

AMS-02 ON THE INTERNATIONAL SPACE STATION

Francesca Spada Dip. di Fisica – Roma 3-6-2010 A "PRECISION COSMOLOGY"

Large scale structures $\Omega_m = 0.25 - 0.30$

Cosmic MW background Flat universe – $\Omega_{tot} = 1$ $\Omega_b \approx 0.04$ $\Omega_m \approx 0.25 \rightarrow \Omega_A > 0$

Type-Ia Supernovae Accelerated expansion

Ω_^>0

A "PRECISION COSMOLOGY"

THE PHYSICS OF AMS-02

- Dark Matter search
- Antimatter search
- New matter types
- Cosmic rays physics

EVIDENCE FOR DARK MATTER

Clusters of galaxies, and the Bullet cluster $\Omega_m \approx 0.2 \div 0.4$

Rotation curves of galaxies $\Omega_{\rm m} > 0.1$

No Big Bang	Knop et al. (2003) Spergel et al. (2003) Allen et al. (2002)
s	upernovae
СМВ	expands forever
Clusters	recollapses eventuary
	120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Precision cosmology

 $\Omega_{\rm m}$ = 0.23 ± 0.05

- DM consists of a "weakly" interacting particle
- Permeates galactic haloes

NATURE OF DARK MATTER

CDM candidate masses vary on many orders of magnitude (from few eV to stars)

SUSY neutralino χ is a heavy, stable particle

- Couples with weak interactions
- Thermal relic from the early universe with the correct abundance
- Decoupled at non-relativistic energies (CDM)
- Mass at the TeV scale

Dark Matter

Channels accessible

to AMS

$\chi\chi$ annihilations can produce:

- Neutrinos
- e⁺
- Photons
- <u>p</u>

Origin of Antimatter

- In the Big Bang theory matter and antimatter are created with equal abundances
- The disappearance of antimatter requires barion number violation and another source of CP violation

Antiparticles are produced in collisions between high energy particles and are observed in Cosmic Rays $\phi(e^+)/\phi(e^-) \sim 10^{-1}$ at 10 GeV $\phi(\overline{p})/\phi(p) \sim 10^{-5}$ at 10 GeV

An **antihelium nucleus** has very low probability of being produced in collisions

detection of antinuclei indicates the existence of antistellar nucleosynthesis in an **antimatter domain** somewhere in the Universe

SEARCH FOR NEW MATTER

Strangelets are a not-yet observed stable matter type containing a strange quark (u, d, s).

They could exist in the Cosmos.

A strangelet can be seen as a single super-nucleon, with very small Z/A ratio.

"Neutron" stars may be one big strangelet.

AMS-02 ON THE INTERNATIONAL SPACE STATION

THE INTERNATIONAL SPACE STATION

The ISS is a USA/Russia/ESA/Japan/Canada collaboration Mainteinance at least until 2020, evaluating extention to 2028

Orbit: elliptical at 420 km (Low Earth Orbit) Inclination: 51.57°, 15.62 revs/day ΔT: -60 ÷ +40 °C

Power: 4 arrays of 375 m² solar panels giving 4 x 32.8 kW

The Space Shuttle

The Shuttles are launched from Kennedy Space Center (Florida)

Orbital velocity: 27,600 Km/h (Mach 23)

Launch acceleration: -3 g Launch vibrations: >3 g RMS Cargo bay: 4.5 m Ø x 14.6 m

SIGNATURES

Oct 2009 Feb 2010 Feb-Apr 2010 Detector integrated with the 0.8T Superconducting magnet Test-beam Electromagnetic compatibility & Thermo-vacuum test

TEST BEAM RESULTS (CERN - FEB. 2010)

THE CERN TEST BEAM AREA

AMS-02 IN THE CERN NORTH AREA

TRANSITION RADIATION DETECTOR

TRANSITION RADIATION DETECTOR

TIME OF FLIGHT

2+2 layers of scintillators Main Trigger (up to 2 kHz) Z separation β with few % precision

TIME OF FLIGHT

TOF RESPONSE TO 400 GEV PROTONS

SILICON TRACKER

8 layers double-sided silicon microstrip detector *R* up to 2 TeV

Z separation

RING IMAGING CHERENKOV

2 Radiators: NaF (center), Aerogel (elsewhere)

 β with few ‰ precision Z and isotopes separation σ_{mass} = 2% below 10 GeV/n

RADIATOR

RING IMAGING CHERENKOV

F.R.Spada - AMS-02

RICH VELOCITY MEASUREMENT

ELECTROMAGNETIC CALORIMETER

9 superlayers of Lead + Scintillating Fibers
e/p separation
γ detection
3D-imaging with 1° precision
Standalone Trigger

ELECTROMAGNETIC CALORIMETER

F.R.Spada - AMS-02

ECAL RESPONSE TO ELECTRONS AND PROTONS

AMS MASS MEASUREMENT

TEST OF AMS-02 AT ESA/ESTEC (Feb-Apr 2010)

- Electromagnetic Compatibility
- Thermo-vacuum Test

AMS-02 LEAVES CERN FOR ESTEC ON 12/2/2010

... and arrives at ESTEC after a 6-days trip...

AMS-02 IN THE ESTEC MAXWELL EMI-CHAMBER

THERMO-VACUUM TEST

Pressure in LSS $\sim 10^{-7}$ mbar Shroud temperature -90°C to +40°C

Aim of the test:

- Verify the detector thermal model
- Check that the subdetectors work correctly in a space-like environment
- Test the cryogenic system of the superconducting magnet
- All subdetectors worked as expected
- Subdetectors thermal models were validated
- A measurement of the helium mass dissipated by the magnet cryogenic system in flight conditions was estimated

CRYOMAGNET ENDURANCE MEASUREMENT

	Room T	ESTEC TVT	ISS
Total heat load	720 mW	490 mW	180 mW

Expected cryomagnet endurance = 20 ± 4 months

Uncertainties	
Accuracy of heat load estimate	15%
Nearby payloads on ISS	9%
Waiting time on the launch pad	8%
ISS attitude control	6%

AN UNEXPECTED THERMAL CONCERN ON THE ISS

ELC-2 installation (STS 129, Nov 2009)

ELC-2 affects the AMS thermal behaviour due to **solar reflection**.

ELC-2 also **radiates 2.7 kW** one meter away from AMS.

$\mathsf{C}\,\mathsf{O}\,\mathsf{M}\,\mathsf{M}\,\mathsf{E}\,\mathsf{N}\,\mathsf{T}\,\mathsf{S}$

- The activity and maintainance of the ISS has been extended to 2020, with the possibility of extension to 2028 under evaluation at the Space Operations Directorate of NASA
- The estimated SC magnet's lifetime is 20 ± 4 months with uncertainties (e.g. radiation from nearby payloads, waiting time on the launchpad, ...)
- There is no easy way to extend the lifetime: to upgrade the cryogenic system would take about 8 months
- The last shuttle flight is forseen at the end of 2010

 Some phyisics items are affected by the lower resolution at low energy, most items benefit from the higher statistics

AMS-01 AND THE PERMANENT MAGNET

 $BL^2 = 0.14 \text{ Tm}^2$

Permanent Magnet Field

- After the de-integration of AMS-01 in 1998 the magnet was kept in a clean room in Taiwan. It was sento to Aachen, Germany in Mar 2010
- The magnetic field of the Permanent Magnet was remeasured in Mar 2010 and it was unchanged within 1% since 1997

Permanent Magnet integration

TRACKER MODIFICATION

B is 5 times smaller L_1 has to be increased correspondingly

All tracker planes are independently movable

............

B

RESOLUTION ON RIGIDITY

With 9 tracker planes, the resolution with the Permanent Magnet differs at most by 10% to that with the Superconducting Magnet

but AMS will be active for all the duration of the ISS - at least 10 y

IMPACT ON THE PHYSICS

- Dark Matter
- Antimatter
- New matter types
- Cosmic rays physics

ATIC, FERMI, PAMELA

<u>FERMI-LAT</u> Satellite experiment 20 MeV to 300 GeV 20% sky field of view No charge sign

<u>Pamela</u>

Satellite experiment Geom. Acceptance $21.5 \text{ cm}^2 \text{ sr}$ $Z_{\text{max}} = 8$ MDR \approx 700 GeV Sign of charge

Si-strip Tracker CsI(Ti) Calorimeter

 $\frac{AMS}{1000 \text{ cm}^2 \text{ sr}}$ $Z_{\text{max}} = 26$ $MDR \approx 2 \text{ TeV}$

DM Search in the e^+ Channel

Error comes from the statistics → decreases with a Permanent Magnet as the experiment lifetime increases

Energy resolution on e^+ and $e^$ depends on the ECAL only \rightarrow unaffected

EXPECTED ($e^+ + e^-$) FLUX

AMS-02 extends both Pamela and Fermi/ATIC energy ranges

 \rightarrow solve the ATIC disagreement wrt to Fermi data.

DM Search in the $\overline{\mathrm{p}}$ Channel

Low energy Spectrum is well explained by secondary production Expected signal at high energy (10 - 300 GeV) partially excluded by Pamela → very important to verify at higher energy and higher statistics

EXPECTED LIMITS ON ANTIHELIUM

AMS will collect $>10^9$ nuclei with energies up to 2 TeV AntiHe/He Flux Upper Limit 95% CL 10-2 (a) Buffington etal. 1981 (c) In the same time $\sim 10^{-7}$ He nuclei (b) Golden etal. 1997 (c) Badhwar etal 1978 from secondary production are (d) Alcaraz etal. 1998 10-3 (e) Sasaki etal. 2001 expected (b) 10 Charge sensitivity up to anti-Iron, (a) magnet-independent 10-5 (d) Internet 10-6 (e) 10⁵ Number of events 10-7 0⁴ 10-8 10³ AMS02 P mag 10 years MS02 SC mag 3 years 10⁻⁹ 10² 10² 10³ 10 Rigidity (GV) 10 0 5 10 15 20 25 30

The He limit put by precursor flight AMS-01 will be increased of a factor 10^3

Loss of sensitivity at higher energies due to lower acceptance

PRECISION COSMIC RAYS PHYSICS

Composition at different energies (1 GeV, 100 GeV, 1 TeV) continuously over a 11-years solar cycle

STRANGELETS SEARCH

 $\Phi_{\text{strangelets}} = 5 \times 10^{-10} (\text{cm}^2 \text{ s sr})^{-1}$ $Z_{\text{strangelets}} = 2$

Schedule

- Integration
- Launch

AMS HISTORY AND SCHEDULE

AMS approval: Apr 1995

- AMS-01 assembled at ETH-Zürich: Dec 1997
- AMS-01 flight: Jun 1998

Integration of AMS-02

- Subdetectors integration
 + 1st integration at CERN
 without magnet:
 12 months in 2007/2008
- 1st de-integration:
 1 month in 2008
- 2nd integration with SC magnet: 1 month in 2009

Final AMS-02 integration

- 2nd de-integration: May 2010
- 3rd integration with Permanent magnet: Jun – Jul 2010

The detector will be shipped from CERN to Kennedy Space Center with a C5 Galaxy no later than **Sep 1, 2010**

AMS is scheduled to fly to the ISS on board of the STS-134 Endeavour not earlier than **Nov 2010**

AMS-02 IS SCHEDULED ON STS134 ENDEAVOUR

Commander Mark Kelly

PILOT Gregory H. Johnson

MISSION SPECIALISTS

Michael Fincke (US) Greg Chamitoff (US) Andrew Feustel (US) Roberto Vittori (ESA/Italy)

AMS-02 on the Shuttle Launch Manifest

nternatio	nal Spa	ce Station	
aunch Schedul	e		
Consolidated Launch	h Manifest		
Launch Target	Assembly Flight	Launch Vehicle	Element(s)
April 28, 2010	37P	ISS Progress 37	Logistics and resupply
May 14, 2010	ULF4	Atlantis STS-132	 Integrated Cargo Carrier (ICC) Mini Research Module (MRM1)
June 2010	ATV2	Ariane 5	European Automated Transfer Vehicle 2
June 16, 2010	235	Soyuz TMA-19 Expedition 24	Crew transport
June 28, 2010	38P	ISS Progress 38	Logistics and resupply
Aug. 31, 2010	39P	ISS Progress 39	Logistics and resupply
Sept. 16, 2010	ULF5	Discovery STS-133	 EXPRESS Logistics Carrier 4 (ELC4) Permanent Multi-Purpose Module (PMM)
Sept. 29, 2010	24S	Soyuz TMA-20 Expedition 25	Crew transport
Oct. 27, 2010	40P	ISS Progress 40	Logistics and resupply
Nov. 2010	ULF6	Endeavour STS-134	EXPRESS Logistics Carrier 3 (ELC3) Alpha Magnetic Spectrometer (AMS)
Dec. 27, 2010	41P	ISS Progress 41	Logistics and resupply
Dec. 2011	3R	Russian Proton	 Multipurpose Laboratory Module with European Robotic Arm (ERA)

${\tt CONCLUSIONS}$

- The **Permanent Magnet option** implies that AMS will be a unique physics detector in space for the lifetime of the ISS (until 2020, maybe 2028?)
- AMS-02 will be able to measure spectra of particles and nuclei up to Iron in the GeV-TeV range
- Accurate study of CR composition and energy spectrum
- Search of new types of matter (strangelets)

Dark matter indirect search:

• Measure **simultaneously** and with unprecedented precision the rates and spectra of *positrons*, *photons*, *antiprotons*

• Antimatter search:

- If no antinucleus is observed the hypothesis of *barion asymmetry* will be strongly favoured as no antimatter areas are present in the observable universe
- Currently assembling the permanent magnet into AMS at the CERN Clean Room
- The launch is scheduled on Endeavour flight STS134 in **November 2010**

