Probing The Axion-Electron and Axion-Photon Couplings with the QUAX Haloscopes

Lab @INFN-LNL C. Braggio, G. Carugno, A. Ortolan, G. Ruoso A. Lombardi, R. Pengo, L. Taffarello PhD+PostDoc (2017-2020): N. Crescini PhD (2018-2020): R. Di Vora

Lab @INFN-LNF

C. Gatti, D. Alesini, D. Babusci, D. Di Gioacchino, C.Ligi, G. Maccarrone, D. Morricciani, S. Tocci PhD (2018-2020): A Rettaroli

@INFN-Salerno U. Gambardella, G. Iannone, C. Severino, D. D'Agostino @INFN-Trento P. Falferi, R. Mezzena

 $100 \,\mu\text{W}$ at $100 \,\text{mK}$

THE LANDSCAPE OF DM MASSES

- 60 orders of magnitude might even be more, alas -
- which range can be probed with laboratory searches?
- $\simeq 10 \text{ eV}$ is considered a fundamental watershed
- quantum sensing \rightarrow significant opportunities for ultralight bosonic, wave-like DM and in the 10 keV-1MeV range

AXION VS WIMP DETECTION

"The axion would be something of a spiritual cousin to the photon, but with just a hint of mass" P. Sikivie

WIMP [4-1000] GeV

- number density is small
- tiny wavelength
- no detector-scale coherence

```
\Rightarrow observable: scattering of individual particles
```


AXION [$m_A \lesssim eV$]

- number density is large (bosons)
- long wavelength
- coherence within detector

⇒ observable: classical, oscillating, **background field**

THE LANDSCAPE OF DM MASSES

- 60 orders of magnitude might even be more, alas -
- which range can be probed with laboratory searches?
- $\simeq 10 \text{ eV}$ is considered a fundamental watershed
- quantum sensing \rightarrow significant opportunities for ultralight bosonic, wave-like DM and in the 10 keV-1MeV range

IS DM MADE OF AXIONS?

- \Rightarrow a well motivated scenario:
 - "three birds with one particle"
 - 1. a CP problem solution
 - 2. Dark Matter candidate
 - 3. barion asymmetry [PRL 124, 111602 (2020)]
 - SUSY is failing tests at LHC
 - WIMPs searches with next generation of experiments
 - \Rightarrow axion parameter space
 - axions exist in a space of mass m_a and coupling $g_{a\gamma}$ with known **density** and **velocity distribution** throughout the galactic halo
 - yellow/white regions not probed
 - yellow = QCD axion
 - only method for reaching QCD band is with haloscope

https://cajohare.github.io/AxionLimits/

HALOSCOPE - resonant search for axion DM in the Galactic halo

- original proposal by P. Sikivie (1983)
- search for axions as cold dark matter constituent: SHM from $\Lambda_{\rm CDM},$ local DM density ρ
 - \rightarrow signal is a line with 10^{-6} relative width in the energy(\rightarrow frequency) spectrum
 - \rightarrow + sharp (10⁻¹¹) components due to non-thermalized
- an axion may interact with a strong \vec{B} field to produce a photon of a specific frequency ($\rightarrow m_a$)

HALOSCOPE - resonant search for axion DM in the Galactic halo

・ロト・日本・日本・日本・日本・日本

Axions can be produced in the SUN and in the LAB

Phys. Dark Univ. 12, 37 (2016)

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

AXION PARAMETER SPACE

- axions exist in a space of mass m_a and coupling $g_{a\gamma}$ with known **density** and **velocity distribution** throughout the galactic halo
- yellow/white regions not probed
- yellow = QCD axion
- only method for reaching QCD band is with the axion haloscope

https://cajohare.github.io/AxionLimits/

 $- \rho_{DM}$ is important for direct detection experiments that hope to find evidence for a DM particle in the lab

< □ > < 理 > < 注 > < 注 > . 注 の < @

- local vs global measures: errors and assumptions
- 0.45 GeV/cm³ \implies 1 hydrogen atom/~cm³

DM PARTICLES VELOCITY DISTRIBUTION AND AXION LINESHAPE

DM cosmological simulation of a halo of Milky Way mass ($10^{12} M_{\odot}$), run with 4.2 billion dark matter super-particles

$$ightarrow$$
 axion linewidth $Q_a =
u_a / \Delta
u \simeq 10^6$

- ρ_{DM} is important for direct detection experiments that hope to find evidence for a DM particle in the lab
- local and global measures: errors and assumptions
- 0.45 GeV/cm³ \Longrightarrow 1 hydrogen atom/~cm³

HALOSCOPE - resonant search for axion DM in the Galactic halo

- 1. microwave cavity for resonant amplification -think of an HO driven by an external force-
- 2. with tuneable frequency to match the axion mass
- 3. the cavity is within the bore of a **SC magnet**
- cavity signal is readout with a low noise receiver -how much low? depends on the signal amplitude, partly i the hands of the experimentalist

HALOSCOPE - resonant search for axion DM in the Galactic halo

- if axions are *almost monochromatic* then their conversion to detectable particles (photons) can be accomplished using *high-Q* microwave cavities.

$$- \omega_{\text{TM0nl}} = \sqrt{\left(\frac{\epsilon_n}{r}\right)^2 + \left(\frac{l\pi}{h}\right)}$$

 TM_{0nl} are the cavity modes that couple with the axion

- resonant amplification in $[m_a \pm m_a/Q]$
- $-\,$ data in thin slices of parameter space; typically $Q < Q_a \sim 1/\sigma_v^2 \sim 10^6$
- signal power $P_{a \rightarrow \gamma}$ is model-dependent

$$P_{a
ightarrow\gamma}\propto (B^2VQ)\left(g_{a\gamma}^2rac{
ho}{m_a}
ight)$$

<ロト 4 回 ト 4 三 ト 4 三 ト 1 の 0 0 0</p>

exceedingly tiny ($\sim 10^{-23}$ W)

"The last signal ever received from the 7.5 W transmitter aboard Pioneer 10 in 2002, then 12.1 billion kilometers from Earth, was a prodigious 2.5×10^{-21} W. And unlike with the axion, physicists knew its frequency!" K. V. Bibber and L. Rosenberg, Physics Today 59, 8, 30 (2006)

HALOSCOPES: UPDATES

(日) (四) (三) (三) (三)

E

"Roberto and I spent a few months cooking up this theory, and now the experimentalists have spent 40 years looking for it " H. Quinn

QUAX - QUAERERE AXIONS

Detection of cosmological axions through their coupling to electrons or photons

ELECTRON COUPLING - QUAX

the FMR haloscope

the axion DM cloud acts as an effective RF magnetic field on the electron spin exciting magnetic transitions in a magnetized sample (YIG) \rightarrow RF photons

$$P_{\rm out} = \frac{P_{\rm in}}{2} = 8 \times 10^{-26} \left(\frac{m_a}{2 \cdot 10^{-4} \, {\rm eV}}\right)^3 \left(\frac{V_s}{1 \ {\rm liter}}\right) \left(\frac{n_S}{10^{28}/{\rm m}^3}\right) \left(\frac{\tau_{\rm min}}{10^{-6} \, {\rm s}}\right) \, {\rm W}_{\rm ev}$$

イロト イピト イヨト イヨト 三日

Sar

ELECTRON COUPLING - QUAX

NEW CONCEPT! *the FMR haloscope*

Sac

arXiv:2012.09498 (2021)

Today's leading haloscopes would take centuries to scan only the 1 - 10 GHz decade at DFSZ sensitivity

QUAX COLLABORATION ROADMAP (2021-2025)

Performance for KSVZ model at 95% c.l. with $N_A = 0.5$			
Noise Temperature	0.43 K	0.5 K	
Single scan time	3100 s	69 s	
Scan speed	18 MHz/day	40 MHz/day	
Performance for KSVZ model at 95% c.l. with $N_A = 1.5$			
Noise Temperature	0.86 K	1 K	
Single scan time	12500 s	280 s	
Scan speed	4.5 MHz/day	10 MHz/day	

	LNF	LNL
Magnetic field	9 T	14 T
Magnet length	$40~\mathrm{cm}$	50 cm
Magnet inner diameter	$9~\mathrm{cm}$	$12 \mathrm{~cm}$
Frequency range	8.5 - $10~\mathrm{GHz}$	9.5 - 11 GHz
Cavity type	Hybrid SC	Dielectric
Scanning type	Inserted rod	Mobile cylinder
Number of cavities	7	1
Cavity length	0.3 m	0.4 m
Cavity diameter	$25.5 \mathrm{~mm}$	58 mm
Cavity mode	TM010	pseudoTM030
Single volume	$1.5 \cdot 10^{-4} \text{ m}^3$	$1.5 \cdot 10^{-4} \mathrm{m}^3$
Total volume	$7 \otimes 0.15$ liters	0.15 liters
Q_0	300 000	1000000
Single scan bandwidth	630 kHz	30 kHz
Axion power	$7\otimes 1.2\cdot 10^{-23}~{\rm W}$	$0.99 \cdot 10^{-22} \text{ W}$
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble
Operating temperature	30 mK	30 mK

SCAN RATE in the past 30 years

how rapidly an haloscope probes the parameter space at fixed g_{γ}

$$\frac{df}{dt} \propto \left(\frac{g_{\gamma}^4}{\mathrm{SNR}^2}\right) \left(\frac{\rho_{\mathrm{DM}}^2 Q_a}{\Lambda^8}\right) \left(\frac{B^4 V^2 C_{mnl}^2 Q_0}{N_{\mathrm{sys}}^2}\right)$$

- *B* is still within 25-50% ►
- Q_0 limited by **anomalous skin effect** for normal metals, recently ► with SC technology (YBCO) gained a factor \sim 10, dielectric cavity
- ► *N*_{sys} improved a few hundredfold thanks to dilution refrigerators and the improvement in **amplifier technology** \rightarrow **Circuit QED**

$$T = 10 \,\mathrm{mK}$$

- $\sim 1 \,\mu \text{eV}$
- $\sim 200 \, \mathrm{MHz}$
- $k_{\rm B}T \ll h\nu$

Э 990

SCAN RATE:

role of cavity Q_0 and of the receiver noise temperature

$$\frac{df}{dt} = \frac{1}{\mathrm{SNR}^2} \left(\frac{P_0}{k_B T_{\mathrm{eff}}}\right)^2 \left(\frac{\frac{\beta}{(1+\beta)}}{\frac{4\beta}{(1+\beta)^2} + \lambda}\right)^2 \frac{Q_l Q_a^2}{Q_l + Q_a}$$

 $\implies \text{improve } Q \\ \implies \text{improve } \lambda \text{ (or change paradigm)}$

Transitor-based amplification (HEMT) Josephson Parametric Amplifiers Squeezing

Revisiting the detection rate for axion haloscopes D. Kim et al JCAP03, 066 (2020)

PREAMP NOISE

the Dicke's receiver noise is determined by the preamp: $P = k_B T_N \sqrt{\frac{\Delta \nu}{t_m}}$

thermal + quantum fluctuations $n(\nu, T) = (\exp(h\nu/k_B T) - 1)^{-1}$ amplifier internal channel

<ロト < 団ト < 三ト < 三ト 三 のへで

FROM HEMT TO JPA

the Josephson tunnel junction is non-dissipative and non-linear

from A. Eddins "Josephson Parametric Amplifiers: Theory and Application"

(BLUE LINE): SQUEEZING

1 JPA to squeeze noise added by the amplifier 1 JPA to amplify signal + squeezed noise

mock-haloscope in Phys. Rev. X 9, 021023 (2019) HAYSTAC cavity in Nature 590, 238–242(2021);

 \implies Factor **2** faster scanning

THE STANDARD QUANTUM LIMIT

-due to fundamental laws of QM-

any phase preserving amplifier adds at least half a noise photon in the high-G limit

 \implies weeks to months acquisition time even with quantum-limited amplifiers.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Evading the SQL with photon counters

The counter measures in the **energy eigenbasis** \implies change of paradigm

Detection of individual **microwave** photons is a challenging task because of their **low energy** ($\sim 10^{-5}$ eV)

Solution: use "artificial atoms" introduced in circuit QED

2010 \rightarrow first QND measurement of single photons -one transmon qubit coupled to two **2D** resonators *Nat. Phys. 6*, 663

2020 \rightarrow introduction of a practical detector of microwave **itinerant photons** - scheme compatible with axion searches *PRX 10, 021038*

2021 \rightarrow factor 1300 acceleration of **dark photon** search *PRL* 126, 141302

! Poisson statistics !
? Dark count rate, efficiency, bandwidth ?

ARTIFICIAL ATOMS: the TRANSMON QUBIT

 $E_{01} = E_1 - E_0 = \hbar \omega_{01} \neq E_{02} = E_2 - E_1 = \hbar \omega_{21}$ \rightarrow good **two-level atom** approximation

control internal state by shining laser tuned at the transition frequency:

$$H = -\vec{d} \cdot \vec{E}(t)$$
, with $E(t) = E_0 \cos \omega_{01} t$

toolkit: capacitor, inductor, wire (all SC) $\omega_{01} = 1/\sqrt{LC} \sim 10 \, \mathrm{GHz} \sim 0.5 \, \mathrm{K}$ \rightarrow simple LC circuit is not a good **two-level atom** approximation

$$\begin{split} I_{J} &= I_{c} \sin \phi \qquad V = \frac{\phi_{0}}{2\pi} \frac{\partial \phi}{\partial t} \\ V &= \frac{\phi_{0}}{2\pi} \frac{1}{I_{c} \cos \phi} \frac{\partial I_{I}}{\partial t} = L_{J} \frac{\partial I_{J}}{\partial t} \\ L_{J} &= \frac{\phi_{0}}{2\pi} \frac{1}{I_{c} \cos \phi} \qquad \text{NL Josephson inductance} \end{split}$$

SMPD AND TRANSMON QUBITS

 \rightarrow detectors for **cavity photons**: the photons interact with the SC transmon qubit, and then you make a measurement on the qubit

dispersive regime: $\Delta = \omega_q - \omega_r \gg g$ *g* coupling $\chi = g^2/\Delta$

the photons *n* generated in the cavity shift the frequency of the qubit by $2n\chi$

SMPD AND TRANSMON QUBITS

 \rightarrow detectors for **cavity photons**: the photons interact with the SC transmon qubit, and then you make a measurement on the qubit

1300X lower background rate than SQL \implies 1300X less intergration time required efficiency 40.9%

false positive probability $\delta = 4.3 \times 10^{-4}$

dispersive regime: $\Delta = \omega_q - \omega_r \gg g$ *g* coupling $\chi = g^2/\Delta$

the photons *n* generated in the cavity shift the frequency of the qubit by $2n\chi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SMPD

\rightarrow detectors for **itinerant** (traveling) microwave photons

- \rightarrow dissipation engineering
- \rightarrow three-wave mixing
- \rightarrow compatible with the haloscope environment (intense B-fields)
- \rightarrow low dark count rate

JOSEPHSON PARAMETRIC AMPLIFIER

(quantum optics formalism) Parametric interaction takes place in a **nonlinear medium**, where electromagnetic waves of different frequencies can **mix and generate new frequencies**.

An intense electromagnetic wave with frequency $\omega_p/2\pi$ (the pump), is sent to a nonlinear medium and generates two electromagnetic waves, called signal (idler) of frequency $\omega_s/2\pi$ ($\omega_i/2\pi$)

energy conservation: (3W) $\omega_p = \omega_s + \omega_i$ (4W) $2\omega_p = \omega_s + \omega_i$

energy transfer between the pump and the signal gives rise to **gain**

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへ⊙