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ABSTRACT: The presence of a second critical point in water has been a topic of intense investigation for the last few decades. The
molecular origins underlying this phenomenon are typically rationalized in terms of the competition between local high-density
(HD) and low-density (LD) structures. Their identification often requires designing parameters that are subject to human
intervention. Herein, we use unsupervised learning to discover structures in atomistic simulations of water close to the liquid−liquid
critical point (LLCP). Encoding the information on the environment using local descriptors, we do not find evidence for two distinct
thermodynamic structures. In contrast, when we deploy nonlocal descriptors that probe instead heterogeneities on the nanometer
length scale, this leads to the emergence of LD and HD domains rationalizing the microscopic origins of the density fluctuations
close to criticality.

The physics of the critical behavior of matter close to phase
transitions remains one of the most cherished areas of

study in both experimental and theoretical physics.1−4 One of
the most lively areas of discussion in this regard pertains to the
microscopic origins of the complex phase diagram of water.5−8

Besides the rather well characterized liquid−gas critical point, a
series of theoretical predictions over the last few decades have
proposed the existence of another critical point: the Liquid
Liquid Critical Point (LLCP) of water in the supercooled
regime.9−11 The physics underlying this criticality is thought to
be one of the essential ingredients for understanding the
anomalies of water.
Probing the molecular origins of this second critical point

has been dominated by theoretical and numerical predictions
due to the challenge of spontaneous nucleation of ice at
supercooled conditions.12−14 Just over three decades ago,
Poole and co-workers demonstrated using the ST2 water
model,15 that deeply supercooled water showed the presence
of two distinct liquid phases, with fluctuations between the two
phases terminating at the LLCP.9 Several groups have also
shown in the past decade, using advanced sampling free energy
calculations, that the ST2 model exhibits two distinct liquid
phases.10,16−19 More recently, this has been bolstered by tour-
deforce microsecond simulations of realistic classical models of
liquid water,11 as well as ab initio neural network models of

liquid water20 that give further evidence for a LLCP scenario at
least, on the numerical front. On the experimental side, work
on supercooled water under elevated pressures as well as
pioneering sound velocity measurements appear to be breaking
the boundary of the so-called no-mans land giving strong
indications of the existence of a LLCP.21−23

One of the central holy grails of understanding the possible
polymorphic nature of liquid water, has been the use of locally
stable structures7,24−28 which are thought to be rooted in
water’s unique hydrogen bond network. Many of the anomalies
in water have been rationalized in terms of a competition
between two types of hydrogen bonding structures.6,25 One is
said to have a more ordered tetrahedral and therefore open
structure, often referred to as a low-density (LD) local
configuration, and the other is disordered due to the presence
of interstitial water molecules, which is referred to as a high-
density (HD) local configuration.
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Numerous order parameters have been constructed in an
attempt to identify and distinguish these two local environ-
ments.7,25,28−34 These order parameters have also been shown
to be tightly coupled to the macroscopic density fluctuations
that occur close to the critical point (CP35). Although they
provide a manner in which to physically interpret the
simulation data, these order parameters often require
significant human intervention, which necessarily involves
chemical bias (and often some arbitrary cutoff in their
definition). Furthermore, it is also not clear a priori whether
the interpretations made through these parameters are
transferable across different regions of the phase diagram.
Recently, some of us proposed a protocol that streamlines an

unsupervised learning procedure for liquids and applied it to
study the structure of water at room temperature36 as well as
the study of the excess proton in hydrochloric acid.37 In brief,
the method involves a three-step process. We begin by
encoding the information on local environments using local
atomic descriptors computed from the Smooth Overlap of
Atomic Positions (SOAP38), which preserve important
symmetries when comparing different molecular structures.39

In the second step, these high-dimensional descriptors are
subsequently processed through an algorithm that extracts the
Intrinsic Dimension (ID)40 which is crucial to understand the
embedding manifold of the data. In the final step, the ID is
used to extract the high-dimensional free energy of the
system41 and identify the minima.42,43 For room temperature
liquid water, we found a rather broad and rough landscape
separated by small barriers on the order of thermal energy
where the shallow minima arise from a continuum of local
molecular structures that continuously connect the canonical
low- or high-density local environments.36

In this work, we apply this protocol to understand
fluctuations in supercooled water. Specifically, we uncover
the molecular origins of critical-like fluctuations using
unsupervised learning, analyzing trajectories recently reported
in ref 11 connected to the presence of a second critical point in
atomistic water models. The free energy landscape constructed
using local SOAP descriptors results in a single minimum
despite there being macroscopic fluctuations in the global
density. By systematically expanding the SOAP descriptor to
include fluctuations on a length scale up to 1 nm, we uncover
nonlocal domains relevant to critical-like fluctuations in
supercooled water. The free energy landscape close to the
critical point evolves between the high- and low-density
macroscopic phases, through a complex topography which we
link to collective fluctuations of chemical-based order
parameters that include nonlocal information of the water
network.
We begin by summarizing the methods we employ in our
work. The trajectory used for our analysis obtained from ref 11
is a 40 μs long NPT trajectory of 300 TIP4P/2005 water
molecules produced using the Gromacs 5.1.4 software close to
critical conditions (177 K, 1751 bar). More information on the
simulation conditions is detailed in the main and supple-
mentary text of ref 11. Additionally, we apply our analysis
protocol to a large system (36424 TIP4P/2005 water
molecules) in the NVT ensemble at a temperature and density
of (180 K, 1011.83 kg/m3) in order to explore the larger
length-scale fluctuations in the density.
Our unsupervised learning protocol developed in ref 36

involves encoding local environments of molecules in a local
atomic descriptor, extracting the intrinsic dimension, and

constructing a high-dimensional point-dependent probability
density function from which the thermodynamic information
can be inferred. The details of this procedure are outlined in
the following paragraphs.
As indicated earlier, the first step in our analysis is to encode

the water molecular environments with a local atomic
descriptor. To this end, we use the Smooth Overlap of Atomic
Positions (SOAP) descriptor,38,39 which preserves rotational,
translational, and permutational symmetries of our molecular
environments. In brief, given an atomic environment χ around
a central atom, one characterizes the local density as a sum of
Gaussian functions with variance σ2 centered on each of the
neighbors of the central atom, including the central atom itself:
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This atomic neighbor density can be expanded in terms of
radial basis functions and spherical harmonics Ylm such that
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where the cnlm are the expansion coefficients.
The number of expansion coefficients one chooses to

compute is bound by the number of radial and angular basis
functions (nmax, lmax). In practice, one defines a cutoff radius
(rcut) for the atomic environment being considered. One can
then define a rotationally invariant power spectrum (p), whose
elements are
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Thus, the distance between two environments χ and χ′ is
related to the SOAP kernel by the following expression:
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Using the Dscribe package,44 the local SOAP descriptor for a
water molecule p(i) is formed by computing the power
spectrum on only oxygen species within a cutoff radius (rcut =
3.7 Å) centered about each oxygen atom. The local SOAP
descriptors encode fluctuations on the length scales around the
first coordination shell. To explore nonlocal fluctuations, we
form a glocal SOAP descriptor by taking an average of the
SOAP descriptor for each molecule and its neighbors within a
distance rgloc, given as

i
n

jp p( )
1

( )r
j

n

1
gloc

=
= (6)

Here, n is the number of neighbors within a distance rgloc of the
water molecule i.
We also consider pGlobal(i) as the SOAP descriptor obtained

by averaging the descriptors of all molecules within a snapshot.
Similar types of descriptors have been previously used by
Lechner and Dellago45 as a means to accurately include
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nonlocal structural information in crystalline solid-state
systems.
The quality, size, and accuracy of the SOAP descriptors

depend on the parameters that go into its definition. In
particular, one needs to have a balance between the level of
detail the descriptors encode and also the computational
management of the data sets one uses. In this work, we
compute the SOAP descriptors considering only oxygen
species and with the following parameters: nmax = 8, lmax = 6,
and σ = 1.0 Å since it offers a good balance between the level
of detail of the molecular environment encoded and the size of
the descriptors. In section S1 of the Supporting Information
we explain how the descriptors used in the ensuing analysis
and the ones that are built to include hydrogens, as well as the
use of smaller σ, encode similar information.
Besides the SOAP based local atomic descriptors, we are

also interested in examining if and how well chemically based
order parameters capture the relevant fluctuations in liquid
water. Of the many order parameters, the ones of interest to us
in this context were qtet,

30,31 LSI,46−48 d5,
49 ρvoro,

50 ψ,35 and ζ.6
More details on these chemical order parameters are provided
in section S6 of the Supporting Information as well as in the
main text of the referenced material.
In data sets with numerous dimensions, the presence of

correlations among variables describing each data point
suggests that the system of interest likely lies on a manifold
whose dimension (the Intrinsic Dimensionality of the data set)
is much lower than the embedding dimension of the data. To
illustrate this, consider a set of points in three dimensions; if
distributed randomly, the Intrinsic Dimensionality (ID) would
be three. However, correlations between coordinates could
restrict data points to lie only on the surface of a sphere,
resulting in an ID of 2.
Computing the ID is closely tied to dimensionality reduction

techniques,51−53 where the data set is projected into a lower-
dimensional space for analysis, visualization, and interpretation.
The ID denotes the minimum dimensionality in which the data
can be projected by applying such techniques without a
significant information loss. A proper understanding of the ID
guides the selection of the space used to analyze system
fluctuations. In our study, the ID is crucial for estimating a
point-dependent density function, influencing the extraction of
free energy, as elaborated later.
In this work, we employed the Two-NN estimator,40 a

recently developed technique estimating the ID based on
information from the first and second nearest neighbors of data
points. This method, successfully applied to various molecular
systems,54−56 operates on the assumption that the density of a
data point can be considered approximately uniform within the
distance to the second nearest neighbor of a data point,
demonstrating that the ratio of the second to the first nearest
neighbor distances (μ = r2/r1) follows a specific distribution:

P d
( ) d 1= + (7)

Here, d is the ID. Assuming independence of sampled ratios μi,
the ID can be estimated by maximum likelihood (other
estimators are also possible) as

d
N
log( )i

N
i1

=
= (8)

where N is the total number of samples in the data set.

Using SOAP distances, we estimated the ID of the water
molecule environment. The ID represents the minimum
number of independent order parameters needed to describe
the environment, aiding in quantifying information gained or
lost with different variables.57

The considerations of the previous section have a direct
impact on the reconstruction of the free energy landscape of
water. To this end, understanding relevant variables character-
izing structural fluctuations is essential. A common strategy is
to examine probability densities along chemically inspired
variables like qtet, LSI, and d5.

7,47,58 However, this assumes no
information loss in the projection (something that cannot be
strictly true if the number of variables employed is smaller than
the ID of the data) and that the variable correctly encodes the
process of interest. Recent techniques automatically identify
important degrees of freedom59,60 and construct free energies
in high dimensions.41,61−64 For a detailed discussion, refer to a
recent review.65

In this work, we employed the Point Adaptive k-nearest
neighbor estimator (PAk),41 avoiding the need for projection
and used successfully in studying complex molecular
systems.55,56,66 The method uses the ID as a parameter to
construct a point-dependent density (ρi). This density is
computed by adding a linear correction to the standard k-
nearest neighbor estimator, where the density is i

k

r
i

ki
d= , and

ki’s are computed for each data point as the larger
neighborhood for which the density can be considered
approximately constant. The rationale is that, at constant
density, the variance of the density estimation scales with

k
1

i

while the inclusion of regions with different densities
introduces a bias term to the error; therefore, the procedure
controls the bias-variance trade-off. The point-dependent free
energy is −Log(ρi). Previous work shows this method
accurately estimates free energy errors up to dimensions as
large as 8.41

With point-dependent free energies, independent minima in
the free energy landscape (clusters) are determined using a
modified density peak clustering algorithm (DPA),43 an
extension of the original density peak clustering.42 In this
procedure, cluster center candidates are chosen as those whose
density is maximum within their ki neighbors. Then, the saddle
points between these free energy basins are computed, and the
clusters are considered as coming from statistical fluctuations
(and therefore merged in one) if the free energy difference
between the basin minima and the saddle point is lower than Z
times the sum of the errors associated with these free energy
estimates. The parameter Z is the only free parameter in DPA
clustering and can be interpreted as a measure of the statistical
confidence of the clustering partition. The higher its value, the
more one can be sure that the clusters are not coming from
statistical fluctuations but, at the same time, the higher the
probability of losing real clusters whose statistical confidence is
low due to the limited number of data points. In this work, the
choice of Z was made by varying it in two independently
generated data sets until the clusters were consistent.
Finally, PAk and DPA results are visualized and interpreted

using the uniform manifold approximation and projection
(UMAP),67 providing a convenient way to visualize high-
dimensional free energies in two dimensions.68

To unravel the relationships between various order
parameters and the macroscopic density, we used a statistical
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test called the Information Imbalance (IB). More details on the
method is provided in ref 69. In brief, given a data set with N
data points and F features, one can construct different distance
measures A and B using any subset of the feature space of
choice, and the IB is then defined as

A B
N

R R
N

R( )
2

1
2B A

i j R
ij
B

2
, : 1ij

A

= | = =
= (9)

where Rij
A and Rij

B are the rank matrices obtained from distances
A and B, respectively. Thus, Rij

A = 1 if point j is the first
neighbor of point i in space A. With this definition, if Δ(A →
B) ∼ 0, then space A is predictive of B and, if Δ(A → B) ∼ 1,
then the two spaces are unrelated.
The IB is by definition asymmetric, in the sense that, if Δ(A

→ B) ∼ 0 and Δ(B → A) ∼ 1, then it means that distance
measure A can be used to predict B with more reliability than
the reverse.
Having described the methods we employed in this work, we

move next to discussing our results. We estimate the ID of the
environment around a water molecule with p(i), prdgloc

(i) for all
rgloc ∈ [3.7 Å, 6.0 Å, 10.0 Å] and pGlobal(i). We find an ID of 5
with the purely local SOAP descriptors (p(i)) and this
decreases to 4 as we increase the radial threshold to include
molecules in the whole frame, indicating that the averaging

enhances the correlations in the descriptor. Figure S2 in the
Supporting Information shows how the ID scales as a function
of the number of data points sampled from the trajectory.
With the ID computed, we are now in a position to analyze

the free energy landscape. Panel A of Figure 1 shows the time
series of the simulation trajectory as reported in ref 11, where
critical-like fluctuations between the HD and LD phases are
observed. When using the global density as an order parameter,
the underlying free energy landscape is clearly bimodal. Clear
two-peak distributions have been observed for several
geometric and energetic order parameters, when averaged
over all molecules in the system.35 It has also been shown that
the distributions of the same descriptors, if evaluated at particle
level, do not show a clear bimodal character. A notable
exception is ψ, an indicator based on the topology of the
hydrogen bond network surrounding each molecule.28,35 We
address the question of the onset of bimodality on crossing
from local to global descriptors by performing DPA clustering
using the purely local SOAP descriptors p(i). Our clustering
analysis reveals one cluster despite the pronounced macro-
scopic density fluctuations. In panel B, we show the UMAP
projection of the local SOAP descriptors in two dimensions.
Confirming our clustering results, we see that the local
environments coming from both LD and HD snapshots lie in
one free energy basin with no clear separation between local

Figure 1. (A) Critical macroscopic density fluctuations close to the critical point as obtained in ref 11. (B) 2D UMAP representation of the data
manifold obtained from the local SOAP descriptors; there is no clear separation between the two phases at the local level, as obtained from our
clustering procedure and also seen from the unimodal nature of the free energy surface. (C) 2D UMAP representation of the data manifold
obtained from the global average SOAP descriptors; the two minima correspond to the low and high macroscopic density phases obtained from our
clustering procedure.
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LD and HD environments akin to what is observed in water at
ambient conditions.36

The microscopic origins of what we observe are likely rooted
in the large heterogeneity of the local environments in both
phases. Our local descriptor, however, only directly encodes
information on the water hydrogen bond network on the
length scale of ∼3.7 Å. Indeed, several previous studies have
pointed to the important role of structural information beyond
the second coordination shell that may be essential in
understanding the differences between an HD and LD
phase.35,70,71 With this in mind, we performed clustering
with prdgloc

(i). As shown in Figure S1 of the Supporting

Information, by increasing rgloc, the topology of the UMAP
manifold starts to change, and we see the emergence of two
clusters (confirmed by the DPA clustering) when we average
beyond the second solvation shell. Panel C of Figure 1 shows
the UMAP projection of the pGlobal(i) SOAP descriptor. The
clustering analysis using the global descriptors reveals two
clusters that are consistent with the macroscopic HD and LD
phases, further indicating that there is structural information
beyond the second solvation shell that is important in
distinguishing the LD and HD phases.
The density plots shown in the bottom panels of Figure 1

involve a projection of the high-dimensional SOAP features at
both the local and global scale onto two UMAP coordinates

Figure 2. Evolution of the order parameters as a function of averaging. the average in the legend denotes the average within some cutoff until the
global average. One can see the emergence of bimodality upon averaging beyond the second coordination shell.

Figure 3. (A) Information imbalance between the descriptors and the macroscopic density (ρ) as a function of radial averaging. We see a consistent
reduction in the IB as we increase the cutoff radius for the averaging. It is noteworthy that the different descriptors reach different IB values with the
whole box average, with the ρvoro being the most predictive of ρ, followed by the SOAP descriptor. On the flip side (panel B), which is the IB
between ρ and the descriptors, one observes a symmetry between ρ and the other descriptors except SOAP, indicating that SOAP contains some
information about the global average structure which ρ misses.
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which are rather difficult to interpret physically. We thus turn
to examining how chemical descriptors such as tetrahedrality
(qtet) and the distance to the fifth water molecule (d5) evolve
as a function of the nonlocal averaging. Figure 2 shows the
distributions of the qtet (panel A) and d5 (panel B) order
parameters computed from the critical point trajectory in
Figure 1. We observe that the distribution for the local order
parameters is essentially unimodal with no characteristic peaks.
However, upon averaging the descriptors within radial cut-offs
(⟨Θ⟩rdgloc

) we observe the emergence of a bimodal structure in
the distributions. Specifically, beyond 6 Å, one peak grows at
relatively low qtet values (∼0.8) and hence low d5 values (∼3.4
Å), corresponding to environments sampled from the HD
phase. The other peak is located at high qtet values (∼0.9) and
hence higher d5 values (∼3.8 Å) corresponding to average
environments sampled from the LD phase. For qtet, there is a
larger proportion of environments in the LD phase consistent
with what is observed with the macroscopic density11 whereas
this feature is much less pronounced with d5.
The emergence of bimodality in the distribution of the order

parameters on longer length scales signifies that there is some
correlation between them and macroscopic density. However,
the manner in which this bimodal structure develops and how
strongly this reflects the density (LD vs HD) are rather
sensitive to the choice of the chemical order parameter that are
used. In a recent work, some of us have shown that for liquid
water at room temperature, a full description of the
fluctuations in the water hydrogen bond network involves
the coupling of several different order parameters together.72

In the context of this work, we wanted to explore which order
parameters and on what length-scales best probe the HD-LD
density fluctuations.
To address this question, we applied the IB method to

investigate the coupling between several chemically based
order parameters and the density. The IB provides a
quantitative measure of how well variables such as qtet or d5
averaged over different length scales can predict the global
density and vice versa. Figure 3 illustrates the behavior of the
IB as a function of radial averaging. We observe in panel A that
the information about the macroscopic density contained in all
the descriptors starts increasing (corresponding to low IB
values) as we increase the radial cutoff for the averaging. Up to
a cutoff distance of ∼1 nm, which is approximately half of the

whole box size, the IB reduces significantly, reaching values
smaller than ∼0.3 for the SOAP descriptor and ρvoro.
In the bottom right corners of each panel in Figure 3, one

can see the IB value obtained for the average descriptors
(⟨Θ⟩Global) which reaches values of ∼0.1 and ∼0.03 for the
SOAP descriptor and ρvoro, respectively. We note that this tight
coupling between the descriptors and the macroscopic density
is strictly a feature observed in subcritical supercooled water
(as we show in Figures S3 and S4 in the Supporting
Information) and it is only achieved upon including structural
information on up to ∼1 nm length scale, as has also been
discussed in ref 35.
The asymmetric nature of the IB allows us to also compare

the information contained in the macroscopic density with the
different descriptors. As seen in panel B, there is symmetric
information shared between the macroscopic density and all
other descriptors, except for the SOAP descriptor. This is not
surprising since the SOAP descriptor by nature is complete
and contains information about the molecular orientations,
which the macroscopic density does not contain.
All in all, the preceding results build strong evidence to a

picture where the LD-HD density fluctuations cannot be
described in terms of local competing structures but instead
involve clusters of at least 100 water molecules. Thus,
according to our unsupervised learning protocol, the density
fluctuations underlying LD-HD transitions cannot be asso-
ciated with properties assigned at the single molecule level.
With this picture in mind, we can revisit the UMAP
projections, providing more chemical interpretability. In panels
A and B of Figure 4, we show the UMAP projection of the
SOAP data in 2 dimensions, now colored with the
corresponding average d5 (⟨d5⟩Global) and qtet (⟨qtet⟩Global),
respectively. We confirm from this that the two density peaks
(or free energy minima) emerging from our clustering
correspond to the HD and LD phases since one of the peaks
overlaps with ⟨d5⟩Global ∼ 3.4 Å hence ⟨qtet⟩Global ∼ 0.8 (high
density), and the other peak overlaps with ⟨d5⟩Global ∼ 3.8 Å
and thus ⟨qtet⟩Global ∼ 0.9 (low density).
One of the important signatures of critical behavior is the

divergence in the structure factor in the low |k⃗| limit, which
ultimately translates into an enhancement in long-range
density fluctuations. To investigate this anomalous scattering
behavior of water close to the critical point, Debenedetti and

Figure 4. (A) 2D UMAP representation of the SOAP data manifold colored with the average d5. The peak on the left half of this panel corresponds
to low average d5 while the peak on the right half corresponds to relatively high average d5. (B) 2D UMAP representation of the SOAP data
manifold colored with the average qtet. The peak on the left half of this panel corresponds to low average qtet while the peak on the right half
corresponds to relatively high average qtet.
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co-workers explored the properties of the static structure factor
using a large system (36424 TIP4P/2005 water molecules at
subcritical conditions run in the NVT ensemble11). Their
analysis indeed shows the signature of the critical behavior. A
question that remains, however, is how exactly one rationalizes
the relationship between the nonlocal structures that emerge
from our preceding analysis and the long-range density
fluctuations.
The two clusters that have been automatically identified

from the SOAP descriptors averaged on the nanometer length
scale (see Figure 1 earlier) provide a protocol for classifying
water molecule environments in other contexts such as those
used to construct the structure factor previously described.
Using the k-nearest neighbor classifer (see details in section S7
of the Supporting Information), we assign water molecules in
the large box simulation to either LD or HD type depending
on their respective similarities.
Applying this procedure leads to automatic identification of

LD and HD domains. In the left-most panel of Figure 5, we
show one snapshot with only oxygen atoms (for clarity)
colored by the phase they have been assigned to: blue spheres
represent molecules assigned as LD-like, while red spheres are
molecules assigned as HD-like. By visual inspection, one can
see a tendency for the LD and HD water molecules to cluster
together, forming LD-like and HD-like domains. These
domains extend over spatial distances of several nanometers
and essentially percolate throughout the periodic box, and to
the best of our knowledge, this is the first instance where the
LD and HD domains have been identified in a completely
unsupervised manner.
If the density fluctuations close to the critical point are

indeed creating LD and HD domains, then this implies that
there should be some signature of an interfacial region forming
at the boundary of the domains. One signature of this would be
that water molecules close to the boundary would not be
classified as pure LD or HD environments. A manner in which
this can be quantified is to measure the probability of
identifying either an LD or HD environment and subsequently
identifying pure LD environments as those with pLD > 0.7 and
the pure HD environments as those with pHD > 0.7. Water
molecules with 0.7 > pLD > 0.4 or 0.7 > pHD > 0.4 are then
identified as those that are putatively assigned as boundary or
interfacial points.

In the middle panel of Figure 5, we show the same
simulation snapshot but now also coloring points that have
been identified to be so-called boundary water molecules. From
visual inspection, we can see how the green molecules are
typically located between LD and HD domains. These findings
nicely demonstrate that our procedure of agnostically
identifying environments with appropriately averaged SOAP
descriptors on the nanometer length scale leads to the
emergence of LD and HD domains, which are identified at
the same thermodynamic state point.
In the right-most panel of Figure 5, we plot the PDF of the

ρvoro order parameter constrained to the LD (blue full line),
HD (red full line), and interfacial molecules (green dashed
line). We note that the full distribution of ρvoro is unimodal and
broad. However, by restricting the distribution to the identified
domains separately, we find that the peaks in the distributions
are consistent with those associated with the LD and HD
phases in the smaller box. It is also curious to observe
interfacial molecules, which have ρvoro values peaked between
the peaks of the LDL/HDL ρvoro distributions.
In conclusion, in this work, we have used unsupervised
machine learning techniques to analyze data coming from
molecular dynamics simulations of liquid water close to the
second critical point, where one observes pronounced
fluctuations of the global density between a high-density
(HD) and low-density (LD) liquid phase. We show that the
free energy landscape in the space of local descriptors consists
of one minimum despite pronounced density fluctuations. This
is rooted in the large heterogeneity of the local configurations
sampled by the water molecules in both phases. However, by
using descriptors that account for nonlocal information of the
water network, bimodality in the free energy landscape
emerges.
We further confirm the importance of nonlocal information

by deploying a statistical test that allows us to evaluate the
strength of the mapping between different descriptors and the
macroscopic density fluctuations. We find that the mapping is
strongest when the descriptors are constructed to include
information on approximately a nanometer length scale.
Finally, armed with the nonlocal HD and LD structures that
emerge from our analysis, we characterize the formation of HD
and LD domains that is manifested in the anomalous scattering
behavior of water close to the second critical point.

Figure 5. (Left) Snapshot of the large system colored by which density phase it was assigned to blue for LD and red for HD. We observe the LD
and HD domains extend over 1 nm spatial distance. (Middle) Same snapshot now coloring molecules that are found in the boundary between LD
and HD domains in green. (Right) PDF of the Voronoi density for all LD assigned molecules (blue full line), PDF of the Voronoi density for all
HD assigned water molecules (red full line) and the PDF of Voronoi density values for all molecules assigned as interfacial molecules (green dashed
line). We note how the distributions are peaked toward low density, high density, and intermediate density, respectively, albeit with a huge overlap.
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Our results bring forward important challenges in assigning
and interpreting fluctuations of the hydrogen bond network in
terms of single particle properties where longer range structural
correlations are clearly more important. These findings should
motivate more work32 in trying to understand the relationships
between local atomic descriptors and local molecular chemi-
cally inspired parameters and how they change our under-
standing of fluctuations across the phase diagram of water. We
believe our work provides a general framework for under-
standing water’s structural and dynamic properties in other
scenarios where long-range correlations may be important,
such as at interfaces73−75 as well as under confinement.76,77
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