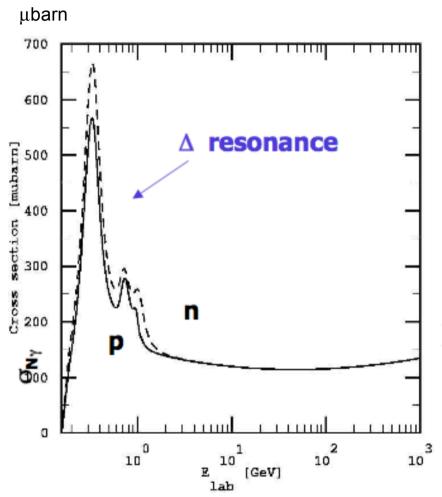
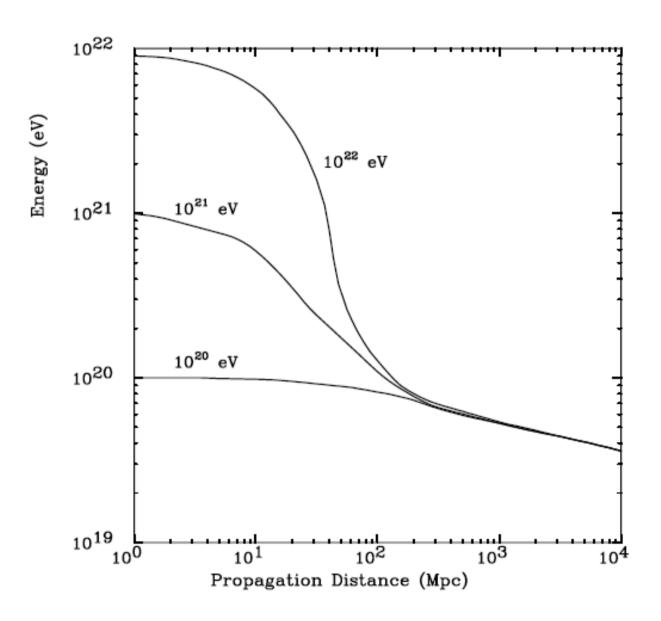

#### Astrofisica e particelle elementari

aa 2010-11 Lezione 5


- UHECR
- Gamma cosmici
- Assorbimento  $\gamma$  nello spazio e nell'atmosfera

Bruno Borgia

# **UHECR**




#### LIMITE GZK



protone:
$$(\vec{p},E)$$
; fotone<sub>CMB</sub>:  $(\vec{q},qc)$   
 $s = E_{cm}^2 = (E+q)^2 - (\vec{p}+\vec{q})^2 = M^2 + 2q(E-|\vec{p}|\cos\theta)$   
 $s$  iniziale >  $s$  a soglia  
 $M^2 + 2q(E-|\vec{p}|\cos\theta) > M^2 + m_{\pi}^2 + 2Mm_{\pi}$   
protone relativistico  
 $E \approx p$   
 $2qE(1-\cos\theta) > m_{\pi}^2 + 2Mm_{\pi}$   
urto centrale  
 $(1-\cos\theta) = 2$   
 $E_{soglia} = m_{\pi} \frac{M+m_{\pi}/2}{2q}$   
fotoni CMB:  $T = 2.74K$ ;  $qc = kT = 2.35 \times 10^{-4} eV$   
 $E_{soglia} = (4.3/y) \times 10^{20} eV$  con  $qc = ykT$   
dove  $y$  da la coda dello spettro

# Propagazione protoni nel CMB



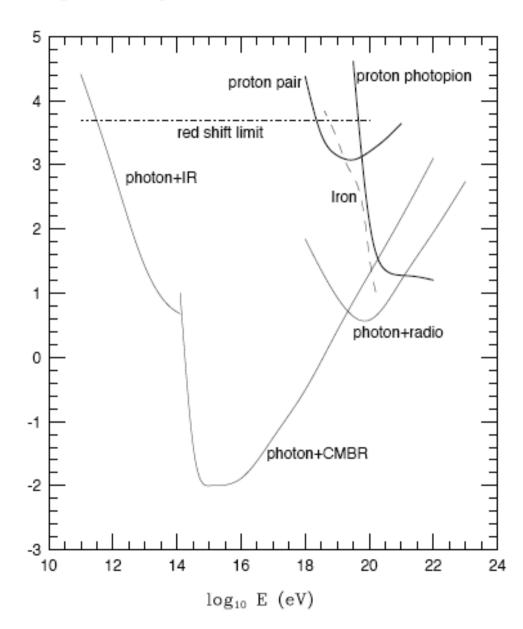
#### ATTENUAZIONE ELETTRONI

Elettroni e positroni, generati dal processo  $\gamma+\gamma\rightarrow e^+e^-$ , perdono energia per radiazione di sincrotrone con

$$-\frac{dE}{dt} = \frac{4\alpha^2}{3m_e^2} \langle B^2 \rangle \left(\frac{E}{m_e}\right)^2$$

Ad energie al disopra di

$$E \sim \left(\frac{B}{10^{-9}G}\right)^{-1} 10^{19} eV$$


questo processo domina rispetto al Compton inverso su CMB e IR. I gamma avranno lo spettro di energia tipico della radiazione di sincrotrone.

Al di sopra della soglia, la radiazione di sincrotrone attenuerà l'energia degli elettroni e positroni molto rapidamente. A 100 EeV la lunghezza di attenuazione è dell'ordine di 20 kpc.

# **A ATTENUAZIONE**

Lunghezza di attenuazione per fotoni, protoni e ferro in funzione dell'energia.
La linea a punto-tratto rappresenta il limite superiore assoluto della distanza che una particelle può percorrere verso la Terra qualunque sia la sua energia iniziale,





#### REGIONI DI ACCELERAZIONE

Qualunque sia il meccanismo di accelerazione, l'energia massima che può raggiungere una particella di carica Ze in una regione di dimensione R è:

$$E_{\rm max} \approx \beta Z \left(\frac{B}{1 \,\mu{\rm G}}\right) \left(\frac{R}{1 \,{\rm kpc}}\right) 10^{18} \; {\rm eV}$$

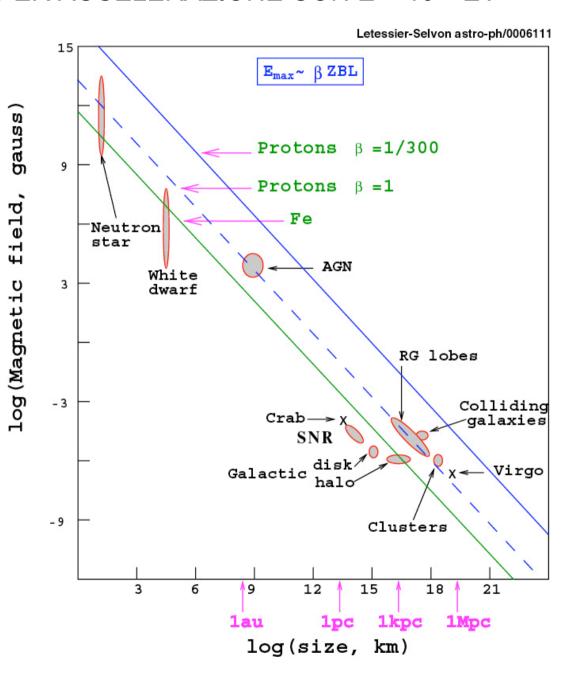
dove B è il campo magnetico nel volume di accelerazione e  $\beta$  è la velocità dell'onda d'urto o l'efficienza del meccanismo di accelerazione. Questa relazione stabilisce essenzialmente che il raggio di Larmor della particella accelerata deve essere più piccolo delle dimensioni della regione di accelerazione.

$$r_L(m) = 3.3 \text{ p (GeV/c) / B(T)}, \text{ raggio di Larmor o giroraggio AGN: } d \approx 10^{12} \text{m}, \text{ B} \approx 1 \text{ T}$$
  
 $p = 10^{20} \text{eV/c} = 10^{11} \text{ GeV/c}; \text{ } r_L = (3.3 \text{ x } 10^{11}/1) \text{ m}$ 

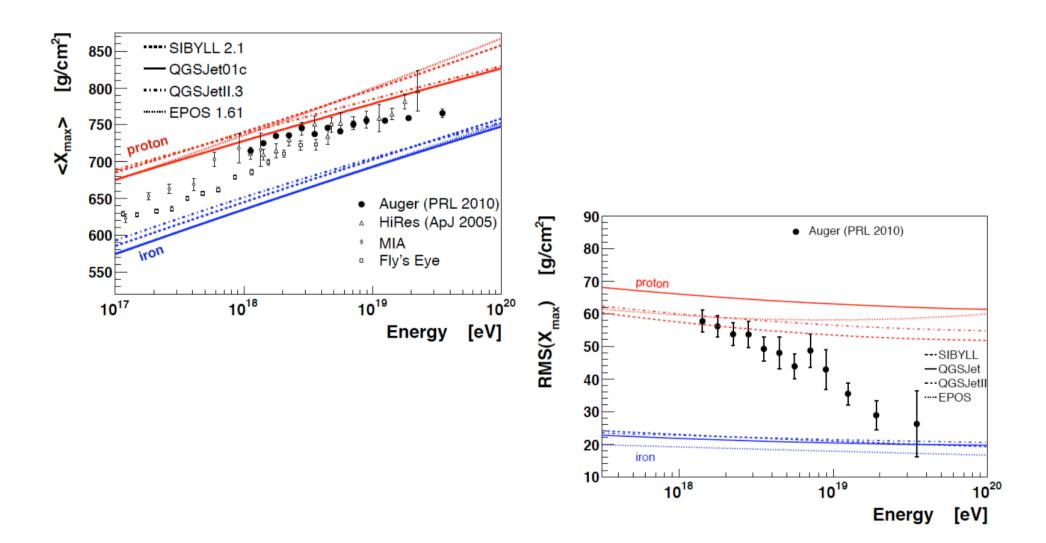
A. M. Hillas, Annual Review Astron. Astrophys. 22 (1984) 425.

#### HILLAS PLOT: CANDIDATI PER ACCELERAZIONE CON E > 1020 EV

Dimensione e campo magnetico di possibili regioni di accelerazione dei RC.
Oggetti al disotto delle diagonali non possono accelerare gli elementi corrispondenti, Fe o p, sopra 10<sup>20</sup> eV

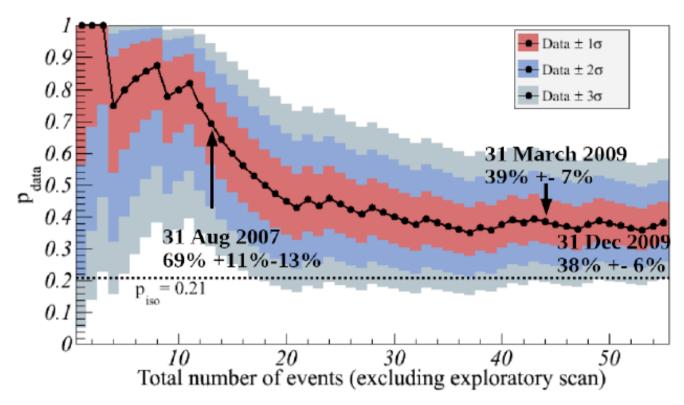

$$E_{\text{max}} \approx \beta Z \left(\frac{B}{1\mu G}\right) \left(\frac{R}{1kpc}\right) 10^{18} eV$$

 $\beta$  = velocità onda d'urto


B = campo magnetico della regione

R = dimensione della regione

1pc = 
$$3.1 \cdot 10^{16}$$
m =  $3.3 \text{ ly}$   
1 AU =  $1.4 \cdot 10^{11}$ m




# COMPOSIZIONE RC PRIMARI



## CORRELAZIONE CON CATALOGO VCV

## Anisotropy

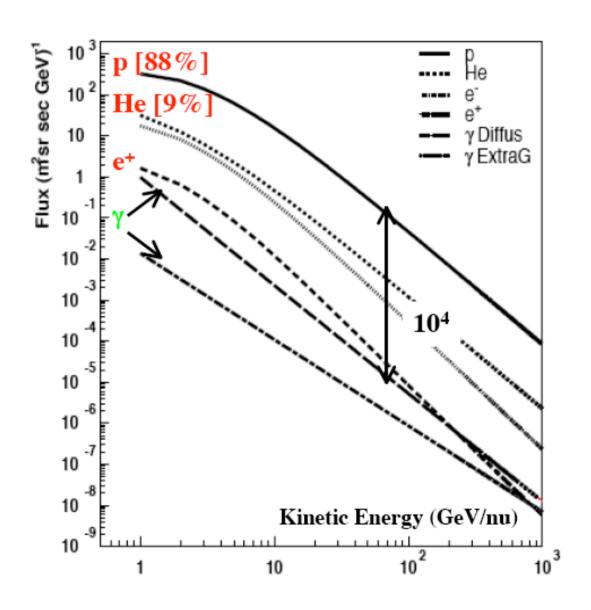


Status of the Prescribed Anisotropy Test (correlation with VCV catalog of AGNs)
38% (21/55) correlate (post exploration) vs. 21% expected from isotropy ⇒ 99% C.L.
Nuovo paper in preparazione: update prescrizione, cross-correlation con 2MASS,
HIPASS,Swift-BAT, autocorrelazione, eccesso da CenA

## SORGENTI ESOTICHE

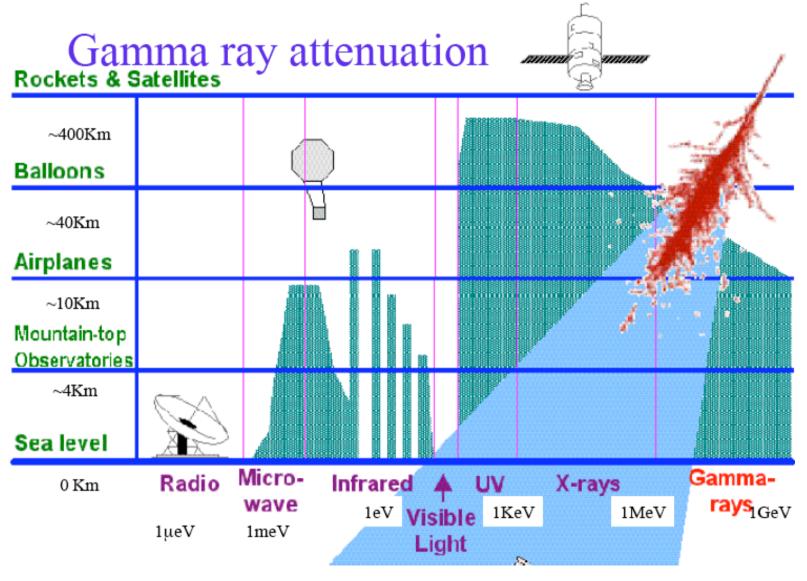
Per superare i problemi derivanti dall'accelerazione dei UHECR, il flusso, la visibilità delle sorgenti ecc., si introduce una nuova particelle instabile, super massiva correntemente chiamata X. Il decadimento della X produce tra l'altro quark e leptoni. I quark adronizzano, gli adroni ed i leptoni decadono in fotoni, neutrini, leptoni leggeri con una parte di protoni e neutroni che daranno origine ai UHECR.

Perché questo scenario sia osservabile deve essere


- Il decadimento deve essere recente poiché i prodotti del decadimento debbono aver viaggiato meno di circa 100 Mpc a causa dei processi di attenuazione.
- La massa della X deve essere molto al disopra della massima energia osservata, ipotesi soddisfatta dalle teorie Grand Unification (GUT) la cui scala di massa è 10<sup>24</sup>-10<sup>25</sup> eV.
- Il rapporto della densità di volume di queste particelle con il suo tempo di decadimento deve essere compatibile con il flusso osservato da UHECR.

#### PRODUZIONE X

La particelle X può essere prodotta da due meccanismi distinti:


- Radiazione, interazione o collasso di Difetti Topologici (TD). In questi modelli i TD sono i residui della rottura di simmetria delle GUT nell'Universo primitivo.
- Particelle supermassive metastabili relitti di qualche campo quantistico primordiale prodotto dopo lo stadio inflazionario dell'espansione dell'Universo.

## **GAMMA COSMICI**



- per ottenere un rapporto
  fondo/segnale ≈ 1%
  occorre raggiungere una
  reiezione del fondo per un
  fattore 106
- fondo per conversione
   coppia e<sup>+</sup> e<sup>-</sup>: protoni +
   raggi δ
- fondo calorimetro em: protoni

## RAGGI GAMMA



# ASSORBIMENTO $\gamma$

 Assorbimento dovuto alle interazioni dei gamma con la radiazione di fondo e con l'infrarosso.

$$\gamma(k_1) + \gamma(k_2) \rightarrow e^+ + e^-;$$

se

$$E_{cm} = \sqrt{2k_1} \, \overline{k_2(1 - \cos \theta)} \ge 2m_e$$

Nel rapporto  $I(L)/I_0 = \exp(-k_{\gamma}L)$ , dove L è la distanza sorgente-osservatore, alla temperatura kT, il coefficiente di assorbimento  $k_{\gamma}$  è dato da

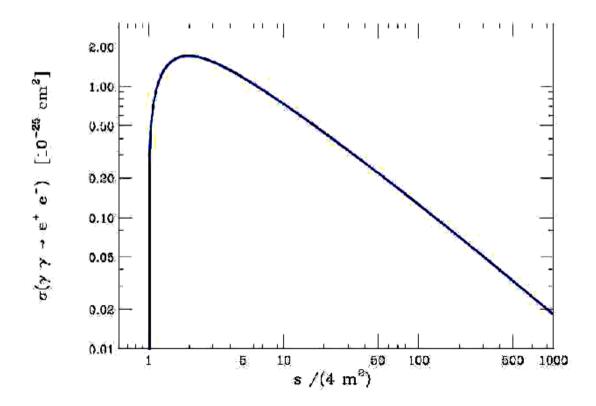
$$k_{\gamma} = \frac{1}{2} \int_{0}^{\infty} \int_{\theta}^{\pi} \frac{dn_{\gamma}}{dk_{2}} \sigma_{\gamma\gamma} \sin\theta d\theta dk_{2}$$

e k<sub>1</sub> e k<sub>2</sub> sono le energie rispettivamente del fotone incidente e del fotone infrarosso o di microonde.

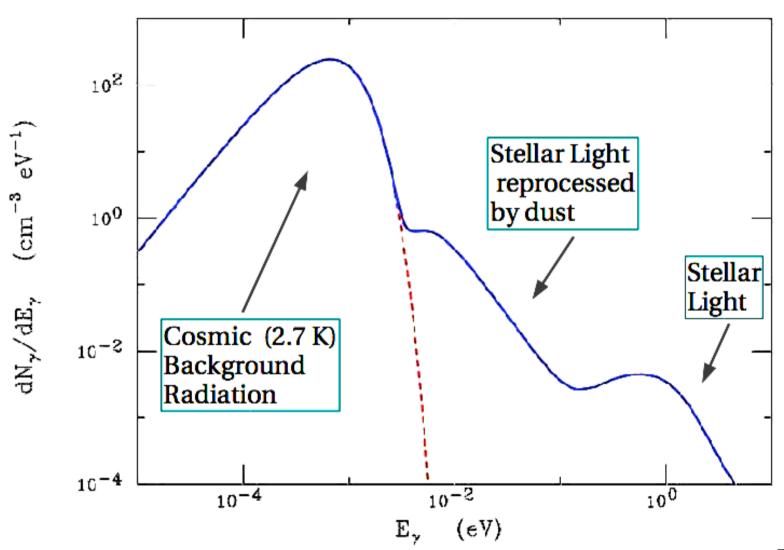
- $\sigma_{\gamma\gamma}$  è la sezione d'urto, di trasformazione di due fotoni in due elettroni;
- dn,/dk<sub>2</sub> è la distribuzione dei fotoni di bassa energia.

Lo spettro di energia del fondo di microonde è:

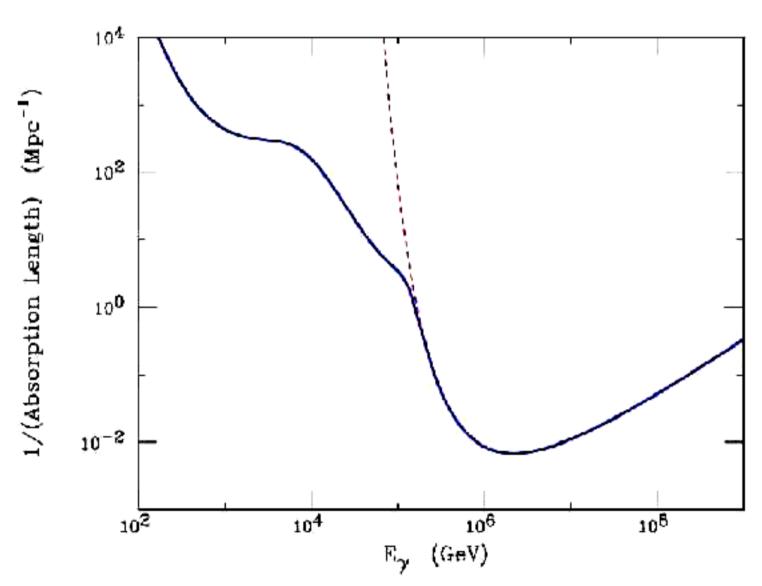
$$\frac{dn_{\gamma}}{dk_{2}} = \frac{1}{\hbar^{3}c^{3}\pi^{2}} \frac{k_{2}^{2}}{\exp(k_{2}/kT) - 1}$$


# ASSORBIMENTO $\gamma$

La sezione d'urto  $\gamma \gamma \rightarrow e^+e^-$  è:


$$\sigma_{\gamma\gamma} = \frac{\pi r_e^2}{2} (1 - v^2) \left\{ \left( 3 - v^4 \right) \ln \left( \frac{1 + v}{1 - v} \right) - 2v(2 - v^2) \right\}$$

dove


$$v = \sqrt{1 - \frac{4m_e^2}{2k_1k_2(1 - \cos\theta)}}$$



# DENSITA' FOTONI/UNIVERSO



# LUNGHEZZA DI ASSORBIMENTO



## ORIGINE DEI GAMMA COSMICI

Le sorgenti dei gamma cosmici non possono essere di origine termica in quanto richiederebbero temperature al di sopra di 10<sup>9</sup> K, ovvero kT > 1 MeV.

- 1. Bremsstrahlung. I gamma possono essere emessi da elettroni relativistici nel campo coulombiano di particelle cariche. L'energia persa dagli elettroni è per unità di materia attraversata ( $\rho x$ , grammi/cm²) dE/d $\rho x$  = -E/X $_0$  dove X $_0$  è la lunghezza di radiazione. La radiazione è emessa predominantemente in un intervallo angolare m $_{\rm a}c^2/E$ .
- 2. Scattering Compton inverso. Un elettrone relativistico può trasferire una parte considerevole della sua energia a fotoni di bassa energia. Fotoni di energia  $E_i\gamma$  ricevono in media un'energia

$$E\gamma \approx E_i \gamma (E/m_e c^2)^2$$

Ad esempio un elettrone di 60 GeV/c può trasformare un fotone del CMB di 6x10-4 eV in un gamma di 10 MeV.

- 3. Collisioni anelastiche  $p + p \rightarrow \pi^0 + X$ . Protoni al di sopra della soglia di energia possono produrre pioni neutri che decadono in 2 x  $10^{-16}$  s in due gamma con energia nel c.m. di  $m_{\pi}/2$ .
- 4. Annichilazione  $e^+e^- \rightarrow \gamma \gamma$ .
- 5. Radiazione di sincrotrone. Emessa da elettroni relativistici in campo magnetico. Questo processo è importante nelle pulsar che hanno un campo magnetico molto elevato dell'ordine di  $10^6$   $10^8$  T. La potenza irraggiata dagli elettroni è P  $\propto$  (B $_\perp$ βγ) $^2$  dove B $_\perp$  è il campo magnetico,  $\beta$ =v/c,  $\gamma$ =E/m dell'elettrone. Lo spettro di emissione ha un massimo per

$$v_{\rm m}$$
=0.29(3/4 $\pi$ )eB $_{\perp}\gamma^2$  /  $m_{\rm e}$ 

6. Linee spettrali nucleari. Transizioni tra livelli nucleari emessi nei decadimenti radioattivi o in seguito all'eccitazione dei nuclei da parte di particelle energetiche.