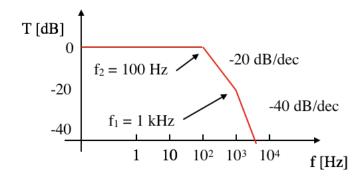
Laboratorio di Sistemi e Segnali AA 2017/18 – Esonero 1, Soluzioni A

Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C_E con un corto. L'amplificazione pertanto è $g_m R_C$ dove $g_m = 1/r_e = I_C/V_T$. Per calcolare I_C calcoliamo la corrente di emettitore dato che $|I_C| \simeq |I_E|$. $I_E = [V_E - (-V_{EE})]/R_E$. Visto che la base per correnti continue può essere considerata a massa, $V_E = -0.7V$ e $I_E = 1mA$. Pertanto, assumendo $V_T = 25mV$, $r_e = 25\Omega$ e $A_v = -R_C/r_e = -200$. Cambierei questa frase. Pertanto, assumendo $V_T = 25mV$ si ha $A_v = -\frac{I_C R_C}{V_T} = -200$.

Esercizio 2 (7 punti): Il circuito è un doppio passa basso in cui i due stadi possono considerarsi indipendenti, visto che $(R_{IN}^2 = 100K) >> (R_{OUT}^1 = 1K)$. Pertanto la funzione di trasferimento risulta:

$$T(s) = \frac{1}{1 + s\tau_1} \frac{1}{1 + s\tau_2}$$

e le corrispondenti frequenze di taglio sono $f_1 = 1kHz$ e $f_2 = 100Hz$. Il diagramma di bode approssimato è:



Esercizio 3 (7 punti):

Per calcolare l'equivalente di Thevenin dobbiamo calcolare la caduta di tensione tra i terminali A, B e la resistenza vista dai terminali. I due rami contenenti i generatori di corrente danno contributi opposti alla corrente nel ramo in alto che termina con A. Per tale ragione si cancellano. In assenza di tali rami, i generatori di tensione sono messi in modo che, nel circuito a una sola maglia che resta, la corrente è 0 poichè i generatori producono correnti uguali ed opposte (vedere figura).

$$I_M = V_1/R_1 - V_2/R_2 = 0$$

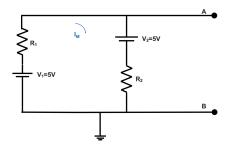
Allora la caduta sulle resistenze R_1 ed R_2 è nulla e la tensione $V_{AB} = V_{Th} = 5V$.

La resistenza equivalente R_{Th} , visto che bisogna considerare i generatori di corrente come dei rami aperti, è data dal parallelo delle resistenze R_1 ed R_2 e vale quindi $R_{Th} = 1.5K\Omega$ Esercizio 4 (8 punti): Dalla richiesta sull'amplificazione discende che:

$$A_V = -R_C/R_E = -5$$

Dalla maglia d'uscita possiamo ricavare la seguente equazione:

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$



ricordando che $I_C \simeq I_E$ ed usando la relazione $R_C = 5R_E$:

$$V_{CC} - I_C(5R_E + R_E) = V_{CE}$$

dalle richieste $I_C=1$ mA e $V_{CE}=5V$ si ottiene: $R_E=\frac{V_{CC}-V_{CE}}{6I_C}=\frac{12V-6V}{6\times 1mA}=1K\Omega$ allora $R_C=5R_E=5K\Omega$

$$R_E = \frac{V_{CC} - V_{CE}}{6L_C} = \frac{12V - 6V}{6 \times 1mA} = 1K\Omega$$

Essendo $I_C \simeq I_E$ ed $R_E = 1K\Omega$ la tensione $V_E = 1V$ ed essendo $V_{BE}{=}0.7\mathrm{V}$ si ha $V_B = V_E + V_{BE} = 1.7 \text{V}.$

Il valore di V_B determina il rapporto tra le resistenze R_1 ed R_2 infatti: $V_B = \frac{R_2}{R_1 + R_2} V_{CC}$ da cui $R_2 = \frac{V_B(R_1 + R_2)}{V_{CC}} = 7.1 K\Omega$ A questo punto $R_1 = 50 K\Omega - R_2 = 42.9 K\Omega$.

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$
 da cui $R_2 = \frac{V_B(R_1 + R_2)}{V_{CC}} = 7.1 K\Omega$

Esercizio 1 (8 punti): Dalla richiesta sull'amplificazione discende che:

$$A_V = -R_C/R_E = -4$$

Dalla maglia d'uscita possiamo ricavare la seguente equazione:

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

ricordando che $I_C \simeq I_E$ ed usando la relazione $R_C = 4R_E$:

$$V_{CC} - I_C(4R_E + R_E) = V_{CE}$$

Non essendo noto V_{CC} dobbiamo ricavare il valore di R_E che puó essere ottenuto dalla relazione: $R_E=\frac{V_E}{I_E}=\frac{V_B-V_{BE}}{I_C}=1K\Omega$ allora: $V_{CC}=I_C(4R_E+R_E)+V_{CE}=1mA\times 5+5V=10V$

$$V_{CC} = I_C(4R_E + R_E) + V_{CE} = 1mA \times 5 + 5V = 10V$$

Ora essendo noto V_{CC} e V_B si possono calcolare le resistenze di base:

$$R_2 = \frac{V_B(R_1 + R_2)}{V_{\text{max}}} = 8.5 K\Omega$$

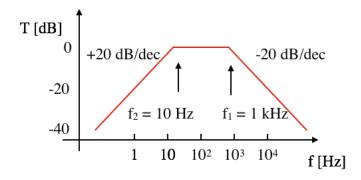
$$R_2 = \frac{V_B(R_1 + R_2)}{V_{CC}} = 8.5K\Omega$$

$$R_1 = 50K\Omega - 8.5K\Omega = 41.5K\Omega$$

Esercizio 2 (7 punti): Il circuito è un passa banda in cui i due stadi possono considerarsi indipendenti, visto che $(R_{IN}^2 = 100K) >> (R_{OUT}^1 = 1K)$. Pertanto la funzione di trasferimento risulta:

$$T(s) = \frac{1}{1 + s\tau_1} \frac{1}{1 + \frac{1}{s\tau_2}}$$

e le corrispondenti frequenze di taglio sono $f_1 = 1kHz$ e $f_2 = 10Hz$. Il diagramma di bode approssimato è:

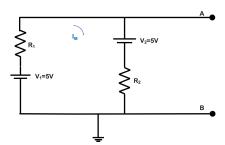


Esercizio 3 (8 punti): A media frequenza possiamo approssimare il capacitore C_E con un corto. La resistenza d'ingresso pertanto è $R_{IN} = h_{ie} = h_{fe}r_e$, dove $r_e = V_T/I_C$. Per calcolare I_C calcoliamo la corrente di emettitore dato che $|I_C| \simeq |I_E|$. $I_E =$ $[V_E - (-V_{EE})]/R_E$. Visto che la base per correnti continue può essere considerata a massa, $V_E = -0.7V$ e $I_E = 1mA$. Pertanto, assumendo $V_T = 25mV$, $r_e = 25\Omega$ e $R_{IN} = 2.5K$

Esercizio 4 (7 punti):

Per calcolare l'equivalente di Thevenin dobbiamo calcolare la caduta di tensione tra i terminali A, B e la resistenza vista dai terminali. I due rami contenenti i generatori di corrente danno contributi opposti alla corrente nel ramo in alto che termina con A. Per tale ragione si cancellano. In assenza di tali rami i generatori di tensione sono messi in modo che nel circuito a una sola maglia che resta la corrente è 0 poichè i generatori producono correnti uguali ed opposte.

$$I_M = V_1/R_1 - V_2/R_2 = 0$$



Allora la caduta sulle resistenze R_1 ed R_2 è nulla e la tensione $V_{AB} = V_{Th} = 5V$. La resistenza equivalente R_{Th} , visto che bisogna considerare i generatori di corrente come dei rami aperti, è data dal parallelo delle resistenze R_1 ed R_2 e vale quindi $R_{Th} = 2K\Omega$.

Laboratorio di Sistemi e Segnali AA 2017/18 – Esonero 1, soluzione

Esercizio 1 (7 punti):

Per risolvere il problema calcoliamo l'equivalente di Thevenin del circuito in figura. Fatto questo avremo la R_L in serie alla R_{Th} e si potrá scrivere:

 $I_L = \frac{V_{Th}}{R_{Th} + R_L}$ da cui $R_L = \frac{V_{Th}}{I_L} - R_{Th}$. Nel resistore R_3 non scorre corrente visto che i terminali A e B sono aperti. Allora la tensioni equivalente per Thevenin vale la caduta ai capi di R_2 :

$$V_{Th} = \frac{R_2}{R_1 + R_2} V = \frac{20}{20 + 5} 100 = 80 \text{ V}$$

 $V_{Th} = \frac{R_2}{R_1 + R_2}V = \frac{20}{20 + 5}100 = 80V$ la resistenza equivalente risulta dal parallelo di R_1 ed R_2 in serie con R_3 : $R_{Th} = \frac{R_2R_1}{R_1 + R_2} + R_3 = \frac{100K}{25K} + 6K = 10K\Omega$ Allora si ottiene per R_L :

$$R_{Th} = \frac{R_2 R_1}{R_1 + R_2} + R_3 = \frac{100K}{25K} + 6K = 10K\Omega$$

$$R_L = \frac{V_{Th}}{I_L} - R_{Th} = \frac{80V}{5mA} - 10K = 6K\Omega$$

 $R_L = \frac{V_{Th}}{I_L} - R_{Th} = \frac{80V}{5mA} - 10K = 6K\Omega$ Esercizio 2 (8 punti): Dalla maglia d'ingresso possiamo ricavare che:

 $V_{CC} = I_P \times 50 K\Omega = 12 \text{V}$. Dalla richiesta sull'amplificazione discende che:

$$A_V = -R_C/R_E = -4$$

Dalla maglia d'uscita possiamo ricavare la seguente equazione:

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

ricordando che $I_C \simeq I_E$ ed usando la relazione $R_C = 4R_E$:

$$V_{CC} - I_C(4R_E + R_E) = V_{CE}$$

$$R_E = \frac{V_{CC} - V_{CE}}{5I_C} = \frac{12V - 5V}{5 \times 1mA} = 1.4K\Omega$$

 $\begin{array}{l} V_{CC}-I_C(4R_E+R_E)=V_{CE}\\ R_E=\frac{V_{CC}-V_{CE}}{5I_C}=\frac{12V-5V}{5\times 1mA}=1.4K\Omega\\ \text{dalla relazione precedente discende }R_C=4R_E=5.6K\Omega \text{ Dalla }R_E \text{ e dal fatto che }I_C=I_E \end{array}$ si ricava facilmente che $V_E=1.4V$ da cui $V_B=V_E+V_{BE}=2.1V$

Infine essendo note V_{CC} e V_B si possono calcolare le resistenze di base: $R_2 = \frac{V_B(R_1 + R_2)}{V_{CC}} = 8.75 K\Omega$

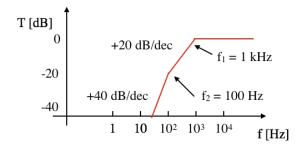
$$R_2 = \frac{V_B(R_1 + R_2)}{V_{CC}} = 8.75 K\Omega$$

$$R_1 = 50K\Omega - 8.75K\Omega = 41.25K\Omega$$

Esercizio 3 (8 punti): Il circuito è un doppio passa alto in cui i due stadi possono considerarsi indipendenti, visto che $(R_{IN}^2 = 100K) >> (R_{OUT}^1 = 1K)$. Pertanto la funzione di trasferimento risulta:

$$T(s) = \frac{1}{1 + \frac{1}{s\tau_1}} \frac{1}{1 + \frac{1}{s\tau_2}}$$

e le corrispondenti frequenze di taglio sono $f_1=1kHz$ e $f_2=100Hz$. Il diagramma di bode approssimato è:



Esercizio 4 (7 punti): Dobbiamo calcolare separatamente V_C e V_E . Visto che la base per correnti continue può essere considerata a massa, $V_E = -0.7V$. Visto che $V_C = V_{CC} - I_C R_C$, per calcolare I_C calcoliamo la corrente di emettitore dato che $|I_C| \simeq |I_E|$. $I_E = [V_E - (-V_{EE})]/R_E = 1mA$. Pertanto $V_C = 5V$ e $V_{CE} = 5.7V$.