Recent results from \Re experiment: observation of the Z_{cs} (3985) strange four-quark meson

INFN-Sezione di Roma

BESII Collaboration

MGRECO-JUNE 14 2021

Beijing Electron Positron Collider II

LINAC

INFN-Sezione di Roma

MGRECO-JUNE 14 2021

E_{cm}: 2 — 5 GeV

BESIII is designed to study physics in the tau-charm energy region. BESIII has collected the J/ψ world largest data sample (10B).

Data taking will continue till 2030 (at least)

Total weight 750 tonnes, ~40,000 readout channels, Data rate: 5 kHz, 50 Mb/s

MDC, 0.5% at 1 GeV/c CsI(Tl) calorimeter, 2.5% @ 1 GeV BTOF, 70 ps / ETOF, 60 ps dE/dx 6% e⁻ Bhabha scattering

Physics program

Light hadron Charmonium Charm τ/R/QCD New physics

-tests of electroweak interactions with high precision in both the quark and lepton sectors

-high statistics study of light hadron spectroscopy and decay properties

-study of the production and decay properties of J/ ψ , ψ (2S), ψ (3770) states with large data samples and search for exotic states (glueballs, quark-hybrids, multi-quark states etc.) via charmonium hadronic and radiative decays

-studies of XYZ states

- -studies of τ -physics
- -precision measurements of QCD and CKM parameters
- -barion form factors measurements via ISR process and via energy scan

-search for new physics by studying rare and forbidden decays, oscillations, and CP violations in c-hadron and τ -lepton sectors

Future physics program

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The rightmost column shows the number of required data taking days with the current (T_C) and upgraded (T_U) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$
1.8 - 2.0 GeV	R values Nucleon cross-sections	N/A	0.1 fb^{-1} (fine scan)	60/50 days
2.0 - 3.1 GeV	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)	250/180 days
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb^{-1} (10 billion)	3.2 fb^{-1} (10 billion)	N/A
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	0.67 fb^{-1} (0.45 billion)	4.5 fb^{-1} (3.0 billion)	150/90 days
$\psi(3770)$ peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}	610/360 days
3.8 - 4.6 GeV	<i>R</i> values <i>XYZ</i> /Open charm	Fine scan (105 energy points)	No requirement	N/A
4.180 GeV	D_s decay XYZ /Open charm	3.2 fb^{-1}	6 fb^{-1}	140/50 days
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16.0 fb ⁻¹ at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}	770/310 days
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fb^{-1} at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}	1490/600 days
4.74 GeV	$\Sigma_c^+ \Lambda_c^-$ cross-section	N/A	1.0fb^{-1}	100/40 days
4.91 GeV	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 {\rm ~fb}^{-1}$	120/50 days
4.95 GeV	Ξ_c decays	N/A	$1.0 {\rm ~fb}^{-1}$	130/50 days
		white pa	per on future physics pro	ogram

Chinese Physics C, vol. 44, no. 4, 2020

BESII Data taking

12 years of successful data taking 10B J/ ψ events 448M ψ (2S) events

R-Scan data between 2.0 and 3.08 GeV, and above 3.735 GeV

low hadronic background high discovery potential direct formation of exotic vector states

PDG'2018: reflects quantum numbers J^{PC} in name, regardless of quark configuration

	РС	-+	+-		++
Isospin	heavy quark content				
I = 0	with $c\overline{c}$	η_c	h_c	ψ	χ_c
I = 0	with $b\overline{b}$	η_b	h_b	r	Xb
<i>I</i> = 1	with $c\overline{c}$	(Π_c)	Z_c	(R_c)	(W_c)
<i>I</i> = 1	with $b\overline{b}$	(П _b)	Z_b	(R_b)	(W_b)

J ^{PC}	Name	Example
1	ψ()	ψ(4260) (was Y(4260))
1++	χ()	$\chi_{c1}(3872)$ (was X(3872))

Heavy quarks: potential model

Devise a potential for the quark-quark interaction and solve a

Schrödinger type equation. For heavy quarks $\rightarrow q \bar{q}$ static potential

Cornell potential

$$\mathcal{V}^{q\bar{q}}(r) = -\frac{4\alpha_s}{3r} + kr + C$$

$$V^{c\bar{c}}(r) = -\frac{4\alpha_s}{3r} + kr + \frac{1}{m_c m_{\bar{c}}} \left[\frac{32\pi\alpha_s}{9} \delta_{\sigma}(r) \overrightarrow{s_c} \overrightarrow{s_c} + \left(\frac{2\alpha_s}{r^3} - \frac{k}{2r} \right) \vec{l} \cdot \vec{s} + \frac{4\alpha_s}{r^3} T \right] +$$

+relativistic corrections
$$T = (\overrightarrow{s_c} \cdot \hat{r}) (\overrightarrow{s_c} \cdot \hat{r}) - \frac{1}{3} \overrightarrow{s_c} \overrightarrow{s_c}$$

MGRECO-JUNE 14 2021

Before 2003: Good agreement between theory and experiment, particularly beneath open charm thresholds

Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

After 2003:

Severe mismatch between predicted and observed spectrum

exotic

Z-(3900)

(4350

(4160

D*D*

DD*

 $D\overline{D}$

Before 2003: Charmonium (PDG 2021) m [GeV/c²] Good agreement between theory and experiment, particularly x (4700 beneath open charm thresholds (466) (4500 4.5 After 2003: ψ(<mark>4415)</mark> ----(1390) (4360 Severe mismatch between predicted and (4230 (427 observed spectrum v(4160 (4140 ψ(4040) Δ X(3915) Several supernumerary vector $\chi_{0}(3860) \chi_{0}(3872)^{\circ}$ ψ(3770) states: Y(4260), ..., Y(4660) ψ_(3823 ψ(2S) $\chi_{c1}(1P) = \chi_{c2}(1P)$ η_c(2S) $h_c(1P)$ 3.5 χ_{c0}(1P) --- Experiment New states $J/\psi(1S)$ Quark model '85 η_c(1S) 3 JPC 1^{+-} 0^{++} 1^{++} 2^{++} 2^{--} 3^{--} Z^{\pm} ??? (2S+1) ${}^{1}S_{0} {}^{3}S/D_{1} {}^{1}P_{1} {}^{3}P_{0} {}^{3}P_{1} {}^{3}P/F_{2} {}^{3}D_{2} {}^{3}D/G_{2} -$

X(3872), Y(4260), Z_c(3900)

MGRECO-JUNE 14 2021

MGRECO-JUNE 14 2021

У(4230)

Search for Z_{cs}

Searches for Z_{cs} partners were proposed few years ago. e.g., $Z_{cs}/Z'_{cs} \rightarrow KJ/\psi$, $D_sD^*, D_s^*D, D_s^*D^*$ \rightarrow decay rate of Z_{cs} to open-charm final states is supposed to be larger than hidden-charm

Partial reconstruction of the process

Reconstruct a D_s^- with two tag modes $D_s^- \to K_s^0 K^ D_s^- \to K^+ K^- \pi^-$ Tag a bachelor charged K^+ Use signature in the recoil mass spectrum of $K^+ D_s^-$ Study the spectrum of recoil mass of K^+

the charge conjugated modes are always implied unless specified

 $7ag \ a \ D_s$

Select candidates

Data driven technique to describe combinatorial bkg Right sign (RS) combination of D_s^- and K^+ Wrong sign (WS) combination of D_s^- and $K^$ to mimic combinatorial bkg

No peaking bkg in WS events \rightarrow WS is well validated by MC simulations and data sideband events Both $e^+e^- \rightarrow K^+D_s^-D^{*0}$ and $e^+e^- \rightarrow K^+D_s^{*-}D^0$ can survive with this criterion Fitting to $RM(K^+D_s^-)$ sideband events gives the number of WS in the signal region: 282.6+/-12

This WS number will be fixed in fitting *RM*(*K*⁺)

Recoil Mass

Recoil mass $RM(K^+)$

A structure next to threshold ranging from 3.96 to 4.02 GeV/c^2

Enhancement cannot be attributed to the non-resonant signal processes $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

High excited D_s^{**}states

D**+ S	mass(MeV/c²)	width(MeV)	JP	$D_s^{**+}(K^+D^{*0})D_s^-$	$D_s^{**+}(K^+D^0)D_s^{*-}$
$D_{s1}(2536)^+$	2536) ⁺ 2535.11 <u>+</u> 0.06		1+	(*) Fixed in nominal fitting	Parity Violation in decay
$D_{s2}^{*}(2573)^{+}$	2569.1 <u>±</u> 0.8	16.9 <u>±</u> 0.7	2+	Not decay to KD*	(*) Fixed in nominal fitting
$D_{S1}^{*}(2700)^{+}$	$2708.3^{+4.0}_{-3.4}$	120±11	1.	(*) Fixed in nominal fitting	Q=-139.3MeV P-wave suppression in production.
D_{s1}^* (2860) ⁺	2859 <u>±</u> 27	159 <u>±</u> 80	1.	(*)less contribution than D_{s1}^* (2700) ⁺ ; Q=-146MeV.	Q=-290MeV; P-wave suppression in production.
D_{s3}^{*} (2860) ⁺	2860±7	53±10	3-	(*)F-wave suppression; Q=-147MeV	Q=-291MeV
• D_s^{\pm} • $D_s^{\pm\pm}$ • $D_{s0}^{*\pm}(2317)^{\pm}$ • $D_{s1}(2460)^{\pm}$ • $D_{s1}(2536)^{\pm}$ • $D_{s2}^{*}(2573)$ • $D_{s1}^{*}(2700)^{\pm}$ $D_{s1}^{*}(2860)^{\pm}$ $D_{s3}^{*}(2860)^{\pm}$ $D_{sJ}^{*}(3040)^{\pm}$	$\begin{array}{c} 0(0^{-}) & 40 \\ 0(?^{?}) & 5 \\ 0(0^{+}) & 9 \\ 0(1^{+}) & 0.1^{+} \\ 0(1^{+}) & 0.1^{+} \\ 0(1^{-}) & 0.1^{-} \\ 0(1^{-}) & 0.1^{-} \\ 0(3^{-}) & 0.1^{-} \\ 0(?^{?}) & (a \\ 0(1^{-}) & 0.1^{-} \\ 0(1$	+ Data $\overline{s} = 4.681 \text{ GeV} - Z_{cs}(39)$ 	(GeV/c^2)	$(b) D_{s2}^{*2}(2573)^{+}(\rightarrow D^{0}K^{+})D_{s}^{*-}$	$\begin{array}{c} 40 \\ & & & & & & & & \\ 30 \\ & & & & & & \\ 30 \\ & & & & & \\ 30 \\ & & & & & \\ 30 \\ & & & & \\ 30 \\ & & & & \\ 20 \\ & & & & \\ 20 \\ & & & & \\ 20 \\ & & & & \\ 0 \\ & & & & \\ 0 \\ & & & & $

Most high excited states have negative Q value or are forbidden due to parity violation

Contribution around 4 GeV/c²

$D_1(242)$	0) [±]	1/2(??)	
D1(243	0) ⁰	$1/2(1^+)$	_
 D[*]₂(246 	0) ⁰	1/2(2+)	1
 D[*]₂(246 	0) [±]	1/2(2+)	1
D(2550	0 ⁰	1/2(? [?])	I
D [*] _J (260 was D(26	0) (0)	1/2(??)	I
D*(264	0) [±]	1/2(??)	I
D(2740	00	1/2(??)	I
D ₃ (275	0)	1/2(3-)	
D(3000) ⁰	1/2(? [?])	

	D ^{**0} D ⁰		$\frac{\bar{\gamma}}{s}$	D_s^{**0} K^+ D^{*0}		
\overline{D}^{**0}	mass(MeV/c²)	width(MeV)	JP	$\overline{\boldsymbol{D}}^{**\boldsymbol{0}}(K^+D_s^{*-})\boldsymbol{D}^{\boldsymbol{0}}$	$\overline{\boldsymbol{D}}^{**\boldsymbol{0}}(K^+D_s^-)\boldsymbol{D}^{*\boldsymbol{0}}$	
$\overline{D}_{1}(2430)^{0}$	2427±40	384 ⁺¹³⁰ -110	1+	below KDs* threshold; Q=-72.22MeV soft Kaon	Parity Violation decay	
$\overline{D}_{2}^{*} (2460)^{0}$	2460.7±0.4	47.5±1.1	2+	below KDs* threshold; Q=-39.52MeV soft Kaon	(*)Test fit	
$\overline{D}(2550)^0$	2564±20	135 <u>+</u> 17	0-	(*)Test fit	Parity Violation in decay	
$\overline{D}_{J}^{*}(2600)^{0}$	2623±12	139±31	1-	(*)Test fit	(*)Control sample & nominal fit	
$\overline{D}^{*}(2640)^{0}$	2637±6	<15	?	(*)Test fit	(*)Test fit	
$\overline{D}(2740)^0$	2737±12	73 <u>±</u> 28	2-	(*)Test fit	Parity Violation in decay	
$\overline{D}_{3}^{*} (2750)^{0}$	2763±3.4	66±5	3-	(*)Control sample	P-wave suppressed. O=-89.8MeV	

Most are not favoured from the check of test fit \rightarrow systematic uncertainties

Enhancement cannot be attributed to resonant $D_{[s]}^{**}$ processes

Interference effects of $K^+D_s^{*-}D^0$ final states

Data subtracted with WS background Any two MC simulated backgrounds with interferences are taken into account

The interference angle is tuned to give the largest interference effect around 4 ${\rm GeV/c^2}$

The component of non-resonant process is also considered under different angular momenta.

Normalizations are scaled according to the observed yields in control samples

Interference effects of $K^+D_s^-D^{*0}$ final states

Interference effects will not produce such a narrow peak observed in data.

$$e^+e^- \rightarrow K^+Z^-_{cs}$$
$$Z^-_{cs} \rightarrow D^-_s D^{*0} + D^{*-}_s D^0$$

$Z_{cs}(3985)$

Product of an S-wave Breit-Wigner with a mass-dependent width:

$$\mathcal{F}_j(M) \propto \left| \frac{\sqrt{q \cdot p_j}}{M^2 - m_0^2 + im_0(f\Gamma_1(M) + (1-f)\Gamma_2(M))} \right|^2$$

Simultaneous unbinned maximum likelihood fit to all energy values

$$m_0(Z_{cs}(3985)^-) = 3985.2^{+2.1}_{-2.0} \,\mathrm{MeV}/c^2,$$

 $\Gamma_0(Z_{cs}(3985)^-) = 13.8^{+8.1}_{-5.2} \,\mathrm{MeV}.$

 5.3σ significance

Born cross section

$$\begin{split} \sigma^{Born}(e^+e^- \to K^+Z^-_{cs} + cc) \cdot \mathcal{B}\left(Z^-_{cs} \to (D^-_sD^{*0} + D^{*-}_sD^0)\right) \\ = \frac{n_{sig}}{\mathcal{L}_{int} \cdot f_{corr} \left(\widetilde{\epsilon_1} + \widetilde{\epsilon_2}\right)/2} \end{split}$$

$\sqrt{s}(\text{GeV})$	$\mathcal{L}_{int}(\mathrm{pb}^{-1})$	$n_{\rm sig}$	$f_{\rm corr}\bar{\varepsilon}(\%)$	$\sigma^B \cdot \mathcal{B} \text{ (pb)}$
4.628	511.1	$4.2^{+6.1}_{-4.2}$	1.03	$0.8^{+1.2}_{-0.8} \pm 0.6 (< 3.0)$
4.641	541.4	$9.3^{+7.3}_{-6.2}$	1.09	$1.6^{+1.2}_{-1.1} \pm 1.3 (< 4.4)$
4.661	523.6	$10.6^{+8.9}_{-7.4}$	1.28	$1.6^{+1.3}_{-1.1} \pm 0.8 (< 4.0)$
4.681	1643.4	$85.2^{+17.6}_{-15.6}$	1.18	$4.4^{+0.9}_{-0.8} \pm 1.4$
4.698	526.2	$17.8^{+8.1}_{-7.2}$	1.42	$2.4^{+1.1}_{-1.0} \pm 1.2 (< 4.7)$

Main sources of systematic uncertainties include: mass scaling, detector resolution, the signal model, background models, and the input cross section lineshape for

 $\sigma^{Born}(e^+e^- \to K^+Z^-_{cs} + cc)$

 $m_0(Z_{cs}(3985)^-) = 3985.2^{+2.1}_{-2.0}(stat.) \pm 1.7(sys.) \text{MeV/c}^2,$ $\Gamma_0(Z_{cs}(3985)^-) = 13.8^{+8.1}_{-5.2}(stat.) \pm 4.9(sys.) \text{MeV}.$

$$\begin{split} m_{pole}(Z_{cs}(3985)^{-}) &= 3982.5^{+1.8}_{-2.6}(stat.) \pm 2.1(sys.) \text{MeV/c}^2 , \\ \Gamma_{pole}(Z_{cs}(3985)^{-}) &= 12.8^{+5.3}_{-4.4}(stat.) \pm 3.0(sys.) \text{MeV}. \end{split}$$

Higher order interference effects not included due to limited statistics Need further investigation with PWA

Discussion

 $e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

Only a few MeV higher than the threshold of $D_s^- D^{*0}/D_s^{*-} D^0$ (3975.2/3977) MeV/c²

At least four quark state ($c\bar{c}s\bar{u}$), hidden charm with strangeness

The production is dominated at $\sqrt{s} = 4.681$ GeV Any Y contribution?

Can $Z_{cs}(3985)^{-}$ form with partner $Z_c(3900)$ a "tetra octet"? Is it a tetraquark state or a molecule-like? Or threshold kinematic effects? Or other?

Search for other decay modes Z_{cs}^0/Z_{cs}^{*-} can help

MGRECO-JUNE 14 2021

Discussion

 $Z_c(3900), Z_c(4020)$ two isospin triplets of charmonium-like exotic states established

 $Z_c(3885), Z_c(4025):$ what is the nature of these states?

Different decay modes (hidden vs. open charm) of same state observed? (most likely)

No consensus yet on their four-quark nature

Discussion

Different decay modes (hidden vs. open charm) of same state observed?

New era of charmonium-like states started two decades ago, and more than 20 unexpected XYZ states have been discovered

Charged Z_c states are manifestly exotic states First complete isospin triplets established First strange partner(s) reported More candidates reported, further to be studied

> Completion of the exotic multiplets High statistics and precision, in combination with different probes

BESIII successfully operating since 2008 World largest data sets in tau-charm mass region, unique XYZ data Machine upgrade allows to extend studies up to E_{cm} = 5 GeV

Further machine upgrade \rightarrow 2024 Spectrometer upgrade \rightarrow CGEM detector

MDC>inner chamber

CGEM> GEM technology

BESII Inner Tracker

Aging Gain loss/year ~ 4% on inner layers

Low spatial charge High rate capability Fast response Light support frame Very low aging

GEM detectors

GEM (Gaseous Electron Multiplier) is a Micro Pattern Gas Detector, invented by Sauli in 1997

- High rate capability
- High radiation hardness
- Scalable and flexible geometry

More layers of GEM grant high gain with lower applied voltages \rightarrow lower spark rate NIMA 805, 2016

- σ_{xy} ~ 130 μm
- σ_z < 1 mm (~ 350 μm)
- $\sigma_{pt}/p_t \sim 0.5\%$ @ 1 GeV/c
- Operation in 1T magnetic field
- Material budget \leq 1.5% X₀
- High rate capability: 10⁴ Hz/cm²

Three layers of cylindrical triple-GEM Each layer has two "views" to reconstruct the 3D position of the hits

Ar-iC4H10 (90%-10%) 1.5/3/3/5 kV/cm

CGEM> Readout electronics

On site operations carried out thanks to the BESIII MDC group

CGEM> Cosmic setup in Beijing

~5.6k channels connected Final LV/HV systems

More than one year of data taking

Remote data taking carried out by the Italian groups

(ITALIAN Collaboration

Credits

BESIII collaboration: Bettoni D: Brambilla N et al; CGEM working group; Cibinetto G: Goetzen K: Grad W: Hüsken N: Li P-R; Liao L: Liu Z; Maiani L et al: Mussa R: Nerling F; Neubert 5: Olsen 5 L; Mezzadri G: Pelizäus M: Spataro S; *Xu Y-C*: Yuan C-Z . . .

Credits Disclaimer

A lot of really interesting stuff was not presented,

*X-Y states in details *Atlas, BaBar, Belle, CDF, Cleo-c, CMS, DO, LHCb... results (apart from some citations)

Exotic states from bottomonium

Many reviews from theoretical and experimental point of view Brambilla N et al (arXiv: 1907·0783v2) Mezzadri G and Spataro S, under preparation

Stay tuned for other **BES**III exotic news!

Thank You