

European Research Council

Established by the European Commission

Jet production and suppression

Leticia Cunqueiro

West side story 1961

Quark Matter 2022, Kraków, April 8th

Jets in heavy-ion collisions

Jets probe the medium at multiple scales

oduces rces for enching	
Medium- induced	perturbative QCD
emissions	strong coupling
ack-reaction, dium response	NP models hydro

sketch from G.Soyez

Different types of jet observables

We inspect modifications in the jet production and fragmentation pattern trying to isolate different physics mechanisms to validate theory ingredients and aproximations and ultimately characterize the QGP

sketch from Rey Cruz

Some of the questions we are trying to answer experimentally

How does energy redistribution happen activity of the early vacuum shower and the number of resolved prongs set the degree of quenching

2. Role of color charge and mass color factors and mass effects lead to different parton showers in vacuum. Testing their impact in medium ongoing

3. Role of medium response lost energy reaches thermal scales and gets redistributed in the medium. Expected contribution at large angles. Model dependent.

- 4. Path length dependence different energy loss mechanisms predict different path-length dependence
- 5. Can we probe the QGP at sufficiently short distances so that quasi-particles emerge? searches for large angle deflections/large k_T transfers
- Critical medium size for jet quenching 6.
- 7. Is it possible to derive a space-time picture of jet quenching using splitting kinematics? profiting from the time delay of boosted particles?

Jet suppression and energy redistribution

Hannah Bossi's talk

Learning on constituent information allows to reduce bkg fluctuations and to suppress combinatorial jets Unique low p_T & large R reach at the LHC

R=0.6

Jet suppression and energy redistribution

Hannah Bossi's talk

In general suppression is the result of a) amount/how energy is redistributed and b) ability to recover it

At fixed jet p_{T} large-R jets potentially select jets that were more "active" or that had more independent prongs interacting with the medium and that are thus more quenched

ALICE results seem to indicate an incomplete balance between a) and b) as opossed to CMS results at higher jet p_{TS} and there is tension with ATLAS 2.76 TeV results (see Martins' talk)

Jet suppression and energy redistribution

quenched (dark brown) but they can recover better the medium response or wake

Coherent antenna considers coherence effects and models recoils as low energy modes that are thermalized and smeared over a large angular region

But analytical calcualtions based on SCET describe the trends too without the need of the medium response!

For instance, Hybrid model: larger-R jets bias towards jets with a more active early vacuum shower that are then more

Jet suppression "fixing" the parton flavour

<u>Sebatian Tapia's talk</u> <u>Y.Go's poster</u>

quark fraction can be enhanced up to 80% by selecting jets recoiling from a prompt photon quark jets are less active in medium, fewer radiating prongs Clear signature of recoil jets being significantly less suppressed than inclusive jets

ATLAS-CONF-2022-019

,

Sebatian Tapia's talk

<u>Y.Go's poster</u>

Jet suppression "fixing" the parton flavour

s_{NN} = 5.02 TeV 0.8 **ATLAS** Preliminary 2018 Pb+Pb 1.7 nb⁻¹, 2017 *pp* 260 pb⁻¹ 0.8 γ-tagged jets Inclusive jets 0.7 0.7 0.6 0.6 R_{AA} e[₹] 0.5 0.5 Ĩ R^{Y_j}é 0.4 0.4 Centrality 0-10% 0.3 anti-k_T R = 0.4 jets 0.3 $p_{-}^{\gamma} > 50 \text{ GeV}, |\eta^{\gamma}| < 2.37$ 0.2 120 140 100 160 120 140 80 60 80 100 160 60 Jet p_{_} [GeV] γ -tagged jet p_T [GeV]

but note that MC calculations have a hard time describing observables in quark/gluon-enriched samples:

See other interesting talks on photon-tagged observables: Molly Taylor's talk Alwina Liu's talk

"Fixing" the color charge and potential sensitivity to quark mass

A way of fixing the parton flavour with high purity is to HF-tag at sufficiently high jet p_{T}

Differences between the D-jet and inclusive jets are due to **color factors** and <u>potentially</u> to the jet mass depending on the kinematic range and observable

"Fixing" the color charge and potential sensitivity to quark mass

Would be interesting to study the ratio R_{AA}^b/R_{AA} γ_{-jet} to disentangle mass from color effects, currently the two measurements are done with different R and different centrality

ALICE comparison between D-jets and inclusive jets potentially minimizes differences since small R can bias the inclusive sample towards quark jets

"Fixing" the color charge and potential sensitivity to quark mass

Relative differences between b-jets and inclusive jets in PbPb and pp collisions appear to be fairly consistent Differences between the b-jet and inclusive jets are due to color factors and potentially to the jet mass

Xiao Wang's talk

Single out mass effects and expose the dead cone

Pink areas define the expected vetoed region: m_c/E_c

B stable, suppression **B** decays, extra splittings at small angles

Coincidence measurements down to very low jet p_T

ALICE: Increase of correlated yield of very soft structures ($p_{T,jet}$ <20 GeV, R=0.4) STAR: clear signature of intrajet broadening for similarly soft structures

Coincidence measurements down to very low jet p_T

Same statistical technique for uncorrelated jet bkg subtraction First signature of azimuthal decorrelation of very soft jets!

Coincidence measurements down to very low jet p_T

Same statistical technique for uncorrelated jet bkg subtraction First signature of azimuthal decorrelation of very soft jets!

Inter jet correlations down to very low jet p_T

First signature of azimuthal decorrelation of very soft jets

Coincidence measurements without recoil jet

 $A = \frac{Particles per Z in Pb+Pb}{Particles per Z in p+p}$

Christopher McGin's talk

Modification of the particle spectra in the recoil region: -excess of low- p_T particles -suppression of high- p_T particles

Coincidence measurements without recoil jet

1.8 1.6 1.4 0 0 1.2 PbPb 0.8 0.6 0.4

Modification of the particle spectra in the recoil region: -excess of low- p_T particles -suppression of high- p_{T} particles

Kaya Tatar's talk

Three different approaches:

-SCETG: no medium response

-CoLBT: quenched jet energy feeds into hydro evolution

-Hybrid: wake effect

The geometry: fixing the event shape

Caitlin Beattie's talk

ALI-PREL-503397

Selecting specific event shapes allows to maximize in plane and out of plane path length differences

Largest q₂ selects more suppressed ratio of jet yields, consistent with stronger suppression out-of-plane

The geometry: sensitivity to path length

In vacuum, at LO, the Lund plane is filled homogeneously, the running of the coupling sculpts the plane

In vacuum, at LO, the Lund plane is filled homogeneously, the running of the coupling sculpts the plane

In medium, there are extra inhomogenities like the underlying event that populates the large-angle region of the plane with combinatorial prongs

A lot of work has been done in the last years to minimize the impact of combinatorial bkg to substructure and render the problem unfoldable

Andrews et al, .Phys.G 47 (2020) 6

In vacuum, at LO, the Lund plane is filled homogeneously, the running of the coupling sculpts the plane

In medium, there are extra inhomogenities like the underlying event that populates the large-angle region of the plane with combinatorial prongs

A lot of work has been done in the last years to minimize the impact of combinatorial bkg to substructure and render the problem unfoldable

The medium response might also contribute to substructure to the large-angle region

sketch from **Paul Caucal's poster**

And on top of that there is medium-induced radiation that we try to characterize

In vacuum, at LO, the Lund plane is filled homogeneously, the running of the coupling sculpts the plane

In medium, there are extra inhomogenities like the underlying event that populates the large-angle region of the plane with combinatorial

A lot of work has been done in the last years to minimize the impact of combinatorial bkg to substructure and render the problem unfoldable

The medium response might also contribute to substructure to the large-angle region

with the medium and are more quenched?

See studies showing that the broader strongly quenched jets migrate to lower jet p_{T} bins: Du et al, 2106.11271, Brewer et al, 2009.03316. Substructure of jets recoiling from Z/γ is a promissing step forward.

See the impact of coherence as implemented in the Hybrid model (oportunity to eventually constrain the medium color length) and note the impact of quark/gluon fractions in the extreme case of fully unresolved jets

Is it early vacuum shower that dictates the trend in R_{g} ? Large R_{g} selects active jets with multiple prongs that interact

Note the enhancement in the groomed $k_{\rm T}$ due to the newly implemented Moliere scatterings Current experimental uncertainties don't allow to discriminate between w and w/o Moliere See Zach Hulcher's talk for the implementation of hard scatterings in the Hybrid model

See also analytical calculations in vacuum for dynamically groomed substructure in *P.Caucal's poster*

To finish: top quarks to build a time picture

Luis Alcerro's talk

First step is using the top quark as a QGP chronometer

A possible summary

- -New and more precise information on color and mass dependence of energy loss
- -New kinematic regimes explored (low p_T / large R) in order to fully capture the dynamics of jet quenching
- -Some tensions in the R_{AA} vs R trends at the LHC at low jet p_{T}
- -First evidence of the broadening of the γ -jet and h-jet azimuthal correlation for very soft jets
- -Broader jets appear more suppressed (via angularities, jet axis difference, Rg, k_Tdist with different degrees of signal strength) Probing fundamental properties of the medium like color correlation length or probing the point-like scatterers in the medium are within reach
- -Interesting prospects for Z/ γ -jet and heavy flavour jet substructure
- -Searches for jet quenching signal in small systems (not covered here)
- -Plenty of encouraging new theoretical developments discussed in talks and posters

In memory of Tom Cormier, team leader ORNL

thanks to friends and collaborators for input: Laura Havener, Peter Jacobs, Matt Nguyen, Konrad Tywoniuk, Nima Zardoshti, Marta Verweij and many more

Jet substructure using the clustering history

The iterative declustering proceeds until substructure is found (grooming) or the jet can be fully declustered to study the kinematics of all the emissions (Lund jet plane)

The Cambridge/Aachen algorithm sequentially combines the closest pairs

The clustering history can be undone iteratively, following always the hardest branch

At each step, two subjet prongs are obtained, **j1** and **j2**, with $p_{T,1} > p_{T,2}$

where θ is the angle between the prongs, $k_T = \theta p_{T,2}$ and $z = p_{T,2}/(p_{T,1} + p_{T,2})$

Grooming

Groom away branches in order to access hard parts of the jet that are under better theoretical control

• mMDT/SofDrop grooming

Remove branches of an angular-ordered clustering tree until you find a splitting that satisfies:

(Recursive SD) Dreyer et al, JHEP 06 (2018) 093 Butterworth et al, Phys. Rev. Lett. 100 (2008) 242001 •New: Dynamical Grooming 1.Select the hardest branch in the C/A sequence 2.Drop all branches at larger angles

$$\kappa^{(a)} = \frac{1}{p_T} \max_{i \in C/A} z_i (1 - z_i) p_{T,i} (\theta_i/R)^a$$

Declustering in pp gives access to salient features of the parton shower I

- Multiple physics effects contribute beyond the LO uniformly-filled plane
- •However the measurement captures salient features of the q/g parton shower: the running of the coupling sculpts the plane

ln(*R/∆R*)

_O uniformly-filled plane tures of the q/g parton shower:

ATLAS, Phys.Rev.Lett. 124 (2020) 22, 222002

Early vacuum structure dominance

Jets with larger R_g are more active and thus more quenched if resolved

Casalderrey et al, JHEP'20

Large-R_g jets are those with more phase space for VLE and are thus more quenched Caucal et al, JHEP 10 (2019) 273

A selection bias possibly playing a key role

quenched jets, which are broader, migrate to lower jet p_T bins medium response are visible

Brewer et al, 2009.03316

•When binning on the reconstructed jet momentum, jet sample dominated by weakly quenched jets. Strongly

•When binning on true jet energy, broader & more quenched jets are included in the p_T bin and the effects of the

A selection bias possibly playing a key role

Du et al, 2106.11271

Unquenched class: $\chi > 0.9$ Quenched class: $\chi < 0.9$

Similar conclusion when accessing the true jet energy via ML

Data consistent with previous results measured in $\sqrt{s_{NN}} = 2.76$ TeV collisions

 \triangleright Peak observed at intermediate x_I at low $p_{T,1}$ in central events, although milder

