatures and densities. The density dependence of the Gaussian landscape parameters [total number of inherent
structures (ISs), characteristic IS energy scale, and variance of the IS energy distribution] predicts the presence of a liquid–liquid transition
located close to P = 1750 ± 100 bars and T = 181.5 ± 1 K.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0197613

I. INTRODUCTION

Machine learning approaches are providing more and more
accurate interaction potentials for many-body systems by either
(i) improving the parameters of pre-existing functional forms1

or (ii) providing new numerical representations built from high
quality quantum mechanical calculations.2–4 Recently, approach (i)
has been applied to water to produce a computationally efficient
atomistic model [named machine learning-bond-order potential
(ML-BOP)] that accurately reproduces the structural properties and
thermodynamic anomalies of both water and ice at mesoscopic
scales.1 Similar to the mW model,5,6 the ML-BOP model describes
a water molecule as a single interacting site, accounting for the
directional interactions (the hydrogen bonds in real water) via a
many-body interaction contribution. The ML-BOP model1 correctly
estimates the temperature of the maximum density ice–liquid coex-
istence curve. As a result, this model is receiving significant attention
from the water community.7–11

Starting from Goldstein’s studies,12 liquid properties (both
dynamic and thermodynamic) have been computed by extracting
information from the potential energy landscape (PEL): the multi-
dimensional surface describing the potential energy for a system as a
function of all molecular coordinates.13–15 The set of configurations
associated with each local minimum on the PEL are named inherent
structures (ISs). Each IS has an associated basin, which corresponds

to the set of points in configuration space that lead to the same IS
when following a steepest-descent path.

A molecular dynamics trajectory can be visualized as an explo-
ration of the PEL, where the system is moving erratically from
one basin to the next.16,17 At low temperatures (T), the system
spends a significant fraction of time in the same basin before mov-
ing into an adjacent basin. The sequence of anharmonic vibrations
around an IS, and the diffusional process of changing IS, controls the
system dynamics. Building on Goldstein’s intuition, Stillinger devel-
oped a thermodynamic formalism based on the total number of ISs,
their corresponding energies, and a geometric representation for the
shape of each basin.13,18 This formalism has illuminated the con-
nections between these quantities and the entropic crisis expected
to take place close to the ideal glass transition.15,19

Only with the availability of significant computational
resources has the PEL formalism13 become a practical tool for shed-
ding light on several important features of the liquid state.20–26 The
onset of two-step relaxation features in structural correlation func-
tions has been shown to correlate20 with the temperature at which
the system begins to explore deeper and deeper ISs. The crossover
from mode-coupling dynamics25 to activated dynamics has been
correlated with the temperature at which saddle points are rarely
explored,22,23 the out-of-equilibrium glass state has been associated
with the confinement of a system to a single PEL basin,13 and aging
has been described as the progressive exploration of deeper and

J. Chem. Phys. 160, 114502 (2024); doi: 10.1063/5.0197613 160, 114502-1

Published under an exclusive license by AIP Publishing

 18 M
arch 2024 09:23:37

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0197613
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0197613
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0197613&domain=pdf&date_stamp=2024-March-15
https://doi.org/10.1063/5.0197613
https://orcid.org/0000-0002-2418-2713
mailto:francesco.sciortino@uniroma1.it
https://doi.org/10.1063/5.0197613


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

deeper ISs in the attempt to reach the equilibrium IS.24 The PEL has
also been exploited to clarify the concept of an effective temperature
for a glass27,28 and to evaluate the Kauzmann temperature.29

The thermodynamic PEL formalism provides an informative
expression for the free-energy, in which the configurational degree
of freedom is separated from the vibrational component. In the case
of anomalous liquids, such as water, the formalism thus offers a
powerful method for revealing which statistical properties of the
landscape are behind the most common thermodynamic anomalies,
such as the density maximum, the compressibility extrema, and the
possible existence of a liquid–liquid phase transition (LLPT).30 For
the case of classical molecular models (SPC/E31 and TIP4P/200532),
the landscape approach has consistently predicted the existence of a
LLPT at low T and high P.30,33

In this article, we quantify the statistical properties of the PEL
for the monoatomic ML-BOP model within the Gaussian landscape
framework34,35 for the purpose of computing the system free energy.
The equation of state calculated analytically via the volume deriva-
tive of the Gaussian landscape model compares very well with the
equation of state determined numerically via molecular dynam-
ics simulations, therefore validating the applicability of this PEL
approach to the ML-BOP model. Extrapolation of the free energy to
low temperatures allows us to detect the presence of a liquid–liquid
critical point (LLCP), at T = 181.5 ± 1 K and P = 1750 ± 100 bars,
just below the homogeneous nucleation temperature.7,9 Our calcu-
lations are consistent with recent unpublished predictions for the
ML-BOP model (T = 181 ± 3 K and P = 1700 ± 100 bars) which are
based—to defeat nucleation—on the analysis of density fluctuations
in systems with a very small number of water molecules (less than
200).9 The PEL characterization of this model will make it possible
in the near future to tackle important questions on the nature of the
amorphous phases of water, including the recently shear-produced
(by ball-milling) medium-density amorphous ice.36

II. COMPUTATIONAL DETAILS
We have numerically studied a system of N = 2000 water

molecules interacting via the ML-BOP by performing a series of
molecular dynamics simulations in the NVT ensemble using Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
(version 2 Aug 2023).37 The simulations were performed for a large
range of state points, covering densities between ρ = 0.9 g/cm3 and
ρ = 1.5 g/cm3 and temperatures between T = 170 K and T = 270
K. Each simulation was first equilibrated until the potential energy
fluctuated around a constant value and for at least 1 ns. Follow-
ing equilibration, the simulation was continued for 4 ns to generate
an equilibrium trajectory. Figure 1 graphically shows the resulting
phase (crystalline or liquid) at the end of the simulation for a sub-
set of the studied state points. For the runs that ended in a liquid
state, 100 configurations equally spaced in time were minimized
using the conjugate gradient method with a stopping tolerance of
10−6 kcal/mol. We have then numerically calculated the dynami-
cal matrix for all ISs using the PHONON package of LAMMPS,37

which we diagonalized to compute the eigenvalues (ω2
i ) associated

with each of the 3N − 3 harmonic modes.
To compute free energies for the ML-BOP system, we have

also performed additional NVT simulations starting from a very
low density where the system behaves like an ideal gas up to

FIG. 1. Graphic representation of the resulting phases for a subset of the studied
state points. Red squares indicate the points that did not crystallize during the
simulations. Black circles indicate the state points that crystallized (as identified by
a sudden drop of the potential energy with time) either during equilibration or during
the following production run. The boundary between the two sets of data provides
an estimate of the homogeneous nucleation line in the temperature–density plane
for the ML-BOP model.

ρ = 1.14 g/cm3 along the T = 1000 K isotherm (to avoid crossing
the gas–liquid coexistence). We then determine the value of the
free energy by thermodynamic integration,38,39 using the ideal gas
as the reference system (see the supplementary material). Further
simulations and subsequent thermodynamic integration along the
ρ = 1.14 g/cm3 isochore provides the Helmholtz free energy (F) and
entropy (S) at T = 270 K and ρ = 1.14 g/cm3: βF/N = βf = −12.262
and S/(NkB) = −3.795 [where β = 1/(kBT) and kB is the Boltzmann
constant]. These values for the free energy and entropy were then
used as the starting point for any further thermodynamic cycle.

III. THE GAUSSIAN PEL APPROACH
Several detailed descriptions of the PEL framework introduced

by Stillinger and Weber18,35,40 have been published, including for
quantum liquids.41 Hence, we will limit our discussion here to only
the necessary equations and refer the interested reader to the review
article35 and recent investigation of the PEL for TIP4P/2005.33

Often, it is possible to model the distribution of IS energies (EIS)
at a given volume (V) as a Gaussian distribution.35,42 In this Gaus-
sian landscape model, the distribution of EIS = NeIS depends on
three parameters: (i) the total number of basins eαN , which sets the
amplitude of the distribution, (ii) the most probable IS energy E0
= Ne0, which sets the center of the distribution, and (iii) the vari-
ance Σ2 = Nσ2, which sets the width of the distribution. Here (and
in the following), the uppercase letters indicate the total system
properties, while the lowercase letters (as in eIS and σ2) indicate
the per-particle quantities. For a system of N molecules, the num-
ber of basins Ω(eIS)deIS with IS energy per particle between eIS and
eIS + deIS is then written as

Ω(eIS) deIS =
eαN

√
2πσ2/N

e−N (eIS−e0)
2

2σ2 deIS. (1)
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We can then define a configurational entropy for the system as
Sconf(T) = kB ln Ω(⟨eIS⟩T), where ⟨eIS⟩T is the average IS energy at
a temperature of T. For each IS, we can also define a vibrational free
energy per particle fvib, which measures how its associated basin is
explored at a given temperature T. As a result, the total Helmholtz
free energy per particle within the Gaussian landscape model is the
sum of three terms,

f (T) = ⟨eIS⟩T + fvib(⟨eIS⟩T , T) − TSconf(T)/N. (2)

Once the eIS dependence of the vibrational free energy is pro-
vided, the Gaussian landscape model can be solved analytically. The
comparison between the theoretical predictions and the numerical
simulations provides a way to simultaneously validate the model and
estimate the landscape parameters.35

IV. RESULTS
We start by determining ⟨eIS⟩ as a function of density for each

temperature considered, as shown in Fig. 2. A significant T depen-
dence is observed at low densities, where deeper and deeper minima
are explored on cooling. At T = 270 K, ⟨eIS⟩ vs ρ shows a clear double
well shape (see the inset of Fig. 2). The region of negative curvature
in ⟨eIS(ρ)⟩ between ρ = 0.9 g/cm3 and ρ = 1.3 g/cm3 is indicative of
the onset of a thermodynamic instability upon cooling. The signif-
icance of a region of negative curvature in the density dependence
of the potential energy (which, as shown here, arises in the inherent
structures) is discussed in Refs. 43 and 44.

Next, we evaluate the vibrational free-energy in the harmonic
approximation. First, we determine the vibrational density of states
(VDOS) by diagonalizing the dynamical matrices for the IS con-
figurations at each T and ρ considered. From the VDOS, the har-
monic vibrational free-energy per particle fharm can be estimated by
summing all 3N − 3 normal modes ωi as

β fharm =
1
N

3N−3

∑
i=1

ln βh̵ωi,

FIG. 2. Density dependence of the inherent structure energies sampled in the liquid
state. The inset shows that two clear density basins are present at T = 270 K,
separated by an energy barrier.

FIG. 3. Shape function S vs average inherent structure energy ⟨eIS⟩ for several
studied densities. Lines through the data are the linear fit from which the a and b
parameters in Eq. (3) are calculated.

where h is the Planck constant divided by 2π and the eIS dependence
is provided by ωi. To explicitly highlight the dependence of the har-
monic free-energy on eIS, we can separate βf harm into a T dependent
and an eIS dependent contribution as

β fharm = 3 ln βA0 +
1
N

3N−3

∑
i=1

ln h̵ωi/A0,

where A0 is a constant with the unit of energy that makes both argu-
ments in the log function adimensional (where we have neglected
the 3/N contribution to the prefactor of the first log function). The
last sum depends on the curvature (or shape) of the sampled basin
and is usually indicated by the symbol S. Calculating S vs ⟨eIS⟩ pro-
vides a complete characterization of the basin free-energy under the
harmonic approximation. As performed in previous studies45 (and
supported by the numerical results, see Fig. 3), we assume a linear
dependence of S on ⟨eIS⟩ (at a constant volume),

S = a + b⟨eIS⟩, (3)

where a and b can be determined from a linear fit.
To compute fvib, we assume that the anharmonic contribution

to the vibrational free energy per particle fanharm does not depend on
eIS but only on T and V35 and so

β fvib = 3 ln βA0 + S + fanharm(T). (4)

The assumption that the anharmonic correction is independent of
eIS could break down in the vicinity of a critical point due to the pres-
ence of soft modes. In the case of the liquid–liquid phase transition,
the critical point is located at low temperatures where the anhar-
monic contribution to the basin free energy is less relevant, and, so,
this should not be an issue here.

With the expression in Eq. (4) for the vibrational free energy,
the Gaussian landscape model can be analytically solved and
the temperature dependence of ⟨eIS⟩ is predicted to be linear in
(kBT)−1,35

J. Chem. Phys. 160, 114502 (2024); doi: 10.1063/5.0197613 160, 114502-3

Published under an exclusive license by AIP Publishing

 18 M
arch 2024 09:23:37

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 4. Evidence in favor of a Gaussian landscape for the ML-BOP model. (a)
Plot of the average inherent structure energy ⟨eIS⟩ sampled at temperature T as
a function of inverse temperature to highlight the linear relationship (here R is the
gas constant). (b) Evaluation of the exponent α that determines the total number of
states (per particle) as predicted by the Gaussian PEL formalism in Eq. (6). Note
that, as predicted, α does not depend on T .

⟨eIS⟩ = e0 − bσ2 − σ2

kBT
. (5)

Figure 4(a) confirms that this prediction is extremely well verified
for the ML-BOP at all investigated temperatures. A linear fit of ⟨eIS⟩
vs (kBT)−1 at each density provides both σ2 and e0 + bσ2 [and thus
e0 since we already know b from Eq. (3)].

Another test for the Gaussianity of the PEL for the ML-
BOP model is provided by the configurational entropy. From a
thermodynamic point of view, Sconf(T) can be evaluated by sub-
tracting the vibrational entropy from the liquid entropy21,29,35,46,47

(see the supplementary material for more details). The results of
these calculations, including anharmonic corrections, are reported
in Fig. 5.

FIG. 5. Configurational entropy (Sconf) evaluated via thermodynamic integration
for different isochores.

From the Gaussian PEL point of view, Sconf(T) (in the
thermodynamic limit) can be obtained from Eq. (1) as

Sconf(T)/(NkB) = α − (⟨eIS⟩T − e0)2

2σ2 . (6)

A plot of Sconf(T)/(NkB) + (⟨eIS⟩T − e0)2/(2σ2) as a function of T
for each density should, therefore, be constant and provide the value
of the landscape parameter α. Such a plot is shown in Fig. 4(b),
which again provides strong support for the validity of the Gaus-
sian description of the PEL for the ML-BOP model. The density
dependence of all PEL parameters (a, b, e0, σ2, and α) is shown in
Fig. 6. However, we note that while the Gaussian landscape frame-
work properly models the ML-BOP system at the studied T and ρ,
any extrapolation significantly outside the investigated region (for
example when Sconf ≈ 0) should be taken with care.

V. PEL-EOS
In the PEL approach, the equation of state (EOS) P(V , T) can

be expressed as a power series of the temperature (Ti). In the har-
monic approximation for the vibrational free energy, i is limited
to the interval −1 to +1. The coefficients of the Ti terms have well
defined expressions, which we recall here as follows:35,48

PT−1(V) = N
2kB

d
dV

σ2, (7)

PT0(V) = −N
d

dV
(e0 − bσ2), (8)

PT1(V) = NkB
d

dV
(α − a − be0 +

b2σ2

2
). (9)

If anharmonic contributions to the free energy are considered (as
they are here), then additional powers of Ti (up to Timax ) are required
(we discuss the details of including these anharmonic contributions
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FIG. 6. Density dependence of the parameters defining the Gaussian landscape
for the ML-BOP model. Panels (a) and (b) report the coefficients defining the har-
monic shape of the PEL basins [Eq. (3)]. Panels (c)–(e) report the parameters of
the Gaussian distribution of basins [Eq. (1)].

in Sec. S2.2 of the supplementary material).33 The EOS can then be
written as

P(V , T) =
imax

∑
i=−1

PTi(V)Ti. (10)

Note that—since PT−1(V) involves only the V derivative of
σ2—the low T behavior of the pressure is controlled solely by the
slope of σ2. Since an increase in P upon cooling is a thermodynamic
signature of a density anomaly [a minimum in P(T) at constant V
is equivalent to a maximum in ρ(T) at constant P by a Maxwell
relation]. Thus, density maxima are expected to be found for the
ML-BOP model [see Fig. 6(d)].

Figure 7 compares the ML-BOP PEL-EOS, as determined by
Eq. (10) (i.e., with the additional contributions from the anhar-
monic free energy as discussed in the supplementary material),
with the “exact” molecular dynamics results at two different tem-
peratures. The agreement is remarkable providing a further (and
final) test for the applicability of the Gaussian landscape approach
here.

Using the Gaussian landscape framework, we can also valu-
ate the EOS of the liquid at temperatures below the homogeneous

FIG. 7. (a) Comparison between the equation of state (EOS) calculated via molec-
ular dynamics and the EOS calculated using the landscape expression at two
different temperatures. (b) EOS for different temperatures in the region where
nucleation takes place, suggesting the presence of an unreachable liquid–liquid
critical point. Solid lines are the predicted EOS from the Gaussian landscape
framework, and solid circles represent the pressures computed directly via molec-
ular dynamics simulations (error bars represent the standard deviation in the
computed averages).
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nucleation line (i.e., at temperatures where the liquid is not directly
accessible in molecular dynamics simulations). A small extrapola-
tion of the EOS at three close-by low temperatures is shown in
Fig. 7(b), with the lowest isotherm displaying a clear van der Waals
loop, indicative of a first-order phase transition between two liq-
uid phases (adding one more example to the ever expanding list
of classical and quantum-based models for water that do show a
liquid–liquid transition49–56).

In Fig. 7, we also report the pressures evaluated directly from
molecular dynamics simulations for densities where the system
does not crystallize. Where the two methods can be compared,
quite good agreement is observed. This agreement suggests that
the values following a small extrapolation of less than 20 K in the
low-density region—which cannot be accessed directly by molecular
dynamics—are trustworthy.

From the PEL-EOS, the low temperature phase diagram can be
calculated, including the temperature of maximum density (TMD)
line, the compressibility maxima line, the liquid–liquid coexistence
line, and the ideal glass line. To determine the ideal glass line
(the temperature at which Sconf = 0) within the Gaussian landscape
framework, we calculate the Kauzmann temperature as35

kBTK =
⎛
⎝

√
2α
σ2 − b

⎞
⎠

−1

. (11)

At TK, ⟨eIS⟩T reaches the value

⟨eIS⟩TK = e0 −
√

2ασ. (12)

All lines are shown in Fig. 8 in both the T–P and ρ–T planes,
for T ≥ 171 K. This figure shows that, within the Gaussian landscape
approximation, the Kauzmann line in the low-density liquid region
encounters the coexistence line at T ≈ 171 K. Below TK, the system
is in an ideal glass state and the configurational entropy has van-
ished. The high density liquid now coexists with a (low-density) glass
and not with a liquid anymore. This means that the evaluation of
a proper phase–coexistence boundary requires the inclusion of fur-
ther approximations, specifically on how to model the free-energy of
a glass.

We note that the estimated low density liquid TK is significantly
higher than the experimentally detected water calorimetric glass
transition,57,58 possibly an effect of the crossover from the Gaussian
landscape to a different functional form, which could take place in
the ML-BOP no-man’s land. Indeed, in models of network form-
ing liquids, the ground state may retain a finite entropy due to the
number of distinct configurations with different ring statistics and
hence different topologies (see, for example, Refs. 59–61 for prim-
itive models and Refs. 62 and 63 for silica). In these models, the
Kauzmann temperature has been found to be 0 K.

The Kauzmann temperature for the high density liquid is
located at temperatures below T = 100 K. Despite requiring a sig-
nificant extrapolation from the temperatures considered in the
molecular dynamics simulations, the location of this line is con-
sistent with the much larger diffusivity of the high density liquid
as compared to the low density liquid (we show the Kauzmann
temperature line for both liquids in Fig. S7 of the supplementary
material).

FIG. 8. Potential energy landscape (PEL) phase diagram of the ML-BOP model in
the (a) pressure–temperature (P–T) plane and (b) density–temperature (ρ–T)
plane. The liquid–liquid critical point (LLCP) is located at T = 181.5 K and
P = 1750 bars. The phase diagrams are shown down to a temperature of
T = 171 K, which is where the Kauzmann temperature line (TK) meets the
coexistence line. The red data points in panel (b) correspond to the liquid–liquid
coexistence points computed in Ref. 9.

VI. CONCLUSIONS
In this article, we have applied the potential energy landscape

(PEL) formalism to a recently proposed model for water (ML-BOP)
based on a machine learning optimization of the Tersoff potential.1
This monoatomic model for water generates the tetrahedral geome-
try via a three-body contribution to the interaction potential, similar
to the mW model.5 The short-range nature of the potential (which
does not explicitly account for charge–charge interactions) makes
it possible to simulate large systems for long times, even with lim-
ited computational resources, while still properly reproducing the
thermodynamic behavior of the real system.

We have demonstrated that the PEL of ML-BOP can be accu-
rately modeled by a Gaussian distribution of inherent structure
energies per particle (eIS). The Gaussian landscape model predicts
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that the T-dependence of eIS follows an inverse T law [Eq. (5)] and
that the configurational entropy (defined as the difference between
the liquid entropy and the vibrational entropy of the sampled basins)
goes with (eIS(T) − e0)2. Both predictions are remarkably satisfied
by ML-BOP [Figs. 4(a) and 4(b)] at all studied densities, thereby
validating the Gaussianity of the PEL and providing an accurate
numerical estimate of the PEL parameters from which the EOS can
be determined.

The resulting equation of state (EOS) perfectly reproduces the
thermodynamic properties of the model in the region where it can be
simulated, but, more importantly it offers a sound functional form
to extrapolate within the Gaussian landscape hypothesis the phase
behavior of the system at temperatures lower than those numeri-
cally accessible (due to the onset of crystallization). A quite small
extrapolation demonstrates that the model free-energy surface is
characterized by two distinct phases, separated by a first order tran-
sition line, i.e., between two liquids with different densities. The
liquid–liquid critical point (LLCP) is located in the region where
crystal nucleation prevents the direct observation of the critical point
for the system size considered in this article. Since basins associated
with crystalline configurations are not included in the PEL formal-
ism, the resulting EOS is not influenced by the presence of crystals,
making it possible to demonstrate that a LLCP exists in the model,
even if it cannot be reached. This makes the ML-BOP unique in
the context of all previously studied models of water displaying a
LLCP since it offers the possibility to investigate how the presence
of the LLCP influences the kinetics of nucleation. This is different
from models where hydrogen atoms are explicitly taken into account
(TIP4P/2005, TIP4P/Ice, and MB-pol) as crystallization has never
been reported in these models within the presently investigated μs
scale. From a semantic point of view, one could prefer to say that
when (either in simulations or in experiments) nucleation prevents
the approach to the critical point (as in the present case), the crit-
ical point does not exist in practice, and, so, it is unproductive to
discuss the presence of a LLCP (regardless of whether it exists or
not). However, by using the PEL formalism, we have clearly shown
that the disordered free-energy surface of the ML-BOP model does,
indeed, possess a LLCP and its presence influences the shape of the
surface.

Importantly, we have also shown that the influence of the
LLCP extends to supercooled liquid states where the structural relax-
ation time is shorter than the nucleation time. We use the word
“influence” to stress that the presence of a critical point fixes the
functional form of the free energy and, as a result, the functional
form of the equation of state. Close to the critical point and above
the nucleation line (where the liquid has the time to equilibrate
properly before nucleation takes place), the behavior of the density
and energy fluctuations is still related to the presence of the nearby
thermodynamic phase transition.

It is also interesting to observe that the decrease in the configu-
ration entropy [the log of the number of existing inherent structures
(ISs) with energy ⟨eIS⟩T] on cooling is quite fast, especially at low
densities. Indeed, the estimated Kauzmann temperature at ambient
pressure is 190 K, only 10–20 K below the homogeneous nucleation
temperature. In the ML-BOP model, crystal formation resolves the
Kauzmann paradox.19

Finally, we stress that the PEL builds upon a description of
each liquid configuration as composed of an IS supplemented by a

vibrational distortion. Then, in the PEL approach, a generic glass
is nothing more than an IS sampled with a low T-vibrational com-
ponent that does not allow for exploring nearby PEL basins. In
this respect, each IS is a potential glass of the system, highlighting
the continuity of amorphous ices spanning the entire density range
where a liquid state exists. Among all glasses, a particular theoreti-
cal relevance is played by the Kauzmann glasses, defined as the ISs
of lowest energy (i.e., the ones for which the configurational entropy
vanishes). Ultrastable glasses, obtained by vapor deposition64 and/or
by artificial computational paths via swap dynamics,65,66 polymer-
ization,67 and local density homogenization,68 are examples of
glasses with quite low eIS. The ability of the PEL formalism to sep-
arate configurational properties from those that are vibrational in
nature has been exploited to build an out-of-equilibrium free-energy
expression valid for all cases in which the out-of-equilibrium state
can be considered as one of the glasses sampled in thermal equilib-
rium (same IS and same basin shape).27,69 We, therefore, foresee an
application of the PEL formalism to shear-induced glass formation,
including the recently reported ball-milling intermediate ice.36

SUPPLEMENTARY MATERIAL

The supplementary material discusses, in more depth, the
Gaussian landscape model, the calculation of the reference free
energy, the liquid and crystal vibrational density of states, and the
Kauzmann line for the two liquids.
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