

Precision EW results from CMS

Marco Cipriani

Sapienza Università di Roma e INFN Roma1

On behalf of the CMS Collaboration

Alps2019:

An Alpine LHC Physics Summit

22-27 April 2019, Obergurgl (Austria)

The success of the Standard Model (SM)

- Experimental cross section measurements span over 9 orders of magnitude
 - very good agreement with theoretical predictions at different energy scales

Exploring new physics through the EW sector

Z/W production important in many searches for new physics (NP)

- main source of background
- precision measurements of kinematic spectra and PDFs fundamental to discover NP
 - experiments must be supported by robust theoretical calculations

Knowledge of W/Z kinematics crucial to reach O(10) MeV precision on W-mass

Effective weak mixing angle $\sin^2 \theta_{eff}^f$

Forward-backward asymmetry A_{FB} in $q\overline{q} \to Z/\gamma^* \to \ell^+\ell^-$ sensitive to $\sin^2 heta^{f}_{eff}$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta^*)} \propto 1 + \cos^2\theta^* + A_4\cos\theta^*$

from interference of vector and axial-vector contributions (dependent on Z mass)

 $oldsymbol{ heta}^*$ angle between ℓ^- and quark in Collins-Soper frame

- definition of θ^* assumes $\ell\ell$ pair produced along quark's direction
- quark's true direction unknown \rightarrow dilution of $A_{FB} \rightarrow$ sensitivity to PDFs (large-x \overline{q})

Measuring $sin^2\,\theta^f_{eff}$ through A_{FB}

A_{FB} depends on both Z mass and rapidity Y

- $\sin^2 \theta^f_{eff}$ measured by fitting $A_{FB}(m_{\ell\ell}, Y_{\ell\ell})$ in data to SM predictions obtained for different values of $\sin^2 \theta^f_{eff}$
- signal templates from POWHEG
- using NNPDF3.0 PDF set

A_{FB} calculated with angular event weighting technique:

 measurement less sensitive to cosθ* acceptance modeling

PDF uncertainty on $\sin^2 heta^{ m f}_{ m eff}$

Bayesian χ^2 reweighing method used to constrain PDFs from data

- perform $\sin^2 \theta_{\rm eff}^{\rm f}$ fit for each NNPDF3.0 replica (100) and assign weight w $\propto e^{-\chi^2/2}$
- measure $\sin^2 \theta^f_{eff}$ as weighted sum over PDF replicas (PDF uncertainty reduced by \approx 2)

Precision limited by statistical uncertainty and PDFs

• $\sin^2 \theta_{\text{eff}}^{\text{f}} = 0.23101 \pm 0.00036 \text{ (stat)} \pm 0.00018 \text{ (syst)} \pm 0.00016 \text{ (theory)} \pm 0.00031 \text{ (PDF)}$

Z-boson d σ /d ϕ^*

Fixed order perturbative QCD calculations do not work for $p_T \ll m_{Z,W}$

 $p_{T}^{W/Z}$ measurements test modeling of hard scattering/parton shower

Theory/Data

1.2

0.9

 10^{-3}

10⁻²

 $\ell\ell$ angular variables (better resolution)

$$\phi^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \sin(\theta_{\eta}^*)$$
$$\phi^* \approx p_T^Z / m_{\ell\ell}$$
$$\cos(\theta_{\eta}^*) = \tanh(\Delta\eta/2)$$

Electroweak production of W/Z + 2 jets

Distinctive signature with two forward jets with large dijet mass and $\Delta \eta$ (j1,j₂)

- VBF understanding important for Higgs measurements and NP searches
- multivariate analysis to enhance signal

W+2jets: CMS-SMP-17-011 submitted to EPJC Z +2jets: Eur. Phys. J. C 78 (2018) 589

35.9 fb⁻¹ (13 TeV)

Cross section for combined e/μ channels in agreement with SM

- $\sigma_{EW}(Wjj) = 6.23 \pm 0.12 \text{ (stat)} \pm 0.61 \text{ (syst) pb}$
- $\sigma_{EW}(Z_{jj}) = 534 \pm 20 \text{ (stat)} \pm 57 \text{ (syst) fb}$

Constraints on anomalous triple gauge couplings (ATPG)

W/Z+2jets sensitive to ATPG induced by higher-dimension operators

- expect cross section enhancement at high p_T^ℓ or p_T^Z
- no sign of NP, most stringent limits to date on c_{WWW} from combination of W/Z

$$\mathcal{O}_{WWW} = \frac{c_{WWW}}{\Lambda^2} W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho},$$
$$\mathcal{O}_W = \frac{c_W}{\Lambda^2} (D^{\mu} \Phi)^{\dagger} W_{\mu\nu} (D^{\nu} \Phi)$$

Production of a W boson and a charm quark

Probe s-quark content of the proton \rightarrow sensitivity to PDF

cross-check results from global PDF fits to deep inelastic scattering (DIS) data

c-quark tagged by full reconstruction of charmed hadrons

- $c \to D^*(2010)^{\pm} \to D^0(1865) + \pi_{slow}^{\pm} \to K^{\mp} + \pi^{\pm} + \pi_{slow}^{\pm}$
- requires high performance in track reconstruction and secondary-vertex location

 $\overline{s}, \overline{d}$ W⁺ c c

W+c cross section

σ (W+c) measured inclusively/differentially in $|\eta^{\mu}|$

• results compared with NLO ($\mathcal{O}(\alpha_S^2)$) predictions using different PDF sets

Present measurement used in an NLO QCD analysis

- combination of DIS measurements and earlier CMS W charge asymmetry and W+c
- determine s-quark PDF

Not only precision measurements

First search for rare decay $W
ightarrow 3\pi$

- no theoretical prediction exists for branching ratio!
- BR(W $\rightarrow 3\pi$) thought to be between 10^{-8} and 10^{-5}

Innovative use of algorithms originally designed to trigger on and identify hadronically decaying τ leptons

• no excess found \rightarrow upper limit set at 95% CL: **BR(W** \rightarrow 3 π) < 1.01 \cdot 10⁻⁶

Summary

- Some of the most recent EW measurements from CMS presented
 - fundamental to test perturbative QCD calculations and PDFs
 - precise knowledge of EW processes vital in searches for new physics
- Excellent performance of the LHC and CMS detector during Run 2
 - large amount of data allows to probe SM with unprecedented precision and explore rare processes (un)predicted by SM
- > Many analysis limited by theoretical systematic uncertainties
 - devise new ideas and techniques to improve on precision
 - design new measurements to support more precise calculations
- Collaboration between experimental and theoretical community paramount to exploit at best data collected during Run 2

BACKUP

Forward–backward asymmetry of Drell–Yan events

Forward-backward asymmetry $\mathsf{A}_{ ext{FB}}$ in $q\overline{q} o Z/\gamma^* o \ell^+ \ell^-$

• Z couplings different for left and right-handed fermions

 A_{FB} sensitive to $\sin^2 \theta_W$ near Z peak

- at LO, $\sin^2 \theta_W = 1 m_W^2 / m_Z^2$
- EW corrections can be absorbed in effective couplings k_{f}

$$v_{\rm f} = T_3^{\rm f} - 2Q_{\rm f} \sin^2 \theta_{\rm W},$$

$$a_{\rm f} = T_3^{\rm f},$$

$$\sin^2 \theta_{\rm eff}^{\rm f} = k_{\rm f} \sin^2 \theta_{\rm W}$$

$sin^2\,\theta^f_{eff}$ and PDF uncertainty

PDF uncertainty on A_{FB} larger far from Z peak (opposite behavior for $sin^2 \theta_{eff}^{f}$)

- each MC replica in the NNPD3.0 set corresponds to a measured value of A_{FB} cf
- PDF uncertainty on A_{FB} (from which $\sin^2 \theta^f_{eff}$ is inferred) given by RMS of replicas
- one can reduce this spread by penalizing the replicas that are disfavoured by data

Bayesian χ^2 reweighing method

- perform $\sin^2 \theta^{\rm f}_{\rm eff}$ measurement for each PDF replica (100) and get χ^2
- define a weight w_i for each replica
- measure $\sin^2 \theta^f_{eff}$ as:

$$\sin^2 \theta_{\text{eff}}^{\ell} = \sum_{i=1}^{N} w_i s_i / N$$
$$w_i = \frac{e^{-\frac{\chi_{\min,i}^2}{2}}}{\frac{1}{N} \sum_{i=1}^{N} e^{-\frac{\chi_{\min,i}^2}{2}}},$$

Eur. Phys. J. C (2018) 78:701

Projections for future measurements of $sin^2 \; \theta^f_{eff}$

Statistical uncertainty (currently the dominant one) will be reduced using Run 2 data

- caveat: higher \sqrt{s} implies A_{FB} dilution due to enhanced anti-quark PDF contribution
- PDF uncertainty could be reduced through global fits with recent LHC data
- extending lepton η acceptance helps a lot Run 2 HL-LHC CMS Phase-2 Simulation Preliminary 14 TeV 10² 10² $\delta \sin^2 \theta_{eff}^{lept}$ (10⁻⁵) LEP, SLD 10 10 ml < 2.4 Inl < 2.8 Statistical NNPDF3.0 nominal – NNPDF3.0 nominal NNPDF3.0 constrained – NNPDF3.0 constrained 10² 10^{3} 10 (fb⁻¹ **CMS PAS FTR-17-001**

Collins-Soper frame

Z axis in CS frame defined as the axis that bisects the angle formed by the direction of the quark and the reversed direction of anti-quark

• minimize magnitude of partons' transverse momenta with respect to Z axis

J.C. Collins, D.E. Soper, Angular distribution of dileptons in high energy hadron collisions. Phys. Rev. D **16**, 2219 (1977). https://doi.org/10.1103/PhysRevD.16.2219

W+jets differential cross section

19

Provide valuable tests of SM QCD sector and parton-shower models

- jet multiplicities sensitive to higher order terms and PDFs
- theory has O(1%) precision, experiments often sub-% level

Jet activity in EW V + 2 jets production

EW W/Z + 2 jets useful to study additional jet activity between forward jets

Can also study hadronic activity vetoes

 efficiency of hadronic activity veto corresponds to fraction of events with measured gap activity below a given threshold

