Recent results from BESIII experiment: observation of the $Z_{c s}$ (3985) strange four-quark meson

BESIII
$=1$

BESIII collaboration

BESIII

BEPCII

Construction started: 1984
BEPC 1989-2005
$\mathrm{L}_{\text {peak }}=1.0 \times 10^{31} / \mathrm{cm}^{2} \mathrm{~s}$
BEPCII 2008-now
$L_{\text {peak }}=1.0 \times 10^{33} / \mathrm{cm}^{2} \mathrm{~s}($ April 2016)

BESIII

BESIII is designed to study physics in the tau-charm energy region. BESIII has collected the J/ ψ world largest data sample (10B).

Data taking will continue till 2030 (at least)

Total weight 750 tonnes, $\sim 40,000$ readout channels, Data rate: $5 \mathrm{kHz}, 50 \mathrm{Mb} / \mathrm{s}$

MDC, 0.5% at $1 \mathrm{GeV} / \mathrm{c}$
CsI(TI) calorimeter, 2.5\% @ 1 GeV
BTOF, 70 ps / ETOF, 60 ps
$\mathrm{dE} / \mathrm{dx} 6 \% \mathrm{e}^{-}$Bhabha scattering

-tests of electroweak interactions with high precision in both the quark and lepton sectors
-high statistics study of light hadron spectroscopy and decay properties -study of the production and decay properties of $J / \psi, \psi(2 S), \psi(3770)$ states with large data samples and search for exotic states (glueballs, quarkhybrids, multi-quark states etc.) via charmonium hadronic and radiative decays
-studies of XYZ states
-studies of τ-physics
-precision measurements of QCD and CKM parameters
-barion form factors measurements via ISR process and via energy scan
-search for new physics by studying rare and forbidden decays, oscillations, and CP violations in c-hadron and τ-lepton sectors

Future physics program

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The rightmost column shows the number of required data taking days with the current $\left(T_{\mathrm{C}}\right)$ and upgraded $\left(T_{\mathrm{U}}\right)$ machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\mathrm{C}} / T_{\mathrm{U}}$
$1.8-2.0 \mathrm{GeV}$	R values Nucleon cross-sections	N/A	$0.1 \mathrm{fb}^{-1}$ (fine scan)	60/50 days
$2.0-3.1 \mathrm{GeV}$	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)	250/180 days
J / ψ peak	Light hadron \& Glueball J / ψ decays	$3.2 \mathrm{fb}^{-1}$ (10 billion)	$3.2 \mathrm{fb}^{-1}$ (10 billion)	N/A
$\psi(3686)$ peak	Light hadron \& Glueball Charmonium decays	$0.67 \mathrm{fb}^{-1}$ (0.45 billion)	$4.5 \mathrm{fb}^{-1}$ (3.0 billion)	150/90 days
$\psi(3770)$ peak	$D^{0} / D^{ \pm}$decays	$2.9 \mathrm{fb}^{-1}$	$20.0 \mathrm{fb}^{-1}$	610/360 days
$3.8-4.6 \mathrm{GeV}$	R values $X Y Z /$ Open charm	Fine scan (105 energy points)	No requirement	N/A
4.880 GeV	D_{s} decay $X Y Z /$ Open charm	$3.2 \mathrm{fb}^{-1}$	$6 \mathrm{fb}^{-1}$	140/50 days
$\text { 4. } 0.4 .6 \mathrm{GeV}$	$Z /$ Open charm Higher charmonia cross-sections	$16.0 \mathrm{fb}^{-1}$ at different \sqrt{s}	$30 \mathrm{fb}^{-1}$ at different \sqrt{s}	770/310 days
4.6-4.9 Gev	Charmed baryon/XYZ cross-sections	$0.56 \mathrm{fb}^{-1}$ at 4.6 GeV	$15 \mathrm{fb}^{-1}$ at different \sqrt{s}	14901600 days
4.74 GeV	$\Sigma_{c}^{+} \Lambda_{c}^{-}$cross-section	N / A	1.0 fb	100/40 days
4.91 GeV	$\Sigma_{c} \bar{\Sigma}_{c}$ cross-section	N/A	$1.0 \mathrm{fb}^{-1}$	120/50 days
4.95 GeV	Ξ_{c} decays	$\bigcirc \mathrm{N} / \mathrm{A}$	$1.0 \mathrm{fb}^{-1}$	130/50 days

BESIII Data taking

12 years of successful data taking 10B J/ ψ events
448M $\psi(2 S)$ events
R-Scan data between 2.0 and 3.08 GeV , and above 3.735 GeV

Large dataset for XYZ studies

low hadronic background
high discovery potential direct formation of exotic vector states

The exotic alphabet

Non conventional hadrons
Y - 1-charmonium-like vector states, Z -non-zero isospin, charmonium-like states with heavy $c \bar{c}$ quark pair inside X - all the remaining cases P - pentaquark candidates

PDG'2018: reflects quantum numbers $J^{P C}$ in name, regardless of quark configuration

$P C$							-+	+-	--	++
Isospin	heavy quark content									
$I=0$	with $c \bar{c}$	η_{c}	h_{c}	ψ	χ_{c}					
$I=0$	with $b \bar{b}$	η_{b}	h_{b}	Υ	χ_{b}					
$I=1$	with $c \bar{c}$	$\left(\Pi_{c}\right)$	Z_{c}	$\left(R_{c}\right)$	$\left(W_{c}\right)$					
$I=1$	with $b \bar{b}$	$\left(\Pi_{b}\right)$	Z_{b}	$\left(R_{b}\right)$	$\left(W_{b}\right)$					

Heavy quarks:

 potential modelDevise a potential for the quark-quark interaction and solve a Schrödinger type equation.
For heavy quarks $\rightarrow q \bar{q}$ static potential
Cornell potential
$V^{q \bar{q}}(r)=-\frac{4 \alpha_{s}}{3 r}+k r+C$

$V^{c \bar{c}}(r)=-\frac{4 \alpha_{s}}{3 r}+k r+\frac{1}{m_{c} m_{\bar{c}}}\left[\frac{32 \pi \alpha_{s}}{9} \delta_{\sigma}(r) \overrightarrow{\vec{s}_{c} \overrightarrow{s_{\bar{c}}}}+\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{k}{2 r}\right) \vec{l} \cdot \vec{s}+\frac{4 \alpha_{s}}{r^{3}} T\right]+$
+relativistic corrections

$$
T=\left(\overrightarrow{s_{c}} \cdot \hat{r}\right)\left(\overrightarrow{\vec{s}_{\vec{c}}} \cdot \hat{r}\right)-\frac{1}{3} \overrightarrow{s_{c}} \overrightarrow{s_{\bar{c}}}
$$

Simple quark model

Before 2003:
Good agreement between theory and experiment, particularly beneath open charm thresholds

Simple quark model

Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

After 2003:

Severe mismatch between predicted and observed spectrum

Simple quark model

Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

After 2003:

Severe mismatch between predicted and observed spectrum

Several supernumerary vector states: $Y(4260), \ldots, Y(4660)$

Simple quark model

Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

After 2003:

Severe mismatch between predicted and observed spectrum

Several supernumerary vector states: $Y(4260), \ldots, Y(4660)$

Several charged states, manifestly exotics: $Z_{c}(4430) . . . Z_{c}(3900)$

Simple quark model

Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

After 2003:

Severe mismatch between predicted and observed spectrum

Several supernumerary vector states: $Y(4260), \ldots, Y(4660)$

Several charged states, manifestly exotics:
$Z_{c}(4430) . . . Z_{c}$ (3900)

The X states $-X(3872)$ was the first observed in 2003

Extremely narrow, sits at or just below the $D^{0} \bar{D}^{* 0}$ threshold

$$
\begin{gathered}
M=3871.69 \pm 0.17 \mathrm{MeV} / c^{2} \\
\Gamma<1.2 \mathrm{MeV}
\end{gathered}
$$

BaBar 2005, PRL95, 142001

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi
$$

BESIII: Cross-section inconsistent with the single resonance $\mathrm{Y}(4260)$!
Two favoured over one by $>7 \sigma$ PRL 118 (2017) 092001

BESIII 2013,
PRL110, 252001

$y(4230)$

$\Rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \times(3872)$ cross section line shape by BESIII
> $\mathrm{M}=4200.6^{+7.9}{ }_{-13.3} \pm 3.0 \mathrm{MeV}, \Gamma=115^{+38}{ }_{-26} \pm 12 \mathrm{MeV}$
> Unique at BESIII, $\mathrm{Br}[\mathrm{Y}(4260) \rightarrow \gamma \mathrm{X}(3872)] / \mathrm{Br}\left[\mathrm{Y} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi\right] \sim 9 \%$
Strongly suggest the $Y(4260) \rightarrow \gamma X(3872)$ transition \rightarrow Commonality between $Y(4260)$ \& $X(3872)$..
PLB 725, 127 (2013) / RMP 90, 015003 (2018)

PRL 115, 112003 (2015)

$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi$
$\mathrm{Zc}(3885)^{0}$
PRL115, 222002 (2015)

Zc(4020) ${ }^{+}$
PRL 111, 242001(2013)

$$
e^{+} e^{-} \rightarrow \pi^{-} \pi^{+} h_{c}
$$

Zc(4025)+
PRL 112, 132001 (2014)

$$
e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} h_{c}
$$

$$
\mathrm{Zc}(4025)^{0}
$$

PRL115, 182002 (2015)

$$
e^{+} e^{-} \rightarrow \pi^{0}\left(\boldsymbol{D}^{*} \overline{\boldsymbol{D}}\right)^{\mathbf{0}} \quad e^{+} e^{-} \rightarrow \pi^{-}\left(D^{*} \bar{D}^{*}\right)^{+}
$$

Z_{c} family BESIII
PRL113,212002 (2014)
$\mathrm{Zc}(4020)^{0}$

Search for $Z_{c s}$

Searches for $Z_{c s}$ partners were proposed few years ago. e.g., $Z_{c s} / Z_{c s}^{\prime} \rightarrow K J / \psi, D_{s} D^{*}, D_{s}^{*} D, D_{s}^{*} D^{*}$ \rightarrow decay rate of $Z_{c s}$ to open-charm final states is supposed to be larger than hidden-charm

$$
e^{+} e^{-} \rightarrow K^{+} D_{s}^{-} D^{* 0}
$$

Partial reconstruction of the process

$$
e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)
$$

$$
\boldsymbol{e}^{+} e^{-} \rightarrow K^{+} \boldsymbol{D}_{s}^{*-} \boldsymbol{D}^{0}
$$

Reconstruct a D_{s}^{-}with two tag modes $D_{s}^{-} \rightarrow K_{s}^{0} K^{-} D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}$ Tag a bachelor charged K^{+}
Use signature in the recoil mass spectrum of $K^{+} D_{s}^{-}$ Study the spectrum of recoil mass of K^{+}
the charge conjugated modes are always implied unless specified

For $D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}$

1) $D_{s}^{-} \rightarrow \pi^{-} \phi: M\left(K^{+} K^{-}\right)<1.05 \mathrm{GeV} / \mathrm{c}^{2}$
2) $D_{s}^{-} \rightarrow K^{-} K^{*}(892)^{0}: M\left(K^{+} \pi^{-}\right) \in(0.85,0.93) \mathrm{GeV} / \mathrm{c}^{2}$

For $D_{s}^{-} \rightarrow K_{s}^{0} K^{-}$
$M\left(\pi^{+} \pi^{-}\right) \epsilon(0.485,0.511) \mathrm{GeV} / \mathrm{c}^{2}$

RM \rightarrow recoil mass
$M \rightarrow$ reconstructed mass
$\mathrm{m} \rightarrow$ mass taken from PDG

Select candidates

Data driven technique to describe combinatorial bkg Right sign (RS) combination of D_{s}^{-}and K^{+} Wrong sign (WS) combination of D_{s}^{-}and K^{-} to mimic combinatorial bkg

No peaking bkg in WS events \rightarrow WS is well validated by MC simulations and data sideband events Both $e^{+} e^{-} \rightarrow K^{+} D_{s}^{-} D^{* 0}$ and $e^{+} e^{-} \rightarrow K^{+} D_{s}^{*-} D^{0}$ can survive with this criterion Fitting to $R M\left(K^{+} D_{S}^{-}\right)$sideband events gives the number of WS in the signal region: 282.6+/-12

This WS number will be fixed in fitting $R M\left(K^{+}\right)$

(a)Recoil mass of $K^{+} D_{s}^{-}$at $\sqrt{s}=4.628 \mathrm{GeV}$.

(c)Recoil mass of $K^{+} D_{s}^{-}$at $\sqrt{s}=4.661 \mathrm{GeV}$.

(b)Recoil mass of $K^{+} D_{s}^{-}$at $\sqrt{s}=4.641 \mathrm{GeV}$

(d)Recoil mass of $K^{+} D_{s}^{-}$at $\sqrt{s}=4.698 \mathrm{GeV}$.

Recoil mass $R M\left(K^{+}\right)$

A structure next to threshold ranging from 3.96 to $4.02 \mathrm{GeV} / \mathrm{c}^{2}$
Enhancement cannot be attributed to the non-resonant signal processes

$$
e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)
$$

High excited $D_{S}^{* *}$ states

Most high excited states have negative Q value or are forbidden due to parity violation

Contribution around $4 \mathrm{GeV} / \mathrm{c}^{2}$

		$\begin{array}{r} \pi^{0}(\gamma) \\ D_{s}^{-} \end{array}$			$\Rightarrow K^{K_{s}^{-}}$
$\bar{D}^{* *} 0$	mass(MeV/c²)	width(MeV)	JP	$\bar{D}^{* * 0}\left(K^{+} D_{s}^{*-}\right) D^{0}$	$\bar{D}^{* * 0}\left(K^{+} D_{S}^{-}\right) D^{* 0}$
$\bar{D}_{1}(2430)^{0}$	2427 ± 40	384_{-110}^{+130}	1^{+}	$\begin{gathered} \text { below KDs* threshold; } \\ \mathrm{Q}=-72.22 \mathrm{MeV} \\ \text { soft Kaon } \end{gathered}$	Parity Violation decay
$\bar{D}_{2}^{*}(2460)^{0}$	2460.7 ± 0.4	47.5 ± 1.1	2^{+}	$\begin{gathered} \text { below KDs* threshold; } \\ \text { Q=-39.52MeV } \\ \text { soft Kaon } \end{gathered}$	(*)Test fit
$\bar{D}(2550)^{0}$	2564 ± 20	135 ± 17	0 -	(*)Test fit	Parity Violation in decay
$\bar{D}_{J}^{*}(2600)^{0}$	2623 ± 12	139 ± 31	$1{ }^{-}$	(*)Test fit	(*)Control sample \& nominal fit
$\bar{D}^{*}(2640)^{0}$	2637 ± 6	<15	?	${ }^{*}$)Test fit	${ }^{(*)}$ Test fit
$\bar{D}(2740)^{0}$	2737 ± 12	73 ± 28	2	(*)Test fit	Parity Violation in decay
$\bar{D}_{3}^{*}(2750)^{0}$	2763 ± 3.4	66 ± 5	3-	(*)Control sample	P-wave suppressed. $\mathrm{Q}=-89.8 \mathrm{MeV}$

Most are not favoured from the check of test fit \rightarrow systematic uncertainties

Enhancement cannot be attributed to resonant $D_{[s]}^{* *}$ processes

High excited $\bar{D}^{* * 0}$ states

$D_{1}(2420)^{ \pm}$	$1 / 2\left(?^{?}\right)$
$D_{1}(2430)^{0}$	$1 / 2\left(1^{+}\right)$
- $D_{2}^{*}(2460)^{0}$	$1 / 2\left(2^{+}\right)$
$D_{2}^{*}(2460)^{ \pm}$	$1 / 2\left(2^{+}\right)$
$D(2550)^{0}$	$1 / 2\left(?^{?}\right)$
$D_{5}^{*}(2600)$	$1 / 2\left(?^{?}\right)$
was $D(2600)$	
$D^{*}(2640)^{ \pm}$	$1 / 2\left(?^{?}\right)$
$D_{(2740)^{0}}$	$1 / 2\left(?^{?}\right)$
$D_{3}^{*}(2750)$	$1 / 2\left(3^{-}\right)$
$D(3000)^{0}$	$1 / 2\left(?^{?}\right)$

(c) $\bar{D}_{1}^{*}(2600)^{0}\left(\rightarrow D_{s}^{-} K^{+}\right) D^{* 0}$

(f) $D_{s 2}^{*}(2573)^{+} D_{s}^{*-}$ and NR $1^{+}(S, S)$

(h) $\bar{D}_{1}^{*}(2600)^{0} D^{0}$ and NR $1^{+}(S, S)$

(j)NR $1^{+}(S, S)$ and NR $1^{+}(D, S)$

Data subtracted with WS background Any two MC simulated backgrounds with interferences are taken into account

The interference angle is tuned to give the largest interference effect around $4 \mathrm{GeV} / \mathrm{c}^{2}$

The component of non-resonant process is also considered under different angular momenta.

Normalizations are scaled according to the observed yields in control samples

$Z_{65}(3985)$

Product of an S-wave Breit-Wigner with a mass-dependent width:

$$
\mathcal{F}_{j}(M) \propto\left|\frac{\sqrt{q \cdot p_{j}}}{M^{2}-m_{0}^{2}+i m_{0}\left(f \Gamma_{1}(M)+(1-f) \Gamma_{2}(M)\right)}\right|^{2}
$$

Simultaneous unbinned maximum likelihood fit to all energy values

$$
\begin{aligned}
m_{0}\left(Z_{c s}(3985)^{-}\right) & =3985.2_{-2.0}^{+2.1} \mathrm{MeV} / c^{2} \\
\Gamma_{0}\left(Z_{c s}(3985)^{-}\right) & =13.8_{-5.2}^{+8.1} \mathrm{MeV}
\end{aligned}
$$

5.3σ significance

Born cross section

$$
\begin{aligned}
& \sigma^{\text {Born }}\left(e^{+} e^{-} \rightarrow K^{+} Z_{c s}^{-}+c c\right) \cdot \mathcal{B}\left(Z_{c s}^{-} \rightarrow\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)\right) \\
& =\frac{n_{\text {sig }}}{\mathcal{L}_{\text {int }} \cdot f_{\text {corr }}\left(\widetilde{\varepsilon_{1}}+\widetilde{\varepsilon_{2}}\right) / 2}
\end{aligned}
$$

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}_{\text {int }}\left(\mathrm{pb}^{-1}\right)$	$n_{\text {sig }}$	$f_{\text {corr }} \bar{\varepsilon}(\%)$	$\sigma^{B} \cdot \mathcal{B}(\mathrm{pb})$
4.628	511.1	$4.2_{-4.2}^{+6.1}$	1.03	$0.8_{-0.8}^{+1.2} \pm 0.6(<3.0)$
4.641	541.4	$9.3_{-6.2}^{+7.3}$	1.09	$1.6_{-1.1}^{+1.2} \pm 1.3(<4.4)$
4.661	523.6	$10.6_{-7.4}^{+8.9}$	1.28	$1.6_{-1.1}^{+1.3} \pm 0.8(<4.0)$
4.681	1643.4	$85.2_{-15.6}^{+17.6}$	1.18	$4.4_{-0.8}^{+0.9} \pm 1.4$
4.698	526.2	$17.8_{-7.2}^{+8.1}$	1.42	$2.4_{-1.0}^{+1.1} \pm 1.2(<4.7)$

Main sources of systematic uncertainties include: mass scaling, detector resolution, the signal model, background models, and the input cross section lineshape for

$$
\sigma^{B o r n}\left(e^{+} e^{-} \rightarrow K^{+} Z_{c s}^{-}+c c\right)
$$

$$
\begin{aligned}
& m_{0}\left(Z_{c s}(3985)^{-}\right)=3985.2_{-2.0}^{+2.1}(\text { stat. }) \pm 1.7(\text { sys. }) \mathrm{MeV} / \mathrm{c}^{2}, \\
& \Gamma_{0}\left(Z_{c s}(3985)^{-}\right)=13.8_{-5.2}^{+8.1}(\text { stat. }) \pm 4.9(\text { sys. }) \mathrm{MeV} . \\
& m_{\text {pole }}\left(Z_{\text {cs }}(3985)^{-}\right)=3982.5_{-2.6}^{+1.8}(\text { stat. }) \pm 2.1(\text { sys. }) \mathrm{MeV} / \mathrm{c}^{2}, \\
& \Gamma_{\text {pole }}\left(Z_{c s}(3985)^{-}\right)=12.8_{-4.4}^{+5.3}(\text { stat. }) \pm 3.0(\text { sys. }) \mathrm{MeV} .
\end{aligned}
$$

Higher order interference effects not included due to limited statistics Need further investigation with PWA

Discussion

$$
e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)
$$

Only a few MeV higher than the threshold of $D_{S}^{-} D^{* 0} / D_{S}^{*-} D^{0}(3975.2 / 3977) \mathrm{MeV} / \mathrm{c}^{2}$

At least four quark state ($c \bar{c} s \bar{u}$), hidden charm with strangeness

The production is dominated at $\sqrt{s}=4.681 \mathrm{GeV}$ Any Y contribution?

Can $Z_{c s}(3985)^{-}$form with partner $Z_{c}(3900)$ a "tetra octet"?
Is it a tetraquark state or a molecule-like?
Or threshold kinematic effects? Or other?
Search for other decay modes $Z_{c s}^{0} / Z_{c s}^{*-}$ can help

Discussion

$Z_{c}(3900), Z_{c}(4020)$ two isospin triplets of charmonium-like exotic states established
Z_{c} (3885), Z_{c} (4025):
what is the nature of these
states?
Different decay modes
(hidden vs. open charm) of same state observed?
(most likely)

No consensus yet on their four-quark nature

Different decay modes (hidden vs. open charm) of same state observed?

New era of charmonium-like states started two decades ago, and more than 20 unexpected XYZ states have been discovered

Charged Z_{c} states are manifestly exotic states
First complete isospin triplets established
First strange partner(s) reported
More candidates reported, further to be studied

Completion of the exotic multiplets

High statistics and precision, in combination with different probes
BESIII successfully operating since 2008
World largest data sets in tau-charm mass region, unique XYZ data Machine upgrade allows to extend studies up to $E_{\mathrm{cm}}=5 \mathrm{GeV}$

Further machine upgrade $\rightarrow 2024$ Spectrometer upgrade \rightarrow CGEM detector

MDC>inner chamber

CGEM> GEM technology

Aging
Gain loss/year
~ 4\% on inner layers

Low spatial charge High rate capability Fast response Light support frame Very low aging

GEM detectors

GEM (Gaseous Electron Multiplier) is a Micro Pattern Gas Detector, invented by Sauli in 1997

- High rate capability
- High radiation hardness
- Scalable and flexible geometry

More layers of GEM grant high gain with lower applied voltages \rightarrow lower spark rate
NIMA 805, 2016

- $\sigma_{x y} \sim 130 \mu \mathrm{~m}$
- $\sigma_{z}<1 \mathrm{~mm}(\sim 350 \mu \mathrm{~m})$
- $\sigma_{p t} / p_{t} \sim 0.5 \%$ @ $1 \mathrm{GeV} / \mathrm{c}$
- Operation in $1 T$ magnetic field
- Material budget $\leq 1.5 \% X_{0}$
- High rate capability: $10^{4} \mathrm{~Hz} / \mathrm{cm}^{2}$

Three layers of cylindrical triple-GEM
Each layer has two "views" to reconstruct the 3D position of the hits

Ar-iC4H10 (90\%-10\%)
$1.5 / 3 / 3 / 5 \mathrm{kV} / \mathrm{cm}$

CGEM> Readout electronics

CGEM> Cosmic setup in Beijing

On site operations carried out thanks to the BESIII MDC group

Italian Collaboration

~22 FTE
~30 authors (~6\% of the total)
~ 50 people

~ 350 publications + ~ 20 technical papers

Activities

- data analysis
- analysis internal referral
- support computing production
- data taking shifts
- CGEM-IT

BESIII Responsibility roles

- Chair Nominating committee, M. Maggiora
- Executive Board, M. Maggiora
- Technical Board, G. Cibinetto

Speakers Bureau, F. Bianchi

- CGEM-IT System Manager, G. Cibinetto
- Data Quality Group Coordinator, L. Lavezzi

Institution Board (M. Bertani, M. Maggiora, G. Cibinetto)

Credits

Credits

Disclaimer

```
BESIII collaboration;
Bettoni D;
Brambilla N et al;
CGEM working group;
Cibinetto G;
Goetzen K;
Gradl W;
Hüsken N;
Li P-R;
Liao L;
Liu Z;
Maiani L et al;
Mussa R;
Nerling F;
Neubert S;
Olsen S L;
Mezzadri G;
Pelizäus M;
Spataro S;
Xu y-c;
Yuan C-Z
```

A lot of really interesting stuff was not presented,

* $X-Y$ states in details
*Atlas, BaBar, Belle, CDF, Cleo-c, CMS, DO, LHCb... results (apart from some citations)
- Exotic states from bottomonium

Many reviews from theoretical and experimental point of view Brambilla N et al (arXiv: 1907.0783v2)
Mezzadri G and Spataro S, under preparation

Stay tuned for other BCSIII exotic news!

Thank 1ou

