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CMS ExperimentCMS Experiment
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ECAL: Compact, homogeneous, hermetic and fine grain 
calorimeter 
- Embedded in 4 T magnetic field
- 75848 lead-tungstate (PbWO4) scintillating crystals
- Intrinsic light yield 100γ/MeV  4p.e./MeV on the APDs→
- Detector designed for excellent energy resolution 
   for photons with 0.1 MeV-1.5 TeV

Excellent resolution and electron/photon ID of 
the CMS ECAL crucial for discovery and 

characterization of the 125 GeV Higgs Boson

H→γγ CERN-EP-2018-060  
H→ZZ→4ℓ CERN-EP-2017-123
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ECAL DetectorECAL Detector
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VPTVPT

● Barrel (EB):
- 36 supermodules (1700 channels)
- Total of 61200 PbWO4 crystals
- Avalanche Photo-Diode readout (APD)
- Coverage | | < 1.48η

● Endcaps (EE):
- Four half-disk Dees (3662 channels)
- Total of 14648 PbWO4 crystals
- Vacuum Photo Triode readout
- Coverage: 1.48 < | | < 3.0η

● Preshower
- Two Lead/Si planes
- 137,216 Si strips (1.8 × 61 mm 2 )
- Coverage: 1.65 < | | < 2.6η

Endcaps crystalsEndcaps crystals

Barrel crystalsBarrel crystals

PreshowerPreshower

APDAPD



18/05/18  4

Simulation of ECAL responseSimulation of ECAL response
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● Simple strategy:
• Simulate energy depositions in crystal volume with GEANT4
• Assume the response of ECAL channel is (almost) proportional to energy depositions

 → Full Simulation:

● Step1: Energy depositions with GEANT4
● Step2: Propagation of Scintillation/Cherenkov photons
● Step3: Pulse shape at front-end stage and digitization

 → Time evolution of photo-detector noise and crystal response
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Step1: Energy depositions with GEANT4Step1: Energy depositions with GEANT4

Badder Marzocchi 

● Standard simulation of EM shower in crystal material
● Record energy depositions to be converted into 

scintillation light
● Simulate Cerenkov radiation

 → Record time of individual depositions to simulate time evolution of EM shower
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Step2: Propagation of Scintillation/Cherenkov   Step2: Propagation of Scintillation/Cherenkov   
           photons           photons

Badder Marzocchi 

● Transport of optical photons from emission point to photo-detector
(GEANT4 in full simulation, Litrani1 for detailed studies)

● Input information:
● Geometry of ECAL crystal (trapezoid)
● Geometry of photo-detectors
● Quality of surface polishing
● Properties of wrappings
● Decay times of PbWO4 scintillation
● Wavelength dependent parameters:

 → Spectrum of emitted photons
 → Absorption of PbWO4

 → Refractive index of crystal, glues, entrance windows
 → Photon-detection efficiency of APDs and VPTs

[1] F. X. Gentit, “Litrani: a general purpose Monte-Carlo program simulating light propagation in isotropic or anisotropic
     media”, NIM A 486 (2002) 35-39 https://doi.org/10.1016/S0168-9002(02)00671-X
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Step2: Propagation of Scintillation/Cherenkov   Step2: Propagation of Scintillation/Cherenkov   
           photons           photons
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● Time distribution of detected photons:
 → Emitted isotropically from the center of a crystal 

     at t=0
 → Depends on emission point of scintillation

● Discrete structure due to photons in forward and 
backward directions

● Width of the peaks due to dispersion and finite 
size of the photo-detector

● 90% of light yield collected within 25 ns
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Average pulse shape of photo-current Average pulse shape of photo-current 
from EM showerfrom EM shower
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Step3: Pulse shape at digitizationStep3: Pulse shape at digitization
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● Pulse shape at digitization step: photo-current pulse convoluted with single pulse 
response (SPR) function of the front-end

● SPR:
 → Include internal capacitance of APDs, inductance and capacitance of cables
 → Measured with short laser pulses and nucleon interaction with APDs

● Two front-end electronics: legacy Phase-1 and upgrade prototype for HL-LHC

Legacy Phase-1:

 → CR-RC shaping
→ τ = 43 ns

 → Average EM shower pulse 
     shape measured  at test beam

Upgrade prototype for HL-LHC:

 → Trans-Impedance Amplifier (TIA) 
     architecture

 → Minimal pulse shaping
 → Average EM shower pulse shape 

     measured  at test beam
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Step3: Pulse shape at digitizationStep3: Pulse shape at digitization
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Legacy Phase-1: 
43 ns shaping time and sampling ADC at 40 MHz 

HL-LHC prototype:
minimal shaping time  and sampling at 160 MHz 
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Readout data frame and reconstruction:Readout data frame and reconstruction:
Legacy Phase-1Legacy Phase-1
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● Pile-up simulation:
 → in-time and out-of-time PU from -12 to +3           

     bunch-crossing (every 25 ns) 
 → Simulate both in time and out-of-time PU

● Pulse-shaping and digitization:
 → 43 ns shaping time and sampling ADC at 40        

     MHz 
 → Storing 10 samples from each bunch-crossing

● Energy reconstruction:
 → Multifit: 

     Estimates the in-time signal amplitude and up    
     to 9 out of time amplitudes
       
      

    



18/05/18  12

Readout data frame and reconstruction:Readout data frame and reconstruction:
HL-LHC PrototypeHL-LHC Prototype
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● Pulse-shaping and digitization:
 → minimal shaping time with TIA

     architecture 
 → ADC sampling at 160 MHz 

● Energy reconstruction:
 → Multifit: same strategy as Phase-1 
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Noise evolution of photo-detectorsNoise evolution of photo-detectors
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● VPT noise not affected by radiation  noise constant in time (→ ≈2ADC)
● APDs noise evolution:

 → Noise increases due to the radiation-induced increase of the APD leakage current
 → Dark current evolution fitted with 3 exponentials and one permanent damage term

→ Measurement of the dark current–Noise dependence

    

Integrated over 50 crystals
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Noise evolution of photo-detectorsNoise evolution of photo-detectors
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● VPT noise not affected by radiation  noise constant in time (→ ≈2ADC)
● APDs noise evolution:

 → Noise increases due to the radiation-induced increase of the APD leakage current
 → Dark current evolution fitted with 3 exponentials and one permanent damage term

→ Measurement of the dark current–Noise dependence

    

Integrated over 50 crystals

    

Run3 conditions
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Noise evolution of photo-detectorsNoise evolution of photo-detectors
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● VPT noise not affected by radiation  noise constant in time (→ ≈2ADC)
● APDs noise evolution:

 → Noise increases due to the radiation-induced increase of the APD leakage current
 → Dark current evolution fitted with 3 exponentials and one permanent damage term

→ Measurement of the dark current–Noise dependence

    

Integrated over 50 crystals

    

PhaseII conditions
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Prediction of noise evolutionPrediction of noise evolution
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1 ADC = 40 MeV
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Simulation of crystal responseSimulation of crystal response
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● Radiation damage results in development of absorption and scattering centers 
  → loss of transparency in crystals

● Radiation damage changes pulse shapes:
 → Loss in amplitude
 → Non-linearity of response

 → Fit to the data transparency loss  used for short term prediction of the aging

● Worsening of energy resolution
 → Deterioration of the stochastic term
 → Noise increase
 → Deterioration of light collection

     uniformity
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Data and simulation agreementData and simulation agreement

Badder Marzocchi 

● Aging models used for predicting conditions on short term for the on-going data taking
● At the end of the year conditions taken from data to re-generate latest simulations 
● Additional improvement: use evolving conditions in the simulation taken from the data

                                                (CERN-PH-EP-2015-006,CERN-PH-EP-2015-004)

Shower shape Relative isolation
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Simulation of crystal response:Simulation of crystal response:
PhaseII predictionsPhaseII predictions
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● Parametrized with induced absorption: μind(x,λ):
 → Effective loss of light on a path 

   of length L
 → Affecting propagation of optical 

     photons from emission point 
     towards photo-detector

 LY/LY0 = exp(-μind(x,λ) L)

● Model to predict response of crystals during Phase II:
 → Full model with simulation of the GEANT shower development
 → Ray tracing inside the crystals 
 → Ageing of crystals and photodectors as a function of wavelength
 → Dose and fluence from  FLUKA2 simulation

● Many test beam measurements to verify and refine the models  

CMS: JINST 11 P04012 (2016):
 → Light output loss as a function of 

     the induced absorption coefficient
 → 2012 Test beam data
 → MC simulation with GEANT4+SLitrani

Response to EM

[2] C. Battistoni, et al., “The FLUKA code: description and benchmarking”, https://doi.org/10.1063/1.2720455



18/05/18  20

Energy resolution degradationEnergy resolution degradation
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 → CMS: JINST 11 P04012 (2016): 
Left: resolution degradation for different  induced absorption coefficients
Right: increase of resolution constant term as a function of  induced absorption coefficient, comparison 
           of the TB with the model
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Prediction of crystal response loss:Prediction of crystal response loss:
PhaseII predictionsPhaseII predictions
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Ecal BarrelEcal Barrel
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SummarySummary
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● CMS ECAL detector designed for excellent energy resolution for photons with 0.1 MeV-1.5 TeV:
 → 75848 lead-tungstate (PbWO4) scintillating crystals
 → Signal read by APDs (in EB) and VPTs (in EE)

● Full Simulation:

● Step1: Energy depositions with GEANT4
● Step2: Propagation of Scintillation/Cerenkov photons

              → Simulate both the propagation of scintillation and Cherenkov light
● Step3: Pulse shape at front-end stage and digitization

              → Legacy Phase-1: τ = 43 ns shaping time, 40 MHz sampling
              → HL-LHC Prototype: minimal shaping time, 160 MHz sampling
 

● Time evolution of photo-detector noise and crystal response for PhaseI and PhaseII:  

● APD noise evolution predicted using CMS collected data
● Crystal response evolution predicted using both data (short term) and simulations from GEANT 

and Fluka (PhaseII)

●   Good agreement between data and simulation!
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Back-up SlidesBack-up Slides
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Upgrade for HL-LHCUpgrade for HL-LHC
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● Reduce the shaping time, using the TIA 
architecture

● Test beam measurements reach σ⋍ 20 ps,
 using a 160 MHz sampling

● Simulation of individual pulses: 
 → EM shower fluctuations result in <20 ps

     contribution to timing resolution
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