a brief review of Dark Matter searches

Marco Vignati http://www.roma1.infn.it/people/vignati

Il sistema solare

La legge della gravitazione di Newton ci dice che:

velocità di un pianeta = $\sqrt{G_{\text{Newton}}} \frac{\text{Massa del sole}}{\text{distanza dal sole}}$

In un grafico

Velocità di rotazione in una galassia

È come se ci fosse della materia in più di cui vediamo gli effetti gravitazionali ma che è invisibile.

Lenti gravitazionali

Questo metodo viene utilizzato per tracciare la mappa della materia oscura nell'Universo.

Cosa è la Materia Oscura?

Cosa sappiamo:

- Interagisce molto poco con la materia ordinaria.
- Non emette e non assorbe luce.
- Siamo sensibili solo agli effetti gravitazionali.

Cosa non è:

La materia oscura ha ricoperto un ruolo determinante nella formazione delle Galassie.

La composizione dell'Universo

Cosa è l'energia oscura? Non ne abbiamo idea! Per ora ci concentriamo sulla materia oscura.

Cosa è la Materia Oscura?

Cosa sappiamo:

- Interagisce molto poco con la materia ordinaria.
- Non emette e non assorbe luce.
- Siamo sensibili solo agli effetti gravitazionali.
- Non è la materia ordinaria, l'antimateria o un buco nero.

Cosa potrebbe essere:

- Non esiste: le leggi della gravitazione non sono esatte (MoND).
- Una nuova particella?

Il modello standard

Una nuova particella?

- Problemi:
 - Non sappiamo cosa sia, quindi non sappiamo quale è il modo giusto per vederla.
 - Bassa densità. Circa 1 protone equivalente in 3 cm³.
 - È in grado di attraversare la terra senza interagire.

- Almeno 2 ipotesi:
 - Particella leggera (Assione) che può interagire con i campi magnetici.
 - Particella pesante (WIMP).

WIMP detection principle

Elastic scattering off nuclei, measure nuclear recoil energy E_{nr} :

Spin dependent (SD) or spin independent (SI) interaction:

For $m_{\chi} = 100$ GeV and A = 100:

- $\sigma_{SI} = 10^{-40} 10^{-48} \text{ cm}^2$
- Rate = $10^{-2} 1$ events / (kg day)
- E_{nr} = 0 25 keV

The WIMP signal (SI)

Exponential-like shape, increasing at low E (similar to many bkgs...)

Demands O(keV) thresholds and backgrounds close to zero.

All experiments operated in low radioactivity environments and deep underground.

Counting rate annual modulation

Earth velocity combines to solar system velocity in the galaxy.

Dark matter "wind" in the heart rest frame is modulated:

$$v(t) = v_{\rm sun} + v_{\rm orb}^{||} \cos[\omega(t - t_0)]$$

and affects the counting rate:

$$S(E,t) = S_0(E) + S_m(E)\cos[\omega(t-t_0)]$$

Distinctive modulation signal features:

$$T = 1$$
 year $t_0 = 2^{nd}$ June

Pro: model independent

Con: requires detector stability and bkg control.

Rivelazione di WIMP

L'urto WIMP-Nucleo, se avviene, avviene molto raramente:

• 1 urto all'anno in 1 ÷ 100 kg di materiale.

Questi segnali possono essere nascosti dal fondo: urti indotti da altri eventi naturali. Uno tipo di fondo è la radioattività (particelle $\alpha \beta \gamma$).

Bisogna lavorare in ambienti a bassa radioattività.

Raggi cosmici

Particelle (principalmente protoni) generate dalle stelle e dalle galassie che collidono con l'atmosfera terrestre, producendo altre particelle.

Si misurano circa: 1 milione di particelle / (m² ora) sulla terra.

Laboratori sotterranei

Laboratori del Gran Sasso

Detection channels

The combination of different techniques allows one to discriminate between electron and nuclear recoils, and thus to reduce the β/γ background.

Energy calibrations are done with γ sources (electron recoils).

The relative calibration of nuclear recoils ($keV_{ee} \Rightarrow keV_{nr}$), the quenching factor (QF), must be known with accuracy

DAMA/LIBRA

25 Nal crystals, 9.70 kg each

- QF: Na (30%), I (10%)
- High radiopurity: ²³²Th and ²³⁸U (ppt), ⁴⁰K (<20 ppb)
- Dual read-ou ise reduction via coincidence) Energy thresho Granularity: se 22

DAMA/LIBRA - data analysis

Pulse shape cuts to reject PMT noise events:

A(keV)

23

DAMA/LIBRA - result

DAMA/LIBRA - checks

R. Cerulli at IDM2012

Source	Main comment	Cautious upper limit (90%C.L.)	
RADON	Sealed Cu box in HP Nitrogen atmosphere,	<2.5×10 ⁻⁶ cpd/kg/keV	
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV	
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV	
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV	
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV	
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible	<10 ⁻⁴ cpd/kg/keV	
SIDE REACTIONS	sources of background Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV	
+ they cannot satisfy all the requirements of annual modulation signature			

DAMA phase: May 26±7

μ phase @LNGS: July 6±6

SABRE

CDECCT

CRESST Cryogenic Detectors

RESST Cryogenic Detectors

bolometers (phonon detectors):

Ca

- 1) detect also scintillation light to discriminate nuclear recoils
- 2) Multi-target: sensitive to different WIMP masses:

Discrimination with light detector

CRESST detector

CRESST: results

Xenon-100

- 161 kg LXe (34 kg fiducial volume).
- Dual phase TPC, detect scintillation (S1) and ionization (S2)

▶x,y and z (via S2-S1 time difference), and recoil discrimination via S2/S1 ratio

Xenon-100 - Results

Phys.Rev.Lett 109 (2012) 181301

LUX

Same technique as Xenon-100: Dual phase LXe TPC

	Xenon-100	LUX
Total/Active Volume [kg]	161/62	370/250
Fiducial volume [kg]	34	118
S1 Light Yield [PhE/keVee]	2.3 (field on)	8.8 (field off)
WIMP search region [keVnr]	6.6 - 30.5	~ 3 - 18
Published live time [day]	225	85

LUX - Results

Xenon 1T

• 2 Tons, 1 Ton fiducial. Taking data

Where are we going?

• Experiments with mass larger than 20 tons are expected in the '20s.

